OFFSET
5,2
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. C. Greubel, Table of n, a(n) for n = 5..400 (terms 5..100 from T. D. Noe)
Selden Crary, Richard Diehl Martinez, Michael Saunders, The Nu Class of Low-Degree-Truncated Rational Multifunctions. Ib. Integrals of Matern-correlation functions for all odd-half-integer class parameters, arXiv:1707.00705 [stat.ME], 2017, Table 1.
J. Riordan, Notes to N. J. A. Sloane, Jul. 1968
FORMULA
a(n) = (2n-5)!/( 5!*(n-5)!*2^(n-5) ).
a(n) = binomial(n-3,2)*(2*n-5)!!/5!!, n >= 5, with (2*n-5)!! = A001147(n-2).
E.g.f.: x*(1 + 3*x/2)/(1 - 2*x)^(9/2), with offset 1. - G. C. Greubel, Aug 13 2017
G.f.: t^5 * hypergeometric2F0(3, 7/2; -; 2*t) = t^5 + 21*t^6 + .... - G. C. Greubel, Aug 16 2017
MATHEMATICA
With[{nn = 50}, CoefficientList[Series[x*(1 + 3*x/2)/(1 - 2*x)^(9/2), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 13 2017 *)
PROG
(PARI) x='x+O('x^50); Vec(serlaplace(x*(1 + 3*x/2)/(1 - 2*x)^(9/2))) \\ G. C. Greubel, Aug 13 2017
(Magma) [Factorial(2*n-5)/(120*Factorial(n-5)*2^(n-5) ): n in [5..30]]; // Vincenzo Librandi, Aug 14 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved