OFFSET
0,1
COMMENTS
See Gouyou-Beauchamps for an interpretation in terms of closed paths in the first quadrant of the square grid.
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 8.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableaux de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, Springer, 1986.
D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableaux de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, Springer, 1986. (Annotated scanned copy)
FORMULA
a(n) = (n+1)*(n+2)*(n+3)*(n+6)/12.
G.f.: (x-3)/(x-1)^5 [Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009]
MATHEMATICA
CoefficientList[Series[(x - 3) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
PROG
(Magma) [(n+1)*(n+2)*(n+3)*(n+6)/12: n in [0..50]]; // Vincenzo Librandi, Jun 09 2013
(PARI) a(n) = (n+1)*(n+2)*(n+3)*(n+6)/12; \\ Michel Marcus, Dec 16 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved