[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Circle_cos_sin.gif (650 × 390 pixels, bestandsgrootte: 517 kB, MIME-type: image/gif, herhalend, 60 frames, 6,0 s)

Beschrijving

Beschrijving
English: We have the unit circle (with radius = 1) in green, placed at the origin at the bottom right.

In the middle of this circle, in yellow, is represented the angle theta (θ). This angle is the amount of counter-clockwise rotation around the circle starting from the right, on the x-axis, as illustrated. An exact copy of this little angle is shown at the top right, as a visual illustration of the definition of θ.

At this angle, and starting at the origin, a (faint) green line is traced outwards, radially. This line intersects the unit circle at a single point, which is the green point spinning around at a constant rate as the angle θ changes, also at a constant rate.

The vertical position of this point is projected straight (along the faint red line) onto the graph on the left of the circle. This results in the red point. The y-coordinate of this red point (the same as the y-coordinate of the green point) is the value of the sine function evaluated at the angle θ, that is:

y coordinate of green point = sin θ

As the angle θ changes, the red point moves up and down, tracing the red graph. This is the graph for the sine function. The faint vertical lines seen passing to the left are marking every quadrant along the circle, that is, at every angle of 90° or π/2 radians. Notice how the sine curve goes from 1, to zero, to -1, then back to zero, at exactly these lines. This is reflecting the fact sin(0) = 0, sin(π/2) =1, sin(π) = 0 and sin(3π/ 2) -1

A similar process is done with the x-coordinate of the green point. However, since the x-coordinate is tilted from the usual convention to plot graphs (where y = f(x), with y vertical and x horizontal), an “untilt” operation was performed in order to repeat the process again in the same orientation, instead of vertically. This was represented by a “bend”, seen on the top right.

Again, the green point is projected upwards (along the faint blue line) and this “bent” projection ends up in the top graph’s rightmost edge, at the blue point. The y-coordinate of this blue point (which, due to the “bend” in the projection, is the same as the x-coordinate of the green point) is the value of the cosine function evaluated at the angle θ, that is:

x coordinate of green point = cos θ
The blue curve traced by this point, as it moves up and down with changing θ, is the the graph of the cosine function. Notice again how it behaves at it crosses every quadrant, reflecting the fact cos(0) = 1, cos(π/2) = 0, cos(π) = -1 and cos(3π/2) = 0.
Datum
Bron Eigen werk
Auteur Lucas Vieira
Toestemming
(Hergebruik van dit bestand)
Public domain Ik, de auteursrechthebbende van dit werk, geef dit werk vrij in het publieke domein. Dit is wereldwijd van toepassing.
In sommige landen is dit wettelijk niet mogelijk; in die gevallen geldt:
Ik sta iedereen toe dit werk voor eender welk doel te gebruiken, zonder enige voorwaarden, tenzij zulke voorwaarden door de wet worden voorgeschreven.

Bijschriften

Beschrijf in één regel wat dit bestand voorstelt
auteursrechtelijk beschermd, vrijgegeven aan het publieke domein door de houder van het auteursrecht<\/a>"}},"text\/plain":{"nl":{"P6216":"auteursrechtelijk beschermd, vrijgegeven aan het publieke domein door de houder van het auteursrecht"}}}}" class="wbmi-entityview-statementsGroup wbmi-entityview-statementsGroup-P6216 oo-ui-layout oo-ui-panelLayout oo-ui-panelLayout-framed">
vrijgegeven aan het publieke domein door de houder van het auteursrecht<\/a>"}},"text\/plain":{"nl":{"P275":"vrijgegeven aan het publieke domein door de houder van het auteursrecht"}}}}" class="wbmi-entityview-statementsGroup wbmi-entityview-statementsGroup-P275 oo-ui-layout oo-ui-panelLayout oo-ui-panelLayout-framed">
originele creatie door uploader<\/a>"}},"text\/plain":{"nl":{"P7482":"originele creatie door uploader"}}}}" class="wbmi-entityview-statementsGroup wbmi-entityview-statementsGroup-P7482 oo-ui-layout oo-ui-panelLayout oo-ui-panelLayout-framed">

image/gif

methode van vaststelling<\/a>"}},"text\/plain":{"nl":{"":"methode van vaststelling"}}},"{\"value\":{\"entity-type\":\"item\",\"numeric-id\":13414952,\"id\":\"Q13414952\"},\"type\":\"wikibase-entityid\"}":{"text\/html":{"nl":{"P459":"SHA-1<\/a>"}},"text\/plain":{"nl":{"P459":"SHA-1"}}}}" class="wbmi-entityview-statementsGroup wbmi-entityview-statementsGroup-P4092 oo-ui-layout oo-ui-panelLayout oo-ui-panelLayout-framed">

c06fd6a5f798c5ac8eb37784d218a2f190916f4d

529.197 byte

5,999999999999995 seconde

390 pixel

650 pixel

Bestandsgeschiedenis

Klik op een datum/tijd om het bestand te zien zoals het destijds was.

Datum/tijdMiniatuurAfmetingenGebruikerOpmerking
huidige versie24 jun 2014 01:32Miniatuurafbeelding voor de versie van 24 jun 2014 01:32650 × 390 (517 kB)LucasVBReverted to version as of 15:59, 16 March 2014
23 jun 2014 00:00Miniatuurafbeelding voor de versie van 23 jun 2014 00:00390 × 650 (390 kB)SteinsplitterBotBot: Image rotated by 90°
16 mrt 2014 16:59Miniatuurafbeelding voor de versie van 16 mrt 2014 16:59650 × 390 (517 kB)LucasVB{{Information |Description ={{en|1=sin & cos}} |Source ={{own}} |Author =LucasVB |Date =2014-03-16 |Permission ={{PD-self}} |other_versions = }} Category:Trigonometry [[Category:Trigonometric funct...

Dit bestand wordt op de volgende pagina gebruikt:

Globaal bestandsgebruik

De volgende andere wiki's gebruiken dit bestand: