[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001939
Expansion of (psi(-x) / phi(-x))^5 in powers of x where phi(), psi() are Ramanujan theta functions.
(Formerly M3898 N1599)
8
1, 5, 20, 65, 185, 481, 1165, 2665, 5820, 12220, 24802, 48880, 93865, 176125, 323685, 583798, 1035060, 1806600, 3108085, 5276305, 8846884, 14663645, 24044285, 39029560, 62755345, 100004806, 158022900, 247710570, 385366265, 595212280, 913040649, 1391449780
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
A. Cayley, A memoir on the transformation of elliptic functions, Philosophical Transactions of the Royal Society of London (1874): 397-456; Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, included in Vol. 9. [Annotated scan of pages 126-129]
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-5/8) * (eta(q^4) / eta(q))^5 in powers of q. - Michael Somos, Sep 24 2011
Euler transform of period 4 sequence [ 5, 5, 5, 0, ...]. - Michael Somos, Sep 24 2011
G.f.: (Product_{k>0} (1 - x^(4*k)) / (1 - x^k))^5. - Michael Somos, Sep 24 2011
a(n) = (-1)^n * A195861(n). - Michael Somos, Sep 24 2011
a(n) ~ 5^(1/4) * exp(sqrt(5*n/2)*Pi) / (64 * 2^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 27 2015
EXAMPLE
1 + 5*x + 20*x^2 + 65*x^3 + 185*x^4 + 481*x^5 + 1165*x^6 + 2665*x^7 + ...
q^5 + 5*q^13 + 20*q^21 + 65*q^29 + 185*q^37 + 481*q^45 + 1165*q^53 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q] / EllipticTheta[ 2, Pi/4, q^(1/2)] / (16 q)^(1/8))^5, {q, 0, n}] (* Michael Somos, Sep 24 2011 *)
a[ n_] := SeriesCoefficient[ (Product[1 - x^k, {k, 4, n, 4}] / Product[1 - x^k, {k, n}])^5, {x, 0, n}] (* Michael Somos, Sep 24 2011 *)
nn = 4*20; b = Flatten[Table[{5, 5, 5, 0}, {nn/4}]]; CoefficientList[x*Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Aug 17 2012 *)
QP = QPochhammer; s = (QP[q^4]/QP[q])^5 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A) / eta(x + A))^5, n))} /* Michael Somos, Sep 24 2011 */
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved