[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002059
Number of partitions of an n-gon into (n-4) parts.
(Formerly M3130 N1269)
3
3, 32, 225, 1320, 7007, 34944, 167076, 775200, 3517470, 15690048, 69052555, 300638520, 1297398375, 5557977600, 23663585880, 100222246080, 422559514170, 1774647576000, 7427639542050, 30994292561232, 128989359164358
OFFSET
6,1
COMMENTS
Second subdiagonal of the table of values of V(r,k) on page 240.
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. Cayley, On the partitions of a polygon, Proc. London Math. Soc., 22 (1891), 237-262
A. Cayley, On the partitions of a polygon, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff.
FORMULA
a(n) = (n-3) * binomial(2n-6,n). - Gill Barequet, Nov 09 2011
9*n*(n-6)*a(n) + 2*(-17n^2+90n-133)*a(n-2) - 4*(n-4)(2n-9)*a(n-2) = 0. - R. J. Mathar, Nov 26 2011
G.f.: 64*x^6*(2*x+3*sqrt(1-4x))/( (1+sqrt(1-4x))^6 * (1-4x)^(3/2)). - R. J. Mathar, Nov 27 2011
a(n) ~ 4^n*sqrt(n)/(64*sqrt(Pi)). - Ilya Gutkovskiy, Apr 11 2017
CROSSREFS
Sequence in context: A183457 A322234 A264574 * A028447 A081012 A187919
KEYWORD
nonn
STATUS
approved