[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A000525
Number of partially labeled rooted trees with n nodes (4 of which are labeled).
(Formerly M5329 N2317)
3
64, 625, 4016, 21256, 100407, 439646, 1823298, 7258228, 27983518, 105146732, 386812476, 1398023732, 4977320988, 17492710572, 60790051789, 209179971147, 713533304668, 2415061934763, 8117293752058, 27111950991825, 90039381031273
OFFSET
4,1
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 134.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: A(x) = B(x)^4*(64-79*B(x)+36*B(x)^2-6*B(x)^3)/(1-B(x))^7, where B(x) is g.f. for rooted trees with n nodes, cf. A000081.
MAPLE
b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n, k) option remember; add(b(n+1-j*k), j=1..iquo(n, k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-3)^4* (64-79*B(n-3)+ 36*B(n-3)^2- 6*B(n-3)^3)/ (1-B(n-3))^7, x=0, n+1), x, n): seq(a(n), n=4..24); # Alois P. Heinz, Aug 21 2008
MATHEMATICA
b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n + 1 - j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := SeriesCoefficient[B[n-3]^4*(64 - 79*B[n-3] + 36*B[n-3]^2 - 6*B[n-3]^3)/ (1 - B[n-3])^7, {x, 0, n}]; Table[a[n], {n, 4, 24}] (* Jean-François Alcover, Mar 20 2014, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A008295.
Cf. A042977.
Sequence in context: A200788 A250355 A045789 * A067476 A179810 A303265
KEYWORD
nonn
EXTENSIONS
More terms from Vladeta Jovovic, Oct 19 2001
STATUS
approved