[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001881
Coefficients of Bessel polynomials y_n (x).
(Formerly M5116 N2217)
7
1, 21, 378, 6930, 135135, 2837835, 64324260, 1571349780, 41247931725, 1159525191825, 34785755754750, 1109981842719750, 37554385678684875, 1343291487737574375, 50661278966102805000, 2009564065655411265000, 83648104232906493905625, 3646073249210806587298125
OFFSET
5,2
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = (2n-5)!/( 5!*(n-5)!*2^(n-5) ).
a(n) = binomial(n-3,2)*(2*n-5)!!/5!!, n >= 5, with (2*n-5)!! = A001147(n-2).
E.g.f.: x*(1 + 3*x/2)/(1 - 2*x)^(9/2), with offset 1. - G. C. Greubel, Aug 13 2017
G.f.: t^5 * hypergeometric2F0(3, 7/2; -; 2*t) = t^5 + 21*t^6 + .... - G. C. Greubel, Aug 16 2017
MATHEMATICA
With[{nn = 50}, CoefficientList[Series[x*(1 + 3*x/2)/(1 - 2*x)^(9/2), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 13 2017 *)
PROG
(PARI) x='x+O('x^50); Vec(serlaplace(x*(1 + 3*x/2)/(1 - 2*x)^(9/2))) \\ G. C. Greubel, Aug 13 2017
(Magma) [Factorial(2*n-5)/(120*Factorial(n-5)*2^(n-5) ): n in [5..30]]; // Vincenzo Librandi, Aug 14 2017
CROSSREFS
See A001518.
(1/4) the coefficient of x^2 of polynomials in A098503.
Column 5 of triangle A001497.
Third column (m=2) of Laguerre-Sonin a=1/2 triangle A130757.
Sequence in context: A181364 A134494 A004370 * A240683 A108740 A297455
KEYWORD
nonn,easy
STATUS
approved