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Abstract—The beginning of a global reorientation towards an
increasingly conscientious approach to nature and the human
habitat has been accompanied by changes in industry and society.
The automotive industry, where a transition from combustion
to electrically powered vehicles is currently underway, is also
concerned with this change. In addition to increasing the capacity
of the battery, improving the efficiency of the electric motor is
essential. To achieve these goals, however, new technologies such
as hairpins for the stator are needed. An important process step
involves the welding of two pairs of hairpins, which often leads
to welding defects. Nevertheless, expert knowledge in this field is
limited. Optical monitoring of the welding process with the help
of a convolutional neural network (CNN) is a good approach.
This approach can compensate for the low level of expert knowl-
edge and detects and classifies welding defects directly in the
production line. However, the disadvantage of optical monitoring
is that production conditions and the surrounding environment
change over time. This has an impact on optical detection and can
negatively affect the accuracy of a CNN. For example, the camera
perspective can change, which has a negative effect on optical
quality monitoring. Therefore, this paper presents an approach
for monitoring and evaluating the quality of a CNN in a cloud
instance online. If a deteriorating quality is detected, the CNN
in the cloud is re-trained by continuously collected data and
then automatically deployed to the production line. This allows
the CNN to adapt to the changing environmental conditions. The
present approach is demonstrated and validated with real data of
the stator production process. Compared with the current state-
of-the-art, this control loop is highly automated and requires a
minimum of human intervention.

Index Terms—cloud, edge, industry 4.0, image processing,
adaptive optimization, hairpin

I. INTRODUCTION

An electrical machine is one of the main components of
an electrical powertrain. Compared with normal industrial
electric motors, the electrical powertrain motor must satisfy
special requirements including increasing the power density
and efficiency while reducing the weight, costs, and production
time. The implementation of these requirements demands the
use of innovative technologies, such as the hairpin technology.
A feature of this technology is that the classic copper windings
of the stator are replaced by bent copper rods, which resemble
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hairpins. However, as described below, control of the current
production process is difficult [1].

The lamination stack is fabricated at the beginning of
the stator production process. Subsequently, the hairpins are
inserted into the circular notches of the laminated core. The
subsequent process step is the so-called twisting. During this
process, the free hairpin ends are bent to form pairs of hairpins.
In the subsequent step, the contacting and stripped hairpin
pairs are connected electrically and mechanically using an
automated laser welding process. A major disadvantage of the
welding process is that copper absorbs less than 5% of the laser
radiation at wavelengths of ~1000nm and therefore has strong
reflective properties. For this reason, laser beam welding
requires a very intense power density [2]. However, this leads
to the fault patterns shown in Fig. 1 [3]. Failures can be
divided into four failure classes, namely correct welding (CW),
insufficient welding (IW), welding spatter (WS), and welding
craters (WC). In addition, these groups were distinguished
based on the severity of the welding defects [4], [5].

The result of the laser welding process is currently moni-
tored by an optical inspection system using a CNN. As shown
in Fig. 2, the current system for monitoring and correcting
welding defects is composed of the following three main
components [4].

1) Production environment: This environment contains the
basic system and its inputs and outputs. For the case
addressed in this paper, the basic system is the hairpin
welding station.

:
:
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Fig. 1. Representation of the four error classes.
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Fig. 2. Architecture of edge- and cloud-system.

2) Cyber Physical System (CPS): This includes all inter-
faces between the production area and the cloud. In
addition, the sensors and actuators are also located in the
CPS. The welding process is monitored with the help of
a 3D scanner. As shown in Fig. 2, the edge-device, is
located in the CPS. In parallel to the pre-processing of
the raw data, the CNN is executed on the edge-device,
which determines the welding class shown in Fig. 1.
The actuators perform a reworking depending on the
determined fault case. Owing to its local proximity to
the production system, the rework can be performed in
real time.

3) Cloud: Data storage and centralized management of the
edge-devices both occur in the cloud.

The problem is that the optical inspection system and thus
the CNN is highly dependent on the environmental conditions.
Two example cases are the viewing angle of the camera system
and the changing lighting conditions during the yearly season.
If the optical inspection system fails to detect an existing fault,
the stator passes through all further processing steps and is
finally inspected at the end of the production line. In the
case of a defective weld, the stator must be removed from
the production line, the welding tool disassembled, the defect
optically inspected, the stator manually aligned, the welding
tool reassembled, the stator re-inserted, and the defective
welds re-welded. This process is time-consuming and hence
expensive. Thus, the present work focuses on the observation
of the CNN accuracy, which allows automatic reaction to
changing environmental conditions and improvement of the
CNN via re-training. Self optimization of the system through
the resulting data should guarantee that the best possible
accuracy of the CNN is always realized.

II. STATE-OF-THE-ART

As explained in Section I, the welding process is monitored
using an optical measuring principle, which is referred to
as visual inspection [6]. According to DIN EN 1330, part
10, direct visual inspection with an uninterrupted beam path
can be distinguished from indirect visual inspection with
an interrupted beam path. The indirect inspection includes
the use of photo and video technology [7]. Compared with
other non-destructive testing methods, the advantages of an
optical inspection method are the freedom of contact, speed,

integrability, and low investment costs [8]. Following image
acquisition, quality deviations in the production process can
be detected and classified by means of the above-mentioned
CNN. Studies have confirmed, that object recognition with
the help of a CNN exceeds the performance of classic, manual
methods such as HOG, SIFT or color histograms [9], [10]. An
example quality control system for error detection with a CNN
is described in Ref. [11], where the feasibility of the visual
inspection system for welding defects in industrial production
was evaluated.

However, automation systems are limited by their inability
to capture, store, and analyze large amounts of data in real
time in different environments [12]. A combination of cloud-
and edge-computing provides excellent conditions for this
purpose. A summary has been provided in Ref. [13], and
hence, a detailed discussion focused on the state-of-the-art in
the use of edge-computing in the manufacturing industry and
in automotive production is excluded from this paper [13].

A. Motivation and objectives of this research

The disadvantage of the above described optical inspection
system is the fact that it is negatively influenced by chang-
ing environmental conditions. The cloud-/edge-architectures
described by Ref. [13] allow to re-train the CNN using
computing resources located in the cloud.

Nevertheless, the quality of the neural network used must
be manually checked by a human. Therefore, an automated
observation of the CNN and its quality would be an advantage,
as this observation allows to automatically react to changing
environmental conditions and improvement of the CNN via re-
training. The system should be capable of re-training on the
data generated in production to ensure the highest accuracy of
the CNN is always realized. The results obtained by answering
three additional research questions are presented in this paper:

o Does the metric allow automatic detection of pseudo
errors?

o Can intelligent data selection algorithms support the
accuracy of the CNN?

o« How can the quality of the re-trained CNN be auto-
matically assessed before this model is deployed to the
production line?

III. DATA GENERATION

The goal is the generation of a data set covering all
necessary classes. However, this is a challenging task that has
to be carried out in an industrial production line. To capture
the 3D data of the welding seams, a 3D camera, XR-HT40M
from Keyence, was used. The benefit of using a 3D camera
versus a classic 2D camera is a higher inspection stability, as
the height information allows to obtain important information
and features for the inspection process. The disadvantage, of
course, is the price, which is significantly more expensive than
a conventional 2D camera for industrial applications.

As a result, 550 to 600 images of hairpin welds for each
class with different degrees of defect severity were generated,
as shown in Fig. 1. TABLE I provides a detailed listing of
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the data set. The datasets for 3D images were split into
training and validation datasets with 80% training data and
20% validation data. This initial data set was verified by an
expert.

IV. OPTIMIZATION AND ARCHITECTURE
A. Impact of disturbances

A stable production environment is required for producing
components of consistent quality. However, production envi-
ronments are influenced by numerous factors, even if they are
protected against environmental changes.

The quality control of the hairpin welding through CNN
is subject to particular disturbances. The basis of the quality
control is the pre-processed 3D scan, which corresponds to a
30x30 pixel grayscale image resulting from the pre-processing
of the raw images described in Section III. The image size is
relatively small, and therefore, even small disturbances have
a significant impact on the detection accuracy. The factors
exerting the greatest impact include changing light conditions,
contamination of the camera lens or the component itself, and
changes in the perspective.

One of the key challenges of a CNN is to deal with data
variances in the real world. To achieve the most accurate
results possible, CNNs require a large number of diverse
training images. This problem is commonly handled via data
augmentation. The augmentation process flips, rotates or adds
noise to the images, which will improve the results of the
CNN, but the problem of generalizing across various perspec-
tives remains unsolved. A major strength of CNNs is, that they
are invariant to moderate translations. Real-world images will
very likely include new viewpoints, new lighting conditions,
and occlusions that are only poorly represented in the current
image data set. The change in perspective, as show exemplary
in Fig. 6 in the bottom row, leads to a supposedly different
geometry of the same Hairpin and would require new training.
To counteract these influences, we propose updating the data
set using self-optimization techniques. The effect of different
policies for updating the data set is examined in further detail
below.

B. Self-optimization
We use the paradigm of self-optimization to solve the
explained problem. According to Gausemeier [14], a self-
optimizing process consists of the three steps shown in Fig 3.
During the analysis of the current situation, user require-
ments, the system status and the system environment are
identified and checked. Observations can also be obtained

TABLE 1
DIVISION OF THE DATASET FOR THE FAILURE CLASSES

Class Training set Test set Sum
w 456 104 560
WS 455 102 557
WC 438 125 563
CW 478 126 604
Sum 1,827 457 2,284

1. Analysis of
the current situation

Self optimizing process

2. Determination of
the system objectives

3. Adaptation of
the system behaviour

Fig. 3. Self-optimization process.

indirectly through communication with other systems, and
monitoring the fulfillment degree of the given system goals
is essential.

Starting from previous system goals, new goals can be
selected, adapted or generated. When goals are adapted, the
existing ones are successively changed. The generation of
goals means that new ones are created independently of
existing ones.

The system behavior is adjusted in accordance with the
system objectives. The adaptation of the system behavior can
occur on the parameter, structural, and behavioral levels of the
mechatronic system.

The cognitive control loop proposed by Schmidt (see
Fig. 4) [15] represents a possible implementation structure
of the described process. The control loop is composed of
a three-layered system:

1) In the perception layer, all incoming data streams
are acquired and forwarded to the central layer for
information processing and decision making.

2) In the layer for information processing and decision
making, the self-optimization of the process chain is
realized by five system modules.

a) The communication module distributes and co-
ordinates the incoming data streams from the
perception layer to the analysis, modeling, and
optimization module. This module also links the
information processing and decision making layer

Communication
module
y y

A y A

Analysis
module

| ! !

Knowledge module

Action layer

Modeling
module

Optimization
module

Perception layer

Production process -

Fig. 4. Effect pattern of the cognitive control loop.
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to the two outer layers.

b) In the analysis Module, the existing amount of
data on a relevant subset is reduced

c¢) Based on the reduced amount of data, the op-
timization module is now able to optimize the
process chain.

d) The decision is then evaluated in the modeling
module by approximating and simulating the result
using a system model. If the result matches the
desired system goals, the decision is transferred to
the communication module.

e) The knowledge module, which contains past data,
decisions, and target configurations, acts as a
database for each of the aforementioned modules.

3) The action layer serves to implement the decisions
made and evaluated by the simulation.

C. Optimization goals

According to Gausemeier, optimization goals are essential
for the implementation of a self-optimizing system [14]. As
explained in Section III-B, these goals can either be variable or
static. The required goals are application-specific, and hence,
only the goals that are significant for the given application
will be discussed in the subsequent sections. Within the given
production context, a low failure rate of the product is a major
criterion. The classifications as false positive are particularly
critical here, as these lead to faulty parts being classified as
fault-free. Furthermore, the confusion of a weld crater or weld
spatter as an incorrect weld is critical, as these require differ-
ent reworking strategies. The goals for the optimization are
therefore a low misinterpretation of the prediction and a high
level of safety. Owing to the multiple goals, a prioritization
is needed. The exclusion of false positives plays a key role in
producing goods, and therefore, we prioritize this goal, which
is further addressed in Section IV-H.

D. Cloud-/Edge-architecture for the optimization loop

To implement the solution shown in Section IV-B, the
given effect pattern is modified and a streamlined cloud-/edge-
architecture is used. Within this architecture the communica-
tions module is substituted with a modern pipeline approach
that follows the actual data flow. The edge-device performs
the tasks involved in error detection close to the manufacturing
line. These include the pre-processing of images, prediction of
the error case by the CNN, decision on rework measures, and
the communication with the production facilities and the cloud.
Each edge-device is implemented as an industrial internet of
things device [16]. The central organization module, which
organizes the individual devices and serves as a data storage
and computing resource, is located in the cloud.

The optimization of the CNN and its adaptation to environ-
mental changes described above are implemented in the cloud.
The necessary functions are implemented in four modules.
Fig. 5 shows the actual architecture of the given optimization
loop.

Cloud
Training < Data Acquisition |«
Benchmarking Data Storage Monitoring
T ) T
l A 4 I
Plant Edge-Device
Production > CNN
System
A i
Decision

Fig. 5. Architecture of the optimization loop.

The monitoring module observes the current state of the
prediction parameters of the CNN. This module resembles the
perception layer proposed by Schmidt [15]. This includes the
certainty of the CNN, which is generated by the Softmax-
function, for the given prediction and the number of relabels.
If the module finds any inconsistencies that can be fixed with
re-training, the training module will be notified. Furthermore,
the module serves as the central training resource and commu-
nicates with the data acquisition and benchmarking modules,
and therefore, resembles the modeling module. When the train-
ing module receives a new training assignment, this module
queries the data acquisition module (analysis module) for
data sets that are expected to guarantee the best training results.
Several versions of the same CNN are trained and compared
via the benchmarking module (optimization module), based
on these data sets. If a better CNN than the current one is
found, the better CNN is deployed to the edge-device. The
individual modules are explained in the following sections.

E. Data structure

Our data sets for training and validation of the CNN are
divided into three categories. The general data pool contains all
images and predictions generated by the production process,
the training data set is formed from this pool. The pool
contains all the data that was used for the last successful
training process, and serves as a starting point for a new
training process. The data acquisition module explained in
Section IV-G is used to extend this data set, with new images
and predictions are continuously generated during production.
The environmental parameters of these images and predictions
can change over time (see Section IV-A), and hence, expan-
sion of the test data set over time is warranted. Therefore,
the algorithm for matching two images (see Section IV-G)
compares each new image with the test data set. If the image
differs to a given percentage from all other images, then this
image is designated as an unknown image and is included
in the test data set. A common ratio of 80/20 of the training
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data to the test data has been established in the literature. This
ratio is targeted for filling the test data set. If the test data set
exceeds this ratio by a defined percentage, the oldest images
are removed from the set. Through this method, the actuality
of the test data set is ensured, as the set is always built up
from the last relevant images.

F. Monitoring

The monitoring module observes the accuracy, precision and
confidence of the CNN, which is implemented on the edge-
device based on its process values. Furthermore, prediction-
dependent values are distinguished from general values.

Prediction-dependent values represent the certainty of the
CNN based on its prediction or whether the prediction is
correct. They are compared for each prediction and thus offer
the possibility of rapidly detecting deviations.

The general values are tested with only some predictions,
but are queried at specific points in time. These include the
precision and the F}-score. They can be used to detect long-
term errors which, due to their rare occurrence, are non-
detectable during continuous testing.

For continuous analysis of the production-dependent values,
the monitoring module observes each prediction and inter-
prets the resulting values. In the given case, the number of
incorrect predictions and the certainty about a prediction have
been found to be robust values for detecting a change in
the environment. To estimate the incidence of an incorrect
prediction, the final predictions are evaluated. If the number
of false predictions exceeds a given threshold value for the
process, a new training process is started by the monitoring
module. This value depends on the current production and
varies in each application. The certainty of the network is
checked by comparing the mean value of the final predictions
with a reference mean value. If this value lies outside the first
standard deviation that was determined by a data scientist,
then the probability is high, that changes have occurred in the
environment and the module initiates a new training process.

In order to detect the general values such as the precision,
the model operating during production is tested against a
test data set at a given time interval. This test data set is
continuously expanded as described in Section IV-E and thus
provides a good representation of the current environment. If
the precision calculated in this manner drops below a thresh-
old, then this is interpreted as an indication of environmental
changes and a new training process is initiated.

G. Data acquisition

To obtain accurate classification results from the CNN,
highly diverse training data is required. To achieve this diverse
data, we propose updating of data set with new images, that
represent information, which is not or only poorly represented
in the current data set. An evaluation procedure for deter-
mining the similarity of the images is therefore needed. The
procedure proposed in this paper is divided into two parts,
finding similar images in the training data set and determining

the difference between the new image and the similar images
found in the data set.

We use image descriptors in the first part of the procedure
to determine the most similar images. Therefore, we calculate
the descriptors of the new image and the distances to the
previously calculated descriptors of the images from the data
set.

To calculate the image descriptors, we use the KAZE
algorithm. Computing KAZE features is more computation-
ally demanding than computing SIFT or SURF features, but
they promise greater accuracy in both feature detection and
description [17], [18]. The KAZE features are calculated by
using nonlinear diffusion filtering. This method results in
nonlinear partial differential equations (PDEs) that describe
the change in the luminance of an image through increasing
scale levels. An analytical solution for PDEs is mostly lacking,
and therefore, additive operator splitting schemes are used for
numerical approximations of the differential equations [17].

The best match of the image descriptors is found by
determining the nearest neighbor of image descriptors from
the images in the data set. The nearest neighbor is identified
as the match with the smallest Euclidean distance. To ensure
the uniqueness of the features, we use the method proposed
in [18], where the distance between the closest neighbor and
the second-closest neighbor is calculated. The second-closest
match can be considered the likelihood of a false match. In
this implementation, we discard matches where the difference
in distance is greater than 0.75 to the second-closest match,
thereby reducing the chance of false matches.

In the second part of the procedure, we evaluate the vari-
ation in the actual image compared with the most similar
images identified in the first step. We use two characteristic
values for this evaluation, the mean squared error (MSE) and
the structural similarity index (SSIM). The MSE evaluates
the absolute differences of the images per pixel [19]. The
SSIM evaluates the spatial information and therefore the
inter-dependencies ofthe pixels of both images. Compared
with other methods, this renders the method less sensitive to
translation and rotation [20], [21]. The combination of these
characteristic values allows for an estimation even if the actual
image contains new features that are not represented in the
images of the current data set (see Fig. 6). Moreover, a MSE
score of 0 and a SSIM score of 1 represent identical images.

The algorithm described in this Section is used for filling
up the test data set as shown in Section IV-E, as well as for
creating the training data set. Each image created and predicted
in production is tested against the test data set using the
algorithm, and if found to be new, is added to the test data set.
If the monitoring has determined a deviation of the ML model,
and a new training order is created, a training data set is created
using the above algorithm. A search for suitable images from
the general data pool is therefore performed starting from the
old data record. Preferably, the system searches for images
that are most similar to the images causing the error. If these
are identified, the data set is forwarded to the training module.
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Fig. 6. Comparison of hairpin images with corresponding MSE and SSIM
score and drawn in matching image descriptors (colored circles).

H. Training and benchmarking of the CNN

The training module contains the actual processes for train-
ing the CNN. This module receives a selection of data sets
from the data acquisition module, which should provide a
reliable model. Training is quite time consuming leading to
downtime in the production, therefore the training process is
performed on cloud clusters designed for this task. This design
ensures that the training runs parallel to the production without
influencing it.

The created models are evaluated by the benchmarking
module. Each model receives a score, which can consist of
different scoring mechanisms. For our purpose, the analysis
using a confusion matrix has proven to be particularly useful.
In this matrix, the frequency of false predictions can be directly
determined. The production process makes certain demands
regarding the prediction, and these can be directly tested. The
demands are that no faulty product is predicted as a correct
product and no wrong rework measure is executed as described
in Section IV-C. By comparing the matrices associated with
each model, the suitability of each model is determined. In
Section I, the given application case is discussed in further
detail. The scores used for benchmarking are individually
tailored to the problem, and hence, they can vary greatly.
Further possibilities would be, for instance, the precision.

If a network with greater accuracy network, than the current
one is found, the network is transferred to the deployment
module and saved as a valid model in the cloud. This process
is described in more detail in the following Section.

L. Deployment

To deploy the CNN on the edge-device, a fixed pipeline
needs to be provided. First, the model is embedded in a
container, which is enclosed with a REST-API that can be
used to make requests for prediction. This container is then
deployed in the cloud and validated parallel to production.
If the new model proves to be more accurate than the old
one, the container is loaded onto the edge-device. Both are
being executed on the edge-device simultaneously, while the
classification of the old network is given out. The transition to

the output of the new model is then made between individual
cycle times.

J. Validation of the given Architecture

In addition to the real data described in Section III we
created a series of manipulated images (by changing the
camera angle) to validate the architecture presented above. To
manipulate the real data, described in Section III, we used the
function warpPerspective() from OpenCV. Only insufficient
welds are used here, as these have proven to be particularly
critical. For example, Fig. 6 shows the original images in the
upper row and the modified images in the lower row. Using
this method, 546 images, which are divided into a test data
set of 100 images and a training data set of 446 images, are
created. Fig. 7 shows a confusion matrix of the old model
tested against the new test data set (changed environmental
conditions). Here, a misinterpretation of the IW can be easily
seen, as two are classified as CW and 31 as WS. This will
be detected by the monitoring module, since the number of
relabels will be unusually high.

Fig. 8 shows the CM after re-training. The IW has improved
significantly, since all images are now correctly classified. The
slight decrease in the prediction of WC has no influence on the
subsequent production process, because the reworking proce-
dure is the same. However, further analysis and optimization
can also improve the performance of the model.

Compared with the old data set, the new data set contains
more diverse images. This shows, that the data acquisition
algorithm can balance the data set. The average MSE score of
a fake image compared with the new data set is significantly
lower than that of the old data set, whereas the SSIM score
is higher, as seen in TABLE II. This indicates that the data
acquisition algorithm is able to expand the data set with
the new images (changed environmental conditions) that was
inadequately represented in the data set.

Overall, the results demonstrate that an automated system
can adapt an existing machine learning model to its envi-
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Fig. 7. Confusion matrix a priori.
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Fig. 8. Confusion matrix a posteriori.
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TABLE 11
MEAN SCORES FOR MSE AND SSIM

Scores Old training data | New training data
MSE 1554.31 376.01
SSIM 0.39 0.79
Similarity 1.88% 9.71%

ronment. However, a comparison of the parameters in the
correct production technology context is always particularly
important.

V. CONCLUSION AND OUTLOOK

A system that detects faulty predictions in a machine
learning algorithm deployed in a production environment and
automatically optimizes the model against the given errors is
proposed in this work. An architecture capable of observing
a given model, analyzing this observation, and generating a
new model from the observation, is developed. Algorithms,
which allow targeted data selection, are employed for this
development. Subsequently, the architecture is validated on
a real-world case study and evaluated against the specified
objectives. The results revealed that the system optimizes itself
automatically when environmental changes occur.

In future studies the proposed architecture could be tested on
other production units. Here, other machine learning models
could be tested and other parameters could be used to compare
the models.

The machine learning models could also form the basis of an
ensemble model, which combines the predictions from multi-
ple models to improve the overall performance. Combinations
of multiple models (in general) lead to lower variance in the
predictions, and hence may provide more reliable predictions
than a single model.
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