[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A000687
Boustrophedon transform (first version) of Fibonacci numbers 0,1,1,2,3,5,...
4
1, 1, 2, 6, 17, 59, 229, 1029, 5242, 30040, 191201, 1338897, 10228097, 84647981, 754437958, 7204350870, 73382899597, 794189092567, 9100736472725, 110080467183393, 1401588037032782, 18737851806495008, 262435512896178877
OFFSET
0,3
LINKS
C. A. Church and M. Bicknell, Exponential generating functions for Fibonacci identities, Fibonacci Quarterly, 11(3) (1973), 275-281.
J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (Abstract, pdf, ps).
N. J. A. Sloane, Transforms
FORMULA
E.g.f.: (sec(x) + tan(x))*(((exp(a*x) - 1)/a - (exp(b*x) - 1)/b)/(a - b) + 1), where a = (1 + sqrt(5))/2 and b = (1 - sqrt(5))/2. - Petros Hadjicostas, Feb 16 2021
EXAMPLE
From John Cerkan, Jan 25 2017: (Start)
The array begins:
1
0 -> 1
2 <- 2 <- 1
1 -> 3 -> 5 -> 6
17 <- 16 <- 13 <- 8 <- 2 (End)
MAPLE
read(transforms);
with(combinat):
F:=fibonacci;
[seq(F(n), n=0..50)];
BOUS(%);
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Entry revised by N. J. A. Sloane, Mar 15 2011
STATUS
approved