[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002267
The 15 supersingular primes: primes dividing order of Monster simple group.
10
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71
OFFSET
1,1
COMMENTS
The supersingular primes are a subset of the Chen primes (A109611). - Paul Muljadi, Oct 12 2005
PROD(a(k): 1<=k<=15) = 1618964990108856390 = A174848(26). - Reinhard Zumkeller, Apr 02 2010
REFERENCES
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
A. P. Ogg, Modular functions, in The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), pp. 521-532, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., 1980.
LINKS
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
Alan W. Reid, Arithmetic hyperbolic manifolds, slides of a talk, Cornell University, June 2014,
G. K. Sankaran, A supersingular coincidence, arXiv:2009.11379 [math.NT], 2020.
J. G. Thompson, Finite groups and modular functions, Bulletin of the London Mathematical Society 11.3 (1979): 347-351. See page 350.
Eric Weisstein's World of Mathematics, Supersingular Prime
MATHEMATICA
FactorInteger[GroupOrder[MonsterGroupM[]]][[All, 1]] (* Jean-François Alcover, Oct 03 2016 *)
PROG
(PARI) A002267=vecextract(primes(20), 612351) \\ bitmask 2^20-1-213<<11: remove primes # 12, 14, 16, 18 and 19. - M. F. Hasler, Nov 10 2017
CROSSREFS
KEYWORD
nonn,fini,full,nice
STATUS
approved