[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002637
Number of partitions of n into not more than 5 pentagonal numbers.
(Formerly M0050 N0016)
1
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 3, 3, 2, 3, 2, 2, 2, 1, 2, 1, 3, 3, 3, 4, 3, 3, 2, 3, 3, 1, 2, 3, 4, 4, 3, 4, 3, 4, 3, 3, 3, 3, 3, 4, 5, 5, 3, 3, 4, 4, 3, 2, 4, 3, 4, 4, 5, 6, 5, 5, 4, 5, 6, 3, 4, 4, 6, 5, 4, 5, 4, 6, 4, 5, 6, 4, 3, 3, 8, 7, 5, 6, 5, 7, 5, 6, 5, 3, 6, 5, 7, 7
OFFSET
1,5
REFERENCES
D. H. Lehmer, Review of Loria article, Math. Comp. 2 (1947), 301-302.
G. Loria, Sulla scomposizione di un intero nella somma di numeri poligonali. (Italian) Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 1, (1946). 7-15.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Gino Loria, Sulla scomposizione di un intero nella somma di numeri poligonali. (Italian). Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 1, (1946). 7-15. Also D. H. Lehmer, Review of Loria article, Math. Comp. 2 (1947), 301-302. [Annotated scanned copies]
Eric Weisstein, MathWorld, Pentagonal Number
MATHEMATICA
it=Expand[Normal @ Series[CoefficientList[Series[Product[(1+(q l[3k^2/2-k/2] x^(3k^2/2-k/2)))^5, {k, 512}], {x, 0, 512}], x], {q, 0, 5}]]/. (_Integer) q^(e_:1)->1 /.q->1 ; it/.l[_]->1 - Wouter Meeussen, May 17 2008
CROSSREFS
Sequence in context: A122172 A030613 A025910 * A166279 A077478 A127836
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Naohiro Nomoto, Feb 28 2002
STATUS
approved