Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Nov 22 2023 11:30:36
%S 0,1,1,2,3,5,8,1,2,3,5,8,1,2,3,6,9,1,2,4,6,1,1,2,4,7,1,1,3,5,8,1,2,3,
%T 5,9,1,2,3,6,1,1,2,4,7,1,1,2,4,7,1,2,3,5,8,1,2,3,5,9,1,2,4,6,1,1,2,4,
%U 7,1,1,3,4,8,1,2,3,5,8,1,2,3,6,9,1,2,4,6,1,1,2,4,7,1,1,3,5,8,1
%N Initial digit of Fibonacci number F(n).
%C Benford's law applies since the Fibonacci sequence is of exponential growth: P(d)=log_10(1+1/d), in fact among first 5000 values the digit d=1 appears 1505 times, while 5000*P(1) is about 1505.15. - _Carmine Suriano_, Feb 14 2011
%C Wlodarski observed and Webb proved that the distribution of terms of this sequence follows Benford's law. - _Amiram Eldar_, Sep 23 2019
%H Alois P. Heinz, <a href="/A008963/b008963.txt">Table of n, a(n) for n = 0..10000</a> (first 1001 terms from T. D. Noe)
%H William Webb, <a href="https://www.fq.math.ca/Scanned/13-4/webb.pdf">Distribution of the first digits of Fibonacci numbers</a>, The Fibonacci Quarterly, Vol. 13, No. 4 (1975), pp. 334-336.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Benford's_law">Benford's law</a>.
%H J. Wlodarski, <a href="https://www.fq.math.ca/Scanned/9-1/wlodarski2.pdf">Fibonacci and Lucas Numbers Tend to Obey Benford's Law</a>, The Fibonacci Quarterly, Vol. 9, No. 1 (1971), pp. 87-88.
%H <a href="/index/Be#Benford">Index entries for sequences related to Benford's law</a>.
%F a(n) = A000030(A000045(n)). - _Amiram Eldar_, Sep 23 2019
%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{d=1..9} d*log(1+1/d)/log(10) = 3.440236... (A213201). - _Amiram Eldar_, Jan 12 2023
%p F:= combinat[fibonacci]:
%p a:= n-> parse(""||(F(n))[1]):
%p seq(a(n), n=0..100); # _Alois P. Heinz_, Nov 22 2023
%t Table[IntegerDigits[Fibonacci[n]][[1]], {n, 0, 100}] (* _T. D. Noe_, Sep 23 2011 *)
%o (PARI) vector(10001,n,f=fibonacci(n-1);f\10^(#Str(f)-1))
%o (Haskell)
%o a008963 = a000030 . a000045 -- _Reinhard Zumkeller_, Sep 09 2015
%Y Cf. A000045, A003893 (final digit).
%Y Cf. A000030, A261607, A213201.
%K nonn,base,easy
%O 0,4
%A _N. J. A. Sloane_.