[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A002731
Numbers k such that (k^2 + 1)/2 is prime.
(Formerly M2444 N0971)
21
3, 5, 9, 11, 15, 19, 25, 29, 35, 39, 45, 49, 51, 59, 61, 65, 69, 71, 79, 85, 95, 101, 121, 131, 139, 141, 145, 159, 165, 169, 171, 175, 181, 195, 199, 201, 205, 209, 219, 221, 231, 245, 261, 271, 275, 279, 289, 299, 309, 315, 321, 325, 329, 335, 345, 349, 371, 375, 379, 391, 399, 405
OFFSET
1,1
COMMENTS
From Wolfdieter Lang, Feb 24 2012: (Start)
a(n) = sqrt(8*A129307(n)+1) = sqrt(2*A027862(n)-1), n >= 1.
a(n) is the nontrivial solution of the congruence a(n)^2 == 1 (Modd A027862(n)). The trivial one is +1. For Modd n see a comment on A203571. E.g., a(3)^2 = 81 == 1 (Modd 41), see a comment on A027862.
(End)
REFERENCES
L. Euler, De numeris primis valde magnis (E283), reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 3, p. 24.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
L. Euler, De numeris primis valde magnis (E283), The Euler Archive.
FORMULA
a(n) = 2*A027861(n) + 1.
MATHEMATICA
Select[Range[400], PrimeQ[(#^2 + 1)/2] &] (* Alonso del Arte, Feb 24 2012 *)
PROG
(PARI)
forstep(n=1, 10^3, 2, if(isprime((n^2+1)/2), print1(n, ", ")));
/* Joerg Arndt, Sep 02 2012 */
(Magma) [n: n in [3..410] | IsPrime((n^2+1) div 2) ]; // Vincenzo Librandi, Sep 25 2012
(Haskell)
a002731 n = a002731_list !! (n-1)
a002731_list = filter ((== 1) . a010051 . a000982) [1, 3 ..]
-- Reinhard Zumkeller, Jul 13 2014
CROSSREFS
Cf. A027861. A027862 gives primes, A091277 gives prime indices.
Sequence in context: A075991 A292918 A216091 * A006046 A161830 A151922
KEYWORD
nonn,easy,nice
STATUS
approved