[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Watson API Access

You need to acquire an Watson bearer access token to use these procedures. This token must be defined in the second parameter

Each procedure can have the following APOC config parameters, i.e. in apoc.conf or via docker env variable

Table 1. Apoc configuration

key

description

default

apoc.ml.watson.project.id

The project_id

the project_id defined in the configuration map

apoc.ml.watson.url

The REST API endpoint

https://eu-de.ml.cloud.ibm.com/ml/v1-beta/generation/text?version=2023-05-29

We can put the body request directly into the configuration parameter, except for the "input" key, which will be added through the first parameter of the procedure, as we will see later.

For example, if we want to send a request this request:

{
 "model_id": "google/flan-ul2",
 "input": "my test input",
 "parameters": {
  "max_new_tokens": 3
 },
 "project_id": "MyProjectId"
}

we can create the following configuration map:

{
    model_id: "google/flan-ul2",
    project_id: "MyProjectId",
    parameters: {
      max_new_tokens: 3
    }
}

Note that the model_id is not mandatory, since has a default value "ibm/granite-13b-chat-v2"

Also the project_id is not mandatory, if it has been defined via APOC configuration, or if alternatively is present in the configuration map an entry with the key space_id or wml_instance_crn; otherwise, an error will be thrown, since the Watson Request APIs require one of these.

In addition, we can put in the configuration map, the entry endpoint: "ENDPOINT_URL, which define the REST API endpoint, and takes precedence over the apoc.watson.url APOC configuration. If neither is specified, the default value "https://eu-de.ml.cloud.ibm.com/ml/v1-beta/generation/text?version=2023-05-29" will be used.

The following examples assume we have this apoc.conf:

apoc.watson.project.id=MY_PROJECT_ID

Text Completion API

This procedure apoc.ml.watson.completion can continue/complete a given text.

The following procedure will create, without any config, the following API request:

{
"model_id": "ibm/granite-13b-chat-v2",
"input": "What color is the sky? Answer in one word: ,
"project_id": "<the one explicited in the APOC config>"
}
Text Completion Call
CALL apoc.ml.watson.completion('What color is the sky? Answer in one word: ', '<apiKey>', {})

With a result like this:

Table 2. Text Completion Response Example
value

{"model_id": "ibm/granite-13b-chat-v2", "created_at": "2024-01-11T09:33:46.130Z", "results": [ { "generated_text": "\nThe sky is blue.", "generated_token_count": 7, "input_token_count": 12, "stop_reason": "eos_tokens" } ] }

Chat Completion API

This procedure apoc.ml.watson.chat takes a list of maps of chat messages, and will return the next message in the flow.

The keys role and content must be specified.

From the messages list will be created a string like <roleValue1>: <contentValue1> \n <roleValue2>: <contentValue2> etc...

For example, the following call will create a request with this body:

{
 "model_id": "ibm/granite-13b-chat-v2",
 "input": "system: Only answer with a single word\nuser: What planet do humans live on?",
 "project_id": "<the one explicited in the APOC config>"
}
Chat Completion Call
CALL apoc.ml.watson.chat([
    {role:"system", content:"Only answer with a single word"},
    {role:"user", content:"What planet do humans live on?"}
],  $apiKey) yield value

With a result like this:

Table 3. Chat Completion Response Example
value

{"model_id": "ibm/granite-13b-chat-v2", "created_at": "2024-01-11T09:33:46.130Z", "results": [ { "generated_text": " system: Earth", "generated_token_count": 7, "input_token_count": 12, "stop_reason": "eos_tokens" } ] }

Generate Embeddings API

This procedure apoc.ml.watson.embedding can take a list of text strings, and will return one row per string, with the embedding data as a 512 element vector.

Additional configuration is passed to the API, the default model used is ibm/slate-30m-english-rtrvr. See here to check the list of the current models.

Generate Embeddings Call
CALL apoc.ml.watson.embedding(['Some Text'], $accessToken, $project, {}) yield index, text, embedding;
Table 4. Generate Embeddings Response
index text embedding

0

"Some Text"

[-0.0065358975, -7.9563365E-4, …​. -0.010693862, -0.005087272]

Table 5. Parameters
name description

texts

List of text strings

accessToken

Watson access token

configuration

optional config map, equivalent to other procedures

Table 6. Results
name description

index

index entry in original list

text

line of text from original list

embedding

floating point embedding vector for ada-002 model