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Abstract 

In search of a recyclable catalyst with synergistic adsorption and photocatalysis, unique 

composite photocatalysts of flower-like bismuth tungstate (Bi2WO6) and carbon nanospheres (CSs) 

were composited using a hydrothermal synthesis method (named CSs-Bi2WO6). Notably, based 

on the high visible light utilization and a reasonable band gap (2.53 eV), CSs-Bi2WO6 have good 

photocatalytic properties. For example, the composite with an optimized ratio (2% CSs-Bi2WO6) 

showed good adsorption and photocatalytic performance. Under simulated natural light conditions, 

the degradation rate of tetracycline (TC) by 2% CSs-Bi2WO6 was 84.6% in 60 min, which is nearly 

25% higher than pure Bi2WO6. After five cycles, the observed barely decreased TC degradation 

rate of 2% CSs-Bi2WO6 confirmed the high cyclability and reproducibility of the photocatalyst. 

The total organic carbon estimation of the post-degradation reaction medium corresponded to 68.2% 

mineralization. Furthermore, we determined the photocatalytic reaction path by LC-MS, which 

confirmed that the composite catalyst could effectively degrade TC molecules into small 

molecules. It can be concluded that the catalyst has a broad application prospect in the field of 

wastewater treatment. 

Keyword: Flower-like Bi2WO6, Carbon nanospheres, Synergistic effect, Wastewater treatment, 

Degradation pathways 
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Graphical abstract: Carbon-doped Bi2WO6 composite catalyst was used to degrade TC in 
wastewater efficiently 
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1. Introduction 

With the acceleration of global industrialization, environmental pollution has brought serious 

and inevitable questions to human life [1-5]. The polluted water seeps into the ground, which 

further leads to different degrees of pollution of soil and groundwater [6, 7]. Therefore, 

environmental remediation is a necessary task for human beings to survive on Earth. In the past 

few decades, antibiotics have been diffusely used in the field of biological disease control. Among 

them, TC has high efficiency in the inhibition and even removal of a variety of pathogenic bacteria, 

ranking second in the list of global antibiotic production and consumption [8, 9]. Because TC has 

a stable aromatic ring molecular structure, it is difficult to degrade under natural conditions, which 

is easy to increase the resistance of receptors, and then threaten human health [10, 11]. Therefore, 

it is critical to develop efficient and cost-effective methods to control TC in the environment. 

Among many methods of sewage treatment, adsorption is considered to be one of the key 

methods to alleviate water pollution due to its high efficiency and recyclability [12]. We note that 

the applications of carbon materials in supercapacitors, energy storage, drug delivery, and 

especially catalysis are widely concerned [13-15]. Since the carbon component can provide high 

specific surface area and a high visible light utilization, which will effectively enhance the 

absorption of visible light. In addition, they can also form strong interfacial electronic effects with 

semiconductors [16, 17], which play a positive role in improving the degradation performance of 

catalysts. In general, the easy stacking of most carbon materials in the preparation process is an 

important reason that affects the material properties. Therefore, the preparation of uniform and 
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stable carbon materials is our key research topic. On the other hand, carbon materials can only 

adsorb pollutants in the environment and cannot be mineralized into small molecules, thus 

producing secondary pollution, which limits their adhibition [18, 19]. To solve the problems we 

mentioned, a strategy of combining adsorption and photocatalysis was proposed: the pollutants are 

enriched on the surface of carbon materials, and it was further decomposed and mineralized by 

photocatalysts into small molecules [20, 21].  

In recent years, research on photocatalysis technology in energy conversion and 

environmental remediation has been in full swing [22, 23]. Many Bi-based photocatalysts have 

been modified by carbonaceous materials [24, 25]. Bi2WO6 is one of the semiconductor materials 

with environmental protection, high light stability, and nontoxicity. Due to its special sandwiches-

like layered structure of [Bi2O2]2+ and [WO6]2-, Bi2WO6 has a better optical property and stability 

than monolayer catalysts [26]. The valence band of Bi2WO6 is formed by the hybridization of Bi 

6s orbital and O 2p orbital, and the W 5d orbital also constitutes the conduction band in the 

meantime [27-29]. It shows a suitable band gap value (2.75 eV) and visible light response range 

for photocatalytic reactions [30]. It is becoming one of the most promising photocatalysts. 

However, as a result of the fast recombination rate of photogenerated e- and h+, the application of 

pure Bi2WO6 photocatalyst is greatly limited [31]. According to many reports, we have noted that 

carbon materials have the function of capturing and transporting photogenerated electrons, thus 

improving photocatalytic performance. For instance, Li et al. [32] modified the Bi2WO6 material 

with carbon materials, and the results showed that the degradation rate of TC (20 mg/L) was 87% 

in 70 min. Cai et al. reported a direct S-scheme electron transfer mechanism in CZS/CDs/BWO 
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composite with carbon dots as the electron bridge, which exhibited a wider absorption wavelength 

compared to the pristine Bi2WO6 [33]. Similarly, other photocatalysts based on Bi2WO6 composite 

with carbon materials, such as CDs/Cl-Bi2WO6 [34], SCFs/BWO [35], BWO QDs/MCNOs [36], 

and Bi2WO6/rGO [37] were found to exhibit photocatalytic degradation. The above studies have 

well proven its excellent photocatalytic activity. 

In this paper, the composite photocatalyst of CSs-Bi2WO6 was prepared by hydrothermal 

synthesis. It is worth noting that the high dispersion of CSs avoids the aggregation and stacking of 

catalysts. Moreover, the photocatalytic performances of CSs-Bi2WO6 with different proportions 

have been measured by the photodegradation of TC solution, which presented greatly enhanced 

photocatalytic activity compared with pure Bi2WO6. The composite catalyst has an excellent 

photocatalytic degradation effect. Furthermore, according to the intermediate substances produced 

in the degradation process, a possible photodegradation mechanism driven by visible light was 

proposed. 
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2 Experiment section 

2.1 Chemicals and Characterization 

Detailed information on experimental reagents and characterization was provided in the 

supporting information. 

2.2 Preparation of CSs  

CSs were prepared by conventional methods [38], 4 g of D-(+) -glucose was added to 30 mL 

of deionized water. After stirring for 30 min, the mixture was transferred to a 50 mL Teflon-lined 

steel autoclave and heated to 180 °C for 8 h. The black - brown carbonaceous material obtained 

by the hydrothermal reaction was washed three times by centrifugation with water and ethanol, 

respectively. Finally, the centrifuged products were dried in an oven at 80 ° c for 6 h.  

2.3 Preparation of CSs-Bi2WO6  

Bi2WO6 were prepared according to the hydrothermal procedure as described elsewhere [39]. 

In short, about 0.5 mol of Bi(NO3)3 5H2O and 0.5 mol Na2WO4 2H2O were dissolved in 25 mL of 

ethylene glycol and stirred to produce a white precipitate. The CSs were dissolved in 10 mL 

distilled water and then sonicated for 10 min, which was then added dropwise to the above solution. 

The mixture was then transferred to a Teflon-lined and heated at 140 °C for 14 hours. The samples 

obtained were washed three times with ethanol and deionized water respectively and then 

centrifuged. The repeatedly washed sediment was dried at 60 ℃. The composite catalysts with 
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different CSs contents were labeled as Bi2WO6, 0.5% CSs-Bi2WO6, 1% CSs-Bi2WO6, 2% CSs-

Bi2WO6, 4% CSs-Bi2WO6, 8% CSs-Bi2WO6. 

2.4 Photocatalytic TC degradation 

 Details of photocatalytic TC degradation are provided in the supporting information. 

2.5 Adsorption kinetics study 

Details of adsorption kinetics are provided in the supporting information. 
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3 Results and discussion 

3.1 Morphology and structures 

Fig. 1a shows that Bi2WO6 is a typical ‘flower-like’ structure with a diameter of 3-4 μm. It 

consists of a large number of nanosheets that cross over and come together to form a 3D structure. 

As we can see from Fig. 1b, CSs and Bi2WO6 are interconnected. However, CSs were clustered 

on the surface of Bi2WO6, and the end is easier to be covered [40]. The primary reason for this 

special structure may be that the Bi2WO6 sheet is stacked at one end and the stress distribution on 

the three-dimensional structure surface is not uniform. The structure and morphology of the 

prepared CSs are shown in Fig. 1c, from which we can find that the CSs is a uniform and well-

dispersed nanospheres with an average diameter of about 450 nm. The particle size distribution 

was shown in Fig. S1 in supporting information. The surface of CSs in Fig. 1b changed from 

smooth to rough, which may be affected by the growth of Bi2WO6 [41]. It could not prevent the 

CSs from forming close contact with Bi2WO6 to form a ‘flower-spheres’ structure, and will even 

be more conducive to the surface adsorption of organic pollutants. However, if the content of CSs 

increases, it is easy to form large clusters. This will affect the interaction between CSs and Bi2WO6. 

The EDS results in Fig. 1d-1g demonstrates the distribution of C, O, W, and Bi elements in the 

CSs-Bi2WO6 composites, indicating the successful production of the composite catalysts.  

In Fig. 1h, it can be seen that the 2% CSs-Bi2WO6 composite structure exhibits the ‘flower-

spheres’ morphology. The layered structure of Bi2WO6 can be seen in the picture as consisting of 

a large number of nanosheets. The CSs are attached to the nanosheets. The TEM image of pure 
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Bi2WO6 and the magnified structure of the 2% CSs-Bi2WO6 in Fig. 1h were shown in supporting 

information (Fig. S2). Fig. 1i shows the HRTEM image of Bi2WO6. We observed lattice fringes of 

0.27 nm and 0.32 nm matched perfectly with the (020) and (131) crystal faces of Bi2WO6, which 

proved the successful synthesis of Bi2WO6 [42]. The HRTEM image (Fig. 1j) depicts the good 

crystallization of 2% CSs-Bi2WO6 nanoparticles but an amorphous structure for CSs [43]. The 

above indicated that the composite catalyst was successfully prepared. 

Fig. 1 SEM images of Bi2WO6 (a), 2% CSs-Bi2WO6 (b), CSs (c), the element distribution of C, 
O, Bi, and W in 2% CSs-Bi2WO6 (d-g), TEM images of 2% CSs-Bi2WO6 (h), and HRTEM images 
(i, j) of Bi2WO6 and 2% CSs-Bi2WO6 

The XRD patterns showed the phase structure of the CSs-Bi2WO6 complexes in different 

proportions (Fig. 2a). The crystal plane (131), (020), (220), (313), (226), (400), (333), and (406) 

correspond to the characteristic diffraction peaks 2θ = 28.14°, 32.76°, 47.03°, 55.76°, 58.44°, 

68.79°, 75.91°, and 78.24°, respectively. These peaks are sharp and clear as well as matched well 

with Bi2WO6 standard card (PDF#26-1044), demonstrating the successful preparation of Bi2WO6 
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[44, 45]. Fig. S3 further showed the XRD image of CSs. It exhibited a broad peak at around ~ 44°, 

corresponding to (101) reflections of carbon materials. In the XRD pattern of the composite, the 

diffraction peak of the amorphous structure of CSs phase was not found. This is to some extent 

expected because of the low crystallinity of amorphous carbon and the incorporation of trace 

carbon materials during the preparation [46]. 

Fig. 2 XRD patterns of Bi2WO6 and CSs-Bi2WO6 photocatalysts (a), XPS spectra of the Bi2WO6 
and 2% CSs-Bi2WO6 (b), C 1s (c), O 1s (d) 

The chemical states of Bi2WO6 and 2% CSs-Bi2WO6 were analyzed by XPS. Fig. 2b shows 

the existence of elements C, O, Bi, and W in the sample. The elements of Bi and W peaks were 

found in supporting information of Fig. S4. Fig. 2c shows C 1s peak for pure Bi2WO6 and 2% CSs-
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Bi2WO6. All elements’ binding energy was calibrated with C 1s of aliphatic carbon at 284.60 eV. 

The C 1s peak at around 288.24 eV of Bi2WO6 was attributed to the adsorbed CO2 on the surface 

[47]. The slight shift of C 1s peak at 288.35 eV was speculated of 2% CSs-Bi2WO6 to be caused 

by C = O bond generated by the introduction of BCs. Notably, 2% CSs-Bi2WO6 shows a new peak 

at 286.2 eV, which may be due to the formation of C - O - C between Bi2WO6 and CSs (O atom in 

Bi2WO6). The above result indicated that most of C in 2% CSs-Bi2WO6 was sp2 hybridized. The 

presence of oxygen-containing functional groups in the 2% CSs-Bi2WO6 system suggests that the 

strong interaction between Bi2WO6 and carbon nanospheres is formed during the hydrothermal 

reaction. 

As shown in Fig. 2d, the asymmetric peak centered of O 1s at 530 eV was decomposed into 

two components at the binding energy of 529.74 eV and 531.33 eV for pure Bi2WO6, which were 

due to the surface lattice oxygen and the adsorbed oxygen species respectively [48, 49]. With the 

addition of the CSs, the binding energy shifts from 529.75 eV, 531.33 eV (Bi2WO6) to 531.08 eV, 

527.68 eV (2% CSs-Bi2WO6). The peaks of O 1s of 2% CSs-Bi2WO6 shifted to the lower binding 

energy compared to Bi2WO6, indicating the electron cloud density and electronegativity around O 

decrease due to the addition of carbon spheres. the interactions between Bi2WO6 and BCs in the 

composite [50, 51]. 

Nitrogen sorption measurements evaluated the surface area and pore structural properties in 

Fig. 3. In Fig. 3a, the isotherm curves belonged to type IV with H3 hysteresis loops [43, 52, 53]. 

And specific surface area of pure Bi2WO6, 0.5% CSs-Bi2WO6, 1% CSs-Bi2WO6, 2% CSs-Bi2WO6, 

4% CSs-Bi2WO6, and 8% CSs-Bi2WO6 was 20.76, 82.45, 84.80, 84.88 85.04 and 82.31 m2 g-1, 
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respectively. Obviously, the addition of surface area was mainly caused by the surface folds of 

CSs, which will increase the contact area of CSs with contaminants. Interestingly, the surface area 

of the complex actually decreased when an excess of CSs was introduced. This may be due to the 

fact that with the increase of CSs, the packing of Bi2WO6 became dense, the specific surface area 

decreased slightly, and the active site decreased [54, 55]. This proves that adsorption is strongly 

related to the specific surface area of the composite catalyst. The pore size distribution is shown 

in Fig. 3b, the pore size of samples is almost distributed from 1 nm - 20 nm. Furthermore, the slit-

shaped pore structure displayed by Bi2WO6 is consistent with the sheet morphology shown by 

SEM results. 

Fig. 3 N2 adsorption-desorption isotherms (a), pore size distribution curves (the inset) of 
Bi2WO6 and CSs-Bi2WO6 (b) 
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3.2 Optical and electronic properties 

It is well known that the utilization of visible light mainly depends on the band gap (Eg) and 

energy level of the semiconductor photocatalyst. The optical absorption abilities and bandgap of 

prepared samples were measured by DRS in Fig. 4. 

Fig. 4 UV-vis diffuse reflectance spectra of Bi2WO6 and 2% CSs-Bi2WO6 (a), plot of Kubelka - 
Munk transformation of Bi2WO6 and 2% CSs-Bi2WO6 (b) 

Fig. 4a shows the comparison of UV-VIS DRS optical absorption characteristics between 

pure Bi2WO6 and 2% CSs-Bi2WO6. It can be observed that the optical absorption capacity of 2% 

CSs-Bi2WO6 at 300-800 nm wavelength is higher than that of Bi2WO6. In addition, after the 

introduction of CSs, the light absorption capacity of the sample has undergone a significant redshift. 

It shows that the composite photocatalyst has higher light utilization efficiency, promotes the 

transfer of charge, and improves photocatalytic performance. The band gaps energies (E g) were 

calculated as the following formula [41]: 

𝑎𝑎ℎ𝑣𝑣 = 𝐴𝐴(ℎ𝑣𝑣 − 𝐸𝐸𝐸𝐸)
𝑛𝑛
2                            (1) 
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where A represents a constant, and α, ν, and E g represent the adsorption coefficient, optical 

frequency, and bandgap, respectively [56]. The electronic transition type of the semiconductor 

determines the value of n [57]. Referring to previous studies, Bi2WO6 is an indirect bandgap 

semiconductor with an N value of 4 [58].  

In Fig. 4b, the band gap of the pure Bi2WO6 was estimated to be 2.75 eV, which was consistent 

with the reported experimental values [59]. The band gap of the 2% CSs-Bi2WO6 sample was 

about 2.53 eV, which was lower than that of Bi2WO6. 

Photoluminescence (PL) spectra is considered to be an important experiment to discuss the 

efficiency of e- and h+ pair separation. Fig. 5a showed the strong emission peaks of the samples at 

425 nm under excitation at 378 nm. In general, the emission intensity of CSs-Bi2WO6 was lower 

than that of pure Bi2WO6, and the 2% CSs-Bi2WO6 showed the lowest emission intensity, which 

proved its better photocatalytic activity. This trend suggested that the separation efficiency of 

photogenerated e- and h+ can be effectively improved by introducing CSs, which promotes 

molecular diffusion and transfer. 

In Fig. 5b, the flat-band (CFB) potential of the composite photocatalyst is derived from the X-

intercept of the linear region. And the obtained results can be further transformed into NHE 

potential [29, 60, 61]. The straight upward curves demonstrated that Bi2WO6 was an n-type 

semiconductor. The CFB potentials of both the Bi2WO6 and 2% CSs-Bi2WO6 composites was - 

0.55 V vs. Ag/AgCl (- 0.35 eV vs. NHE). The ECB for both the Bi2WO6 and 2% CSs-Bi2WO6 

Schottky contacts was approximately - 0.45 eV. Combined with the E g values obtained from Tauc 

plots in Fig. 4b, the valence band potentials (VB) of the 2% CSs-Bi2WO6 sample was calculated 
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to be 2.08 eV [62]. 

Fig. 5 PL spectra (a), Mott-Schottky curve of Bi2WO6 and 2% CSs-Bi2WO6 (b), transient 
photocurrent response of CSs-Bi2WO6 (c), electrochemical impedance spectroscopy (EIS) 
measurements of Bi2WO6 and 2% CSs-Bi2WO6 (d) 

The photocurrent responses of the pure Bi2WO6 and 2% CSs-Bi2WO6 were tested and the 

results are displayed in Fig. 5c. Obviously, both the photoelectrodes of all samples show stable 

photocurrent responses over several switching cycles. All samples immediately produce a 

photocurrent when the electrode is momentarily exposed to visible light. On account of the higher 

recombination rate of photogenerated e- and h+ in the Bi2WO6 crystal, it can be found that Bi2WO6 

had lower photocurrent responses. The photocurrent response of the composite photocatalyst 2% 

CSs-Bi2WO6 was about 9 times higher than pure Bi2WO6, which effectively indicated more 
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efficient photo-induced charge separation and faster electron transport. Fig. 5d shows the EIS 

Nyquist plots for Bi2WO6 and 2% CSs-Bi2WO6 under different light conditions, respectively. The 

graph demonstrated that the arc radius of Bi2WO6 was larger than 2% CSs-Bi2WO6, indicating that 

the introduction of CSs enhanced the charge migration of Bi2WO6 and reduces the reaction 

resistance at the semiconductor interface. Furthermore, the EIS semicircle radius of 2% CSs- 

Bi2WO6 under light is smaller than its under dark condition, which indicates that light can excite 

more charge carriers and enhance photocatalytic activity [63]. 

  



 

18 
 

3.3 Photocatalytic tests 

The photodegradation result of samples are shown in Fig. 6. TC was selected as the target 

pollutant to test its photocatalytic performance. Under visible light, 50 mg photocatalyst was added 

to 100 mL 50 mg / L TC solution for photocatalytic degradation. Fig. 6a is a diagram of the removal 

rate of TC by the catalyst. The composite photocatalyst reached adsorption-desorption equilibrium 

within 40 minutes of the dark reaction (adsorption kinetics data in Fig. S5). The degradation rate 

of TC by 2% CSs-Bi2WO6 was 84.6%, which is nearly 25% higher than pure Bi2WO6. This was 

because 2% CSs-Bi2WO6 had a large specific surface area, especially the folded structure of CSs, 

which effectively increased the adsorption of TC by the catalyst and promoted photoreaction. 

Notably, we found that the degradation effect of 0.5% CSs-Bi2WO6 was slightly higher than that 

of 1% CSs-Bi2WO6. In order to further explore its regularity, we added the photocatalytic 

degradation data of TC by 0.2% CSs-Bi2WO6 and 0.8% CSs-Bi2WO6 in the supporting information 

(Fig. S6) [64, 65]. However, even with the addition of a trace amount of CSs, the photocatalytic 

performance of the composite photocatalyst is still higher than that of pure BW, which indicates 

that CSs can effectively enhance the utilization of visible light and form a strong interfacial 

electronic effect with semiconductor and then improve the photocatalytic efficiency. Compared 

with the work reported in the literature on the degradation of organic pollutants by carbon materials 

in Table S2.  

Fig. 6b shows the quasi-first-order degradation kinetics of the catalyst composite with a linear 

relationship between irradiation time and ln (C0/Ct). The degradation rate constant was worked 
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from the slope of the kinetic curve. The rate constants for Bi2WO6, 0.5% CSs-Bi2WO6, 1% CSs-

Bi2WO6, 2% CSs-Bi2WO6, 4% CSs-Bi2WO6, and the 8% CSs-Bi2WO6 were 0.01502 min-1, 

0.00257 min-1, 0.02141 min-1, 0.03929 min-1, 0.02951 min-1 and 0.0703 min-1, respectively. In 

particular, 2% CSs-Bi2WO6 had the highest photocatalytic degradation rate, which should be put 

down to more efficient charge separation by adding CSs. The stability and reproducibility of 

photocatalysts are of great research value in practical applications. Fig. 6c shows the photocatalytic 

cycling test plots of the prepared catalyst samples. After the 5th cycle, the final degradation rate 

was about 80.5%, which displayed better photocatalytic stability of 2% CSs-Bi2WO6. 

We used different capture scavengers under visible light to explore the main active substances. 

In the present study: dimethyl sulfoxide (DMSO), ammonium oxalate (AMO), 1,4-benzoquinone 

(BQ), and isopropyl alcohol (IPA) were used as electron (e-), hole (h+), superoxide radical (·O2
-), 

and hydroxyl radical (·OH-) scavengers, respectively [66]. In Fig. 6d. the presence of BQ and 

AMO significantly inhibited the photodegradation of TC, indicating that ·O2
- was the main active 

species. Photodegradation was also somewhat inhibited when AMO was added into the system, 

indicating that the h+ was more active in the composite photocatalyst. In addition, the addition of 

IPA and DMSO had little effect on the photocatalytic performance. In short, the order of action of 

the active species in the 2% CSs-Bi2WO6 photocatalytic degradation TC was ‧O2
- > h+ > e- > ‧OH- 
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Fig. 6 Variation of TC concentration with irradiation time under light irradiation. (The experiment 
was repeated three times) (a), first-order kinetic curves of photocatalytic TC degradation in the as-
synthesized samples (b), reusability of 2% CSs-Bi2WO6 in five runs for TC (c), mapping of active 
species captured in the TC photodegradation system on 2% CSs-Bi2WO6 under visible light (d), 
ESR spectrum of DMPO- ·O2

- (e), removal of TOC as a function of time for TC degradation using 
as-prepared 2% CSs-Bi2WO6 (f) 

In Fig. 6e, a further identification test of the free radical O2
– was carried out using electron 
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spin resonance (ESR). No ESR signal was observed in the dark condition. When 2% CSs-Bi2WO6 

and DMPO were mixed under light for 5 and 10 minutes, a set of characteristic peaks attributed 

to ·O2
- was found. This indicates that O2

- was produced under light conditions in the catalytic 

system. The signal intensity of ·O2
- increased with the increase of irradiation time. Relevant studies 

have shown that 2% CSs-Bi2WO6 photocatalytic TC not only has a higher degradation rate, but 

also a higher degree of organic matter mineralization [9, 67, 68]. Therefore, we studied the removal 

efficiency of total organic carbon (TOC), and the results are shown in Fig. 6f. It seems that in the 

90 min degradation process, the reduction curve of TOC is mainly based on the degradation curve, 

and the degradation rate is 68.17%. TOC ratio was slightly higher than residual antibiotic 

concentration ratio, indicating that some intermediates were not completely degraded or degraded 

for a long time. 
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3.4 Photocatalytic mechanism 

The intermediates of 2% CSs-Bi2WO6 photodegradation of TC were identified by 

LC-MS technology, and the degradation pathway of TC was further described. 12 

intermediates with m/z values of 481, 475, 459, 445, 415, 388, 344, 318, 300, 274, 250, 

246, 242, and 165 were generated under visible light irradiation. According to Fig. 

6d, ·O2
- was the main active substance in the degradation process. Therefore, the 

photodegradation pathway of TC can be proposed (Fig. 7 and Fig. S7) [69, 70].  

After visible light irradiation, TC was invaded from three possible sites. Pathway 

1: The main reaction pathway of TC degradation is the reaction of superoxide radical 

attacking phenol group. Under light conditions, it was further oxidized to form a 

macromolecular intermediate with m/z = 475. Then, the product with m/z = 475 was 

converted to the product with m/z = 459 by attacking the ketone group and changing 

the hydroxyl group [71]. Finally, the unstable intermediate cleaved due to the loss of 

the hydroxyl group, resulting in the formation of small molecules with m/z of 344, 300 

and 242, respectively. They are eventually mineralized into H2O and CO2. Pathway 2: 

The formation of m/z = 481 is due to the attack of the double bond of TC, which further 

introduces hydroxyl and ketone groups [72]. In the next period, the product of m/z = 

246 and 165 appears due to the opening of the benzene ring by h+ attack. Eventually 

mineralized into small molecules [73]. Pathway 3: the product of m/z = 338 was 

attributed to the loss of the N-methyl group. The product with m/z = 318 is formed due 

to further cleavage of the C-ring and loss of the hydroxyl group. Furthermore, the small 
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molecule with m/z = 318 was transformed into a product with m/z = 274 by removing 

the carboxyl group. Finally, after different process of detachment of hydroxyl, and 

aldehyde groups followed by decarbonization and dihydroxylation [74]. With 

increasing reaction time, oxidative decomposition and ring-opening reactions further 

occur, and the above intermediate products are finally decomposed into H2O, CO2 and 

NH4+, etc. 

 

Fig. 7 Degradation pathway of TC over 2% CSs-Bi2WO6  

According to the above experiments, Fig. 8 shows the mechanism of 

photocatalytic degradation of TC by 2% CSs-Bi2WO6 under visible light irradiation. 

The CB of 2% CSs-Bi2WO6 was - 0.45 eV, which was more negative than the redox 

potential (E O2/‧O2
- = - 0.33 eV). Thus, the main reason for TC degradation was that the 

photogenerated electrons were transferred to O2 and further converted to ‧O2
-. In 
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addition, combined with the E g energy of 2% CSs-Bi2WO6, the VB potential of 2% 

CSs-Bi2WO6 can be deduced as + 2.08 eV according to the equation (E CB = E VB - E g) 

[75]. Specific data are described in Fig. 4. The VB level of 2% CSs-Bi2WO6 was lower 

than E ‧OH/OH
-
 = + 2.31 eV. Therefore, ·OH- did not play a major role in the photocatalytic 

reaction. Under visible light irradiation, the semiconductor photocatalyst generates 

electron-hole pairs. The photogenerated electrons reacted with O2 (from the air) on the 

photocatalyst surface to form the ‧O2
-. TC is eventually mineralized into small molecule 

compounds, such as water and carbon dioxide [38, 76]. To sum up, the 2% CSs-Bi2WO6 

photocatalyst has higher electron-hole separation efficiency than the bare Bi2WO6 

photocatalyst. Further, the photodegradation reaction process of TC has been proposed 

as Equations (2-6): 

𝐵𝐵𝐵𝐵2𝑊𝑊𝑊𝑊6 + ℎ𝑣𝑣 → 𝐵𝐵𝐵𝐵2𝑊𝑊𝑊𝑊6 + 𝑒𝑒− + ℎ+              (2) 

𝑒𝑒− + 𝑊𝑊2 →· 𝑊𝑊2−                                                        (3) 

· 𝑊𝑊2− + 2𝐻𝐻2𝑊𝑊 + 𝑒𝑒− → 4 · 𝑊𝑊𝐻𝐻−                            (4) 

· 𝑊𝑊2− + 𝑇𝑇𝑇𝑇 → 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝                                        (5) 

ℎ+ + 𝑇𝑇𝑇𝑇 → 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝                                           (6) 
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Fig. 8 Possible mechanism of TC on the surface of 2% CSs-Bi2WO6 composite 

During the dark reaction, TC was adsorbed on the surface of CSs due to irregular 

folds on the surface and strong adsorption. It facilitated the transfer of pollutants from 

the environment to the surface of the catalyst, forming a high concentration TC 

environment on the surface. And finally adsorption - dissolution equilibrium was 

achieved. In addition, CSs are more efficient at harvesting light by multiple scattering 

and utilizing photons. The composite can effectively separate the e- / h+ pairs when 

photogenerated electrons in bismuth tungstate migrate to the CSs, thus improving the 

photocatalytic performance. 
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4 Conclusion 

In summary, the composite photocatalyst of CSs-Bi2WO6 was synthesized by a 

simple hydrothermal method. The experimental results showed that the composite 

showed good photocatalytic performance (84.6%) and stability for tetracycline 

degradation under the optimal CSs loading amount (2 wt%). The degradation kinetics 

of TC in CSs modified Bi2WO6 was 2.6 times that of pure Bi2WO6. This may be because 

CSs can enhance the absorption of visible light by the composite catalyst and effectively 

enhance the separation efficiency of e-/h+. It is worth noting that the TOC estimation of 

the post-degradation reaction medium corresponded to 68.2% mineralization. Based on 

the capture experiment and ESR measurement results, the free radical ‧O2
− plays a 

leading role in the photocatalytic reaction. Further, the photocatalytic reaction 

mechanism and degradation pathway of 2% CSs-Bi2WO6 were revealed in detail by 

using LC-MS determined reaction intermediates. This study provides a new idea for 

photocatalytic degradation of organic pollutants through the synergistic action of 

carbon and semiconductor materials. 
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