[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Numerators of coefficients in Taylor series expansion of log(1+x)^2/sqrt(1+x).
(Formerly M3151 N1276)
14

%I M3151 N1276 #29 Oct 16 2023 23:50:02

%S 0,1,-3,43,-95,12139,-25333,81227,-498233,121563469,-246183839,

%T 32808117961,-13219717433,3226018634857,-8835766426243,

%U 390013167515221,-260612031438103,36514732926665911,-73104960503491573,9265088297941326563,-389193444786378151123

%N Numerators of coefficients in Taylor series expansion of log(1+x)^2/sqrt(1+x).

%C Old title: Numerators of coefficients for numerical differentiation.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H W. G. Bickley and J. C. P. Miller, <a href="http://dx.doi.org/10.1080/14786444208521334">Numerical differentiation near the limits of a difference table</a>, Phil. Mag., 33 (1942), 1-12 (plus tables).

%H W. G. Bickley and J. C. P. Miller, <a href="/A002551/a002551.pdf">Numerical differentiation near the limits of a difference table</a>. [Annotated scanned copy]

%o (PARI) a(n) = my(x='x+O('x^n)); numerator(polcoeff(Pol(log(1+x)^2/sqrt(1+x)), n)); \\ _Michel Marcus_, Oct 31 2014

%Y Cf. A002552.

%K sign,frac

%O 1,3

%A _N. J. A. Sloane_

%E More terms from _Sean A. Irvine_, Mar 24 2014

%E Signs from _Michel Marcus_, Oct 31 2014