[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006865
Number of Hamiltonian cycles in P_5 X P_{2n}: a(n) = 11*a(n-1) + 2*a(n-3).
(Formerly M4946)
5
1, 14, 154, 1696, 18684, 205832, 2267544, 24980352, 275195536, 3031685984, 33398506528, 367933962880, 4053336963648, 44653503613184, 491924407670784, 5419275158305920, 59701333748591488, 657698520049847936, 7245522270864939136, 79820147647011513472
OFFSET
1,2
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
Y. H. H. Kwong, Enumeration of Hamiltonian cycles in P_4 X P_n and P_5 X P_n. Ars Combin. 33 (1992), 87-96.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
Y. H. H. Kwong, A Matrix Method for Counting Hamiltonian Cycles on Grid Graphs, European J. of Combinatorics 15 (1994), 277-283.
FORMULA
G.f.: x*(1+3*x)/(1-11*x-2*x^3). - Colin Barker, Aug 29 2012
MATHEMATICA
LinearRecurrence[{11, 0, 2}, {1, 14, 154}, 20] (* Harvey P. Dale, Aug 21 2013 *)
CROSSREFS
Sequence in context: A125426 A004986 A154248 * A263474 A154347 A001707
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, kwong(AT)cs.fredonia.edu (Harris Kwong), Frans J. Faase
EXTENSIONS
More terms from Harvey P. Dale, Aug 21 2013
STATUS
approved