
A family of abstract interpretations for static
analysis of concurrent higher-order programs

Matthew Might and David Van Horn

University of Utah and Northeastern University
might@cs.utah.edu and dvanhorn@ccs.neu.edu

http://matt.might.net/ and http://lambda-calcul.us/

Abstract. We develop a framework for computing two foundational
analyses for concurrent higher-order programs: (control-)flow analysis
(CFA) and may-happen-in-parallel analysis (MHP). We pay special at-
tention to the unique challenges posed by the unrestricted mixture of
first-class continuations and dynamically spawned threads. To set the
stage, we formulate a concrete model of concurrent higher-order pro-
grams: the P(CEK*)S machine. We find that the systematic abstract in-
terpretation of this machine is capable of computing both flow and MHP
analyses. Yet, a closer examination finds that the precision for MHP
is poor. As a remedy, we adapt a shape analytic technique—singleton
abstraction—to dynamically spawned threads (as opposed to objects in
the heap). We then show that if MHP analysis is not of interest, we
can substantially accelerate the computation of flow analysis alone by
collapsing thread interleavings with a second layer of abstraction.

1 Higher-order is hard; concurrency makes it harder

The next frontier in static reasoning for higher-order programs is concurrency.
When unrestricted concurrency and higher-order computation meet, their chal-
lenges to static reasoning reinforce and amplify one another.

Consider the possibilities opened by a mixture of dynamically created threads
and first-class continuations. Both pose obstacles to static analysis by them-
selves, yet the challenge of reasoning about a continuation created in one thread
and invoked in another is substantially more difficult than the sum of the indi-
vidual challenges.

We respond to the challenge by (1) constructing the P(CEK?)S machine,
a nondeterministic abstract machine that concretely and fully models higher-
orderness and concurrency; and then (2) systematically deriving abstract inter-
pretations of this machine to enable the sound and meaningful flow analysis of
concurrent higher-order programs.

Our first abstract interpretation creates a dual hierarchy of flow and may-
happen-in-parallel (MHP) analyses parameterized by context-sensitivity and the
granularity of an abstract partition among threads. The context-sensitivity knob
tunes flow-precision as in Shivers’s k-CFA [21]. The partition among threads
tunes the precision of MHP analysis, since it controls the mapping of concrete

threads onto abstract threads. To improve the precision of MHP analysis, our sec-
ond abstract interpretation introduces shape analytic concepts—chiefly, single-
ton cardinality analysis—but it applies them to discover the “shape” of threads
rather than the shape of objects in the heap. The final abstract interpretation
accelerates the computation of flow analysis (at the cost of MHP analysis) by
inflicting a second abstraction that soundly collapses all thread interleavings
together.

1.1 Challenges to reasoning about higher-order concurrency

The combination of higher-order computation and concurrency introduces design
patterns that challenge conventional static reasoning techniques.

Challenge: Optimizing futures Futures are a popular means of enabling paral-
lelism in functional programming. Expressions marked future are computed in
parallel with their own continuation. When that value reaches a point of strict
evaluation, the thread of the continuation joins with the thread of the future.

Unfortunately, the standard implementation of futures [5] inflicts substantial
costs on sequential performance: that implementation transforms (future e)
into (spawn e), and all strict expressions into conditionals and thread-joins.
That is, if the expression e′ is in a strict evaluation position, then it becomes:

(let ([$t e′]) (if (thread? $t) (join $t) $t))

Incurring this check at all strict points is costly. A flow analysis that works for
concurrent programs would find that most expressions can never evaluate to
future value, and thus, need not incur such tests.

Challenge: Thread cloning/replication The higher-order primitive call/cc cap-
tures the current continuation and passes it as a first-class value to its argument.
The primitive call/cc is extremely powerful—a brief interaction between spawn

and call/cc effortlessly expresses thread replication:

(call/cc (lambda (cc) (spawn (cc #t)) #f))

This code captures the current continuation, spawns a new thread and replicates
the spawning thread in the spawned thread by invoking that continuation. The
two threads can be distinguished by the return value of call/cc: the replicant
returns true and the original returns false.

Challenge: Thread metamorphosis Consider a web server in which continua-
tions are used to suspend and restore computations during interactions with the
client [18]. Threads “morph” from one kind of thread (an interaction thread
or a worker thread) to another by invoking continuations. The begin-worker

continuation metamorphizes the calling thread into a worker thread:

(define become-worker

(let ([cc (call/cc (lambda (cc) (cc cc)))])

(cond

[(continuation? cc) cc]

[else (handle-next-request)

(become-worker #t)])))

The procedure handle-next-request checks whether the request is the resump-
tion of an old session, and if so, invokes the continuation of that old session:

(define (handle-next-request)

(define request (next-request))

(atomic-hash-remove! (session-id request)

(lambda (session-continuation)

(define answer (request->answer request))

(session-continuation answer))

(lambda () (start-new-session request))))

When a client-handling thread needs data from the client, it calls read-from-client,
it associates the current continuation to the active session, piggy-backs a request
to the client on an outstanding reply and the metamorphizes into a worker thread
to handle other incoming clients:

(define (read-from-client session)

(call/cc (lambda (cc)

(atomic-hash-set! sessions (session-id session) cc)

(reply-to session))

(become-worker #t)))

2 P(CEK?)S: An abstract machine model of concurrent,
higher-order computation

In this section, we define a P(CEK?)S machine—a CESK machine with a pointer
refinement that allows concurrent threads of execution. It is directly inspired by
the sequential abstract machines in Van Horn and Might’s recent work [23].
Abstract interpretations of this machine perform both flow and MHP analysis
for concurrent, higher-order programs.

The language modeled in this machine (Figure 1) is A-Normal Form lambda
calculus [9] augmented with a core set of primitives for multithreaded program-
ming. For concurrency, it features an atomic compare-and-swap operation, a
spawn form to create a thread from an expression and a join operation to wait
for another thread to complete. For higher-order computation, it features clo-
sures and first-class continuations. A closure is a first-class procedure constructed
by pairing a lambda term with an environment that fixes the meaning of its free
variables. A continuation reifies the sequential control-flow for the remainder of
the thread as a value; when a continuation is “invoked,” it restores that control-
flow. Continuations may be invoked an arbitrary number of times, and at any
time since their moment of creation.

e ∈ Exp ::= (let ((v cexp)) e)

| cexp

| æ

cexp ∈ CExp ::= (f æ1 . . .æn)

| (callcc æ)

| (set! v ævalue)

| (if æ cexp cexp)

| (cas v æold ænew)

| (spawn e)

| (join æ)

f,æ ∈ AExp ::= lam | v | n | #f
lam ∈ Lam ::= (λ (v1 . . . vn) e)

Fig. 1. ANF lambda-calculus augmented with a core set of primitives for concurrency

2.1 P(CEK?)S: A concrete state-space

A concrete state of execution in the P(CEK?)S machine contains a set of threads
plus a shared store. Each thread is a context combined with a thread id. A
context contains the current expression, the current environment, an address
pointing to the current continuation, and a thread history:

ς ∈ Σ = Threads × Store

T ∈ Threads = P (Context × TID)

c ∈ Context = Exp× Env ×Addr ×Hist

ρ ∈ Env = Var ⇀ Addr

κ ∈ Kont = Var × Exp× Env ×Addr + {halt}
h ∈ Hist contains records of thread history

σ ∈ Store = Addr → D

d ∈ D = Value

val ∈ Value = Clo + Bool + Num + Kont + TID + Addr

clo ∈ Clo = Lam× Env

a ∈ Addr is an infinite set of addresses

t ∈ TID is an infinite set of thread ids.

The P(CEK?)S machine allocates continuations in the store; thus, to add first-
class continuations, we have first-class addresses. Under abstraction, program
history determines the context-sensitivity of an individual thread. To allow
context-sensitivity to be set as external parameter, we’ll leave program history

opaque. (For example, to set up a k-CFA-like analysis, the program history would
be the sequence of calls made since the start of the program.) To parameterize
the precision of MHP analysis, the thread ids are also opaque.

2.2 P(CEK?)S: A factored transition relation

Our goal is to factor the semantics of the P(CEK?)S machine, so that one can
drop in a classical CESK machine to model sequential language features. The
abstract interpretation maintains the same factoring, so that existing analyses
of higher-order programs may be “plugged into” the framework for handling
concurrency. The relation (⇒) models concurrent transition, and the relation
(→) models sequential transition:

(⇒) ⊆ Σ ×Σ
(→) ⊆ (Context × Store)× (Context × Store)

For instance, the concurrent transition relation invokes the sequential transition
relation to handle if, set!, cas, callcc or procedure call:1

(c, σ)→ (c′, σ′)

({(c, t)}] T, σ)⇒ ({(c′, t)} ∪ T, σ′)

Given a program e, the injection function I : Exp→ State creates the initial
machine state:

I(e) = ({((e, [], ahalt, h0), t0)} , [ahalt 7→ halt]),

where t0 is the distinguished initial thread id, h0 is a blank history and ahalt is
the distinguished address of the halt continuation. The meaning of a program
e is the (possibly infinite) set of states reachable from the initial state:

{ς : I(e)⇒∗ ς} .

Sequential transition example: callcc There are ample resources dating to
Felleisen and Friedman [6] detailing the transition relation of a CESK machine.
For a recent treatment that covers both concrete and abstract transition, see
Van Horn and Might [23]. Most of the transitions are straightforward, but in the
interest of more self-containment, we review the callcc transition:

(

c︷ ︸︸ ︷
([[(callcc æ)]], ρ, aκ, h), σ)⇒ ((e, ρ′′, aκ, h

′), σ′), where

h′ = record(c, h)

([[(λ (v) e)]], ρ′) = E(æ, ρ, σ)

a = alloc(v, h′)

ρ′′ = ρ′[v 7→ a]

σ′ = σ[a 7→ aκ].

1 The transition for cas is “sequential” in the sense that its action is atomic.

The atomic evaluation function E : AExp × Env × Store ⇀ D maps an atomic
expression to a value in the context of an environment and a store; for example:

E(v, ρ, σ) = σ(ρ(v))

E(lam, ρ, σ) = (lam, ρ).

(The notation f [x 7→ y] is functional extension: the function identical to f ,
except that x now yields y instead of f(x).)

2.3 A shift in perspective

Before proceeding, it is worth shifting the formulation so as to ease the process
of abstraction. For instance, the state-space is well-equipped to handle a finite
abstraction over addresses, since we can promote the range of the store to sets of
values. This allows multiple values to live at the same address once an address
has been re-allocated. The state-space is less well-equipped to handle the ap-
proximation on thread ids. When abstracting thread ids, we could keep a set of
abstract threads paired with the store. But, it is natural to define the forthcom-
ing concrete and abstract transitions when the set of threads becomes a map.
Since every thread has a distinct thread id, we can model the set of threads in
each state as a partial map from a thread id to a context:

Threads ≡ TID ⇀ Context .

It is straightforward to update the concurrent transition relation when it calls
out to the sequential transition relation:

(c, σ)→ (c′, σ′)

(T [t 7→ c], σ)⇒ (T [t 7→ c′], σ′).

2.4 Concurrent transition in the P(CEK?)S machine

We define the concurrent transitions separately from the sequential transitions.
For instance, if a context is attempting to spawn a thread, the concurrent relation
handles it by allocating a new thread id t′, and binding it to the new context c′′:

(T [t 7→
c︷ ︸︸ ︷

([[(spawn e)]], ρ, aκ, h)], σ)⇒ (T [t 7→ c′, t′ 7→ c′′], σ′),

where t′ = newtid(c, T [t 7→ c])

c′′ = (e, ρ, ahalt, h0)

h′ = record(c, h)

(v′, e′, ρ′, a′κ) = σ(aκ)

a′ = alloc(v′, h′)

ρ′′ = ρ′[v′ 7→ a′]

c′ = (e′, ρ′′, a′κ, h
′)

σ′ = σ[a′ 7→ t′], where:

– newtid : Context ×Threads → TID allocates a fresh thread id for the newly
spawned thread.

– record : Context × Hist → Hist is responsible for updating the history of
execution with this context.

– alloc : Var×Hist → Addr allocates a fresh address for the supplied variable.

The abstract counterparts to these functions determine the degree of approxima-
tion in the analysis, and consequently, the trade-off between speed and precision.

When a thread halts, its thread id is treated as an address, and its return
value is stored there:

(T [t 7→ ([[æ]], ρ, ahalt, h)], σ)⇒ (T, σ[t 7→ E(æ, ρ, σ)]).

This convention, of using thread ids as addresses, makes it easy to model
thread joins, since they can check to see if that address has value waiting or not:

σ(E(æ, ρ, σ)) = d

(T [t 7→ ([[(join æ)]], ρ, aκ, h)︸ ︷︷ ︸
c

], σ)⇒ (T [t 7→ (e, ρ′, a′κ, h
′)], σ′),

where κ = σ(aκ)

(v, e, ρ, a′κ) = κ

ρ′ = ρ[v 7→ a′′]

h′ = record(c, h)

a′′ = alloc(v, h′)

σ′ = σ[a′′ 7→ d].

3 A systematic abstract interpretation of P(CEK?)S

Using the techniques outlined in our recent work on systematically constructing
abstract interpretations from abstract machines [23], we can directly convert
the P(CEK?)S machine into an abstract interpretation of itself. In the concrete
state-space, there are four points at which we must inflict abstraction: over basic
values (like numbers), over histories, over addresses and over thread ids.

The abstraction over histories determines the context-sensitivity of the anal-
ysis on a per-thread basis. The abstraction over addresses determines poly-
variance. The abstraction over thread ids maps concrete threads into abstract
threads, which determines to what extent the analysis can distinguish dynami-
cally created threads from one another; it directly impacts MHP analysis.

The abstract state-space (Figure 2) mirrors the concrete state-space in struc-
ture. We assume the natural point-wise, element-wise and member-wise lifting
of a partial order (v) over all of the sets within the state-space. Besides the
restriction of histories, addresses and thread ids to finite sets, it is also worth

ς̂ ∈ Σ̂ = ̂Threads × Ŝtore

T̂ ∈ ̂Threads = T̂ID → P(Ĉontext)

ĉ ∈ Ĉontext = Exp× Ênv × Âddr × Ĥist

ρ̂ ∈ Ênv = Var ⇀ Âddr

κ̂ ∈ K̂ont = Var × Exp× Ênv × Âddr + {halt}

ĥ ∈ Ĥist contains bounded, finite program histories

σ̂ ∈ Ŝtore = Âddr → D̂

d̂ ∈ D̂ = P(V̂alue)

v̂al ∈ V̂alue = Ĉlo + Bool + N̂um + K̂ont + T̂ID + Âddr

ĉlo ∈ Ĉlo = Lam× Ênv

â ∈ Âddr is a finite set of abstract addresses

t̂ ∈ T̂ID is a finite set of abstract thread ids

Fig. 2. Abstract state-space for a systematic abstraction of the P(CEK?)S machine.

pointing out that the range of both T̂hreads and Ŝtore are power sets. This pro-
motion occurs because, during the course of an analysis, re-allocating the same
thread id or address is all but inevitable. To maintain soundness, the analysis
must be able to store multiple thread contexts in the same abstract thread id,
and multiple values at the same address in the store.

The structural abstraction map α on the state-space (Figure 3) utilizes a fam-
ily of abstraction maps over the sets within the state-space. With the abstraction
and the abstract state-space fixed, the abstract transition relation reduces to a
matter of calculation [4]. The relation (;) describes the concurrent abstract
transition, while the relation (() describes the sequential abstract transition:

(;) ⊆ Σ̂ × Σ̂

(() ⊆ (Ĉontext × Ŝtore)× (Ĉontext × Ŝtore)

When the context in focus is sequential, the sequential relation takes over:

(ĉ, σ̂) ((ĉ′, σ̂′)

(T̂ [t̂ 7→ {ĉ} ∪ Ĉ], σ̂) ; (T̂ t [t̂ 7→ {ĉ′}], σ̂′)

There is a critical change over the concrete rule in this abstract rule: thanks
to the join operation, the abstract context remains associated with the abstract
thread id even after its transition has been considered. In the next section, we
will examine the application of singleton abstraction to thread ids to allow the
“strong update” of abstract threads ids across transition. (For programs whose

αΣ(T, σ) = (α(T), α(σ))

αThreads(T) = λt̂.
⊔

α(t)=t̂

α(T (t))

αContext(e, ρ, κ, h) = {(e, α(ρ), α(κ), α(h))}
αEnv (ρ) = λv.α(ρ(v))

αKont(v, e, ρ, a) = (v, e, α(ρ), α(a))

αKont(halt) = halt

αStore(σ) = λâ.
⊔

α(a)=â

α(σ(a))

αD(val) = {α(val)}
αClo(lam, ρ) = (lam, α(ρ))

αBool(b) = b

αHist(h) is defined by context-sensitivity

αTID(t) is defined by thread-sensitivity

αAddr (a) is defined by polyvariance.

Fig. 3. A structural abstraction map.

maximum number of threads is statically bounded by a known constant, this
allows for precise MHP analysis.)

3.1 Running the analysis

Given a program e, the injection function Î : Exp → Ŝtate creates the initial
abstract machine state:

Î(e) =
([
t̂0 7→

{
(e, [], âhalt, ĥ0)

}]
, [âhalt 7→ {halt}]

)
,

where ĥ0 is a blank abstract history and âhalt is the distinguished abstract
address of the halt continuation. The analysis of a program e is the finite set of
states reachable from the initial state:

R̂(e) =
{
ς̂ : Î(e) ;∗ ς̂

}
.

3.2 A fixed point interpretation

If one prefers a traditional, fixed-point abstract interpretation, we can imagine
the intermediate state of the analysis itself as a set of currently reachable abstract
machine states:

ξ̂ ∈ Ξ̂ = P(Σ̂).

A global transfer function f̂ : Ξ̂ → Ξ̂ evolves this set:

f̂(ξ̂) =
{
Î(e)

}
∪
{
ς̂ ′ : ς̂ ∈ ξ̂ and ς̂ ; ς̂ ′

}
.

The solution of the analysis is the least fixed point: lfp(f̂).

3.3 Termination

The dependence structure of the abstract state-space is a directed acyclic graph
starting from the set Σ̂ at the root. Because all of the leaves of this graph (e.g.,
lambda terms, abstract numbers, abstract addresses) are finite for any given
program, the state-space itself must also be finite. Consequently, there are no
infinitely ascending chains in the lattice Ξ̂. By Kleene’s fixed point theorem,
there must exist a least natural n such that lfp(f̂) = f̂n(∅).

3.4 Concurrent abstract transitions

Guided by the structural abstraction, we can convert the concrete concurrent
transitions for the P(CEK?)S machine into concurrent abstract transitions. For
instance, if an abstract context is attempting to spawn a thread, the concurrent
relation handles it by allocating a new thread id t̂′, and binding it to the new
context ĉ′′:

(T̂ [t̂ 7→ {

ĉ︷ ︸︸ ︷
([[(spawn e)]], ρ̂, âκ̂, ĥ)} ∪ Ĉ], σ̂) ; (T̂ t [t̂ 7→ {ĉ′} , t̂′ 7→ {ĉ′′}], σ′),

where t̂′ = n̂ewtid(ĉ, T̂ [t̂ 7→ Ĉ ∪ {ĉ}])

ĉ′′ = (e, ρ̂, âhalt, ĥ0)

ĥ′ = r̂ecord(ĉ, ĥ)

(v′, e′, ρ̂′, â′κ̂) ∈ σ̂(âκ̂)

â′ = âlloc(v′, ĥ′)

ρ̂′′ = ρ̂′[v′ 7→ â′]

ĉ′ = (e′, ρ̂′′, â′κ̂, ĥ
′)

σ̂′ = σ̂ t [â′ 7→
{
t̂′
}

], where:

– n̂ewtid : Ĉontext × T̂hreads → T̂ID allocates a thread id for the newly
spawned thread.

– r̂ecord : Ĉontext × Ĥist → Ĥist is responsible for updating the (bounded)
history of execution with this context.

– âlloc : Var × Ĥist → Âddr allocates an address for the supplied variable.

These functions determine the degree of approximation in the analysis, and
consequently, the trade-off between speed and precision.

When a thread halts, its abstract thread id is treated as an address, and its
return value is stored there:

T̂ ′ = T̂ t [t̂ 7→ {([[æ]], ρ̂, âhalt, ĥ)}]

(T̂ ′, σ) ; (T̂ ′, σ̂ t [t̂ 7→ Ê(æ, ρ̂, σ̂)])
, where

the atomic evaluation function Ê : AExp × Ênv × Ŝtore → D̂ maps an atomic
expression to a value in the context of an environment and a store:

Ê(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Ê(lam, ρ̂, σ̂) = {(lam, ρ̂)}.

It is worth asking whether it is sound in just this case to remove the context from
the threads (making the subsequent threads T instead of T ′). It is sound, but
it seems to require a (slightly) more complicated staggered-state bisimulation
to prove it: the concrete counterpart to this state may take several steps to
eliminate all of its halting contexts.

Thanks to the convention to use thread ids as addresses holding the return
value of thread, it easy to model thread joins, since they can check to see if that
address has a value waiting or not:

â ∈ Ê(æ, ρ̂, σ̂) d̂ = σ̂(â)

(T̂ t [t̂ 7→ {([[(join æ)]], ρ̂, âκ̂, ĥ)︸ ︷︷ ︸
ĉ

}], σ̂) ; (T̂ t [t̂ 7→ {(e, ρ̂′, â′κ̂, ĥ′), ĉ}], σ̂′),

where κ̂ ∈ σ̂(âκ̂)

(v, e, ρ̂, â′κ̂) = κ̂

ρ̂′ = ρ̂[v 7→ â′′]

ĥ′ = r̂ecord(ĉ, ĥ)

â′′ = âlloc(v, ĥ′)

σ̂′ = σ̂ t [â′′ 7→ d̂].

3.5 Soundness

Compared to a standard proof of soundness for a small-step abstract interpreta-
tion, the proof of soundness requires only slightly more attention in a concurrent
setting. The key lemma in the inductive proof of simulation states that when a
concrete state ς abstracts to an abstract state ς̂, if the concrete state can tran-
sition to ς ′, then the abstract state ς̂ must be able to transition to some other
abstract state ς̂ ′ such that ς ′ abstracts to ς̂ ′:

Theorem 1. If:
α(ς) v ς̂ and ς ⇒ ς ′,

then there must exist a state ς̂ ′ such that:

α(ς ′) v ς̂ ′ and ς̂ ; ς̂ ′.

Proof. The proof is follows the case-wise structure of proofs like those in Might
and Shivers [14]. There is an additional preliminary step: first choose a thread id
modified across transition, and then perform case-wise analysis on how it could
have been modified.

3.6 Extracting flow information

The core question in flow analysis is, “Can the value val flow to the expression
æ?” To answer it, assume that ξ̂ is the set of all reachable abstract states. We
must check every state within this set, and every environment ρ̂ within that
state. If σ̂ is the store in that state, then val may flow to æ if the value α(val) is
represented in the set Ê(æ, ρ̂, σ̂). Formally, we can construct a flows-to relation,
FlowsTo ⊆ Value × AExpr, for a program e:

FlowsTo(val ,æ) iff there exist (T̂ , σ̂) ∈ R̂(e) and t̂ ∈ dom(T̂) such that

(e, ρ̂, κ̂) ∈ T̂ (t̂) and {α(val)} v Ê(æ, ρ̂, σ̂).

3.7 Extracting MHP information

In MHP analysis, we are concerned with whether two expressions e′ and e′′

may be evaluated concurrently with one another in program e. It is straightfor-
ward to decide this using the set of reachable states computed by the abstract
interpretation. If, in any reachable state, there exist two distinct contexts at
the relevant expressions, then their evaluation may happen in parallel with one
another. Formally, the MHP ⊆ Exp× Exp relation with respect to program e is:

MHP(e′, e′′) iff there exist (T̂ , σ̂) ∈ R̂(e) and t̂′, t̂′′ ∈ dom(T̂) such that

(e′, , ,) ∈ T̂ (t̂′) and (e′′, , ,) ∈ T̂ (t̂′′).

4 MHP: Making strong transitions with singleton threads

In the previous section, we constructed a systematic abstraction of the P(CEK?)S
machine. While it serves as a sound and capable flow analysis, its precision as
an MHP analysis is just above useless. Contexts associated with each abstract
thread id grow monotonically during the course of the analysis. Eventually, it will
seem as though every context may happen in parallel with every other context.
By comparing the concrete and abstract semantics, the cause of the impreci-
sion becomes clear: where the concrete semantics replaces the context at a given
thread id, the abstract semantics joins.

Unfortunately, we cannot simply discard the join. A given abstract thread id
could be representing multiple concrete thread ids. Discarding a thread id would
then discard possible interleavings, and it could even introduce unsoundness.

Yet, it is plainly the case that many programs have a boundable number
of threads that are co-live. Thread creation is considered expensive, and thread
pools created during program initialization are a popular mechanism for cir-
cumventing the problem. To exploit this design pattern, we can make thread ids
eligible for “strong update” across transition. In shape analysis, strong update
refers to the ability to treat an abstract address as the representative of a single
concrete address when assigning to that address. That is, by tracking the cardi-
nality of the abstraction of each thread id, we can determine when it is sound
to replace functional join with functional update on threads themselves.

The necessary machinery is straightforward, adapted directly from the shape
analysis literature [1,2,11,10,14,19] ; we attach to each state a cardinality counter
µ̂ that tracks how many times an abstract thread id has been allocated (but not
precisely beyond once):

ς̂ ∈ Σ̂ = T̂hreads × Ŝtore × T̂Count

µ̂ ∈ T̂Count = T̂ID → {0, 1,∞} .

When the count of an abstract thread id is exactly one, we know for certain
that there exists at most one concrete counterpart. Consequently, it is safe to
perform a “strong transition.” Consider the case where the context in focus for
the concurrent transition is sequential; in the case where the count is exactly
one, the abstract context gets replaced on transition:

(ĉ, σ̂) ((ĉ′, σ̂′) µ̂(t̂) = 1

(T̂ [t̂ 7→ {ĉ}] Ĉ], σ̂, µ̂) ; (T̂ [t̂ 7→ {ĉ′} ∪ Ĉ], σ̂′, µ̂).

It is straightforward to modify the existing concurrent transition rules to exploit
information available in the cardinality counter. At the beginning of the analysis,
all abstract thread ids have a count of zero. Upon spawning a thread, the analysis

increments the result of the function n̂ewtid . When a thread whose abstract
thread id has a count of one halts, its count is reset to zero.

4.1 Strategies for abstract thread id allocation

Just as the introduction of an allocation function for addresses provides the

ability to tune polyvariance, the n̂ewtid function provides the ability to tune
precision. The optimal strategy for allocating this scarce pool of abstract thread
ids depends upon the design patterns in use.

One could, for instance, allocate abstract thread ids according to calling
context, e.g., the abstract thread id is the last k call sites. This strategy would
work well for the implementation of futures, where futures from the same context
are often not co-live with themselves.

The context-based strategy, however, is not a reasonable strategy for a thread-
pool design pattern. All of the spawns will occur at the same expression in the
same loop, and therefore, in the same context. Consequently, there will be no

discrimination between threads. If the number of threads in the pool is known
a priori to be n, then the right strategy for this pattern is to create n abstract
thread ids, and to allocate a new one for each iteration of the thread-pool-
spawning loop. On the other hand, if the number of threads is set dynamically,
no amount of abstract thread ids will be able to discriminate between possible
interleavings effectively, in this case a reasonable choice for precision would be
to have one abstract thread per thread pool.

4.2 Advantages for MHP analysis

With the cardinality counter, it is possible to test whether an expression may
be evaluated in parallel with itself. If, for every state, every abstract thread id
which maps to a context containing that expression has a count of one, and
no other context contains that expression, then that expression must never be
evaluated in parallel with itself. Otherwise, parallel evaluation is possible.

5 Flow analysis of concurrent higher-order programs

If the concern is a sound flow analysis, but not MHP analysis, then we can per-
form an abstract interpretation of our abstract interpretation that efficiently col-
lapses all possible interleavings and paths, even as it retains limited (reachability-
based) flow-sensitivity. This second abstraction map α′ : Ξ̂ → Σ̂ operates on
the system-space of the fixed-point interpretation:

α′(ξ̂) =
⊔
ς̂∈ξ̂

ς̂.

The new transfer function, f̂ ′ : Σ̂ → Σ̂, monotonically accumulates all of the
visited states into a single state:

f̂ ′(ς̂) = ς̂ t
⊔
ς̂⇒ς̂′

ς̂ ′.

5.1 Complexity

This second abstraction simplifies the calculation of an upper bound on compu-
tational complexity. The structure of the set Σ̂ is a pair of maps into sets:

Σ̂ =
(
T̂ID → P(Ĉontext)

)
×
(
Âddr → P(V̂alue)

)
.

Each of these maps is, in effect, a table of bit vectors: the first with abstract
thread ids on one axis and contexts on the other; and the second with abstract
addresses on one axis and values on the other. The analysis monotonically flips
bits on each pass. Thus, the maximum number of passes—the tallest ascending
chain in the lattice Σ̂—is:

|T̂ID | × |Ĉontext |+ |Âddr | × |V̂alue|.

Thus, the complexity of the analysis is determined by context-sensitivity, as
with classical sequential flow analysis. For a standard monovariant analysis, the
complexity is polynomial [17]. For a context-sensitive analysis with shared en-
vironments, the complexity is exponential [22]. For a context-sensitive analysis
with flat environments, the complexity is again polynomial [15].

6 Related work

This work traces its ancestry to Cousot and Cousot’s work on abstract interpre-
tation [3,4]. We could easily extend the fixed-point formulation with the implicit
concretization function to arrive at an instance of traditional abstract interpre-
tation. It is also a direct descendant of the line of work investigating control-flow
in higher-programs that began with Jones [12] and Shivers [20,21].

The literature on static analysis of concurrency and higher-orderness is not
empty, but it is spare. Much of it focuses on the special case of the analysis of
futures. The work most notable and related to our own is that of Navabi and
Jagannathan [16]. It takes Flanagan and Felleisen’s notion of safe futures [7,8],
and develops a dynamic and static analysis that can prevent a continuation
from modifying a resource that one of its concurrent futures may modify. What
makes this work most related to our own is that it is sound even in the presence
of exceptions, which are, in essence, an upward-restricted form of continuations.
Their work and our own own interact synergistically, since their safety analysis
focuses on removing the parallel inefficiencies of safe futures; our flow analysis
can remove the sequential inefficiencies of futures through the elimination of run-
time type-checks. Yahav’s work is the earliest to apply shape-analytic techniques
to the analysis of concurrency [24].

It has taken substantial effort to bring the static analysis of higher-order
programs to heel; to recite a few of the major challenges:

1. First-class functions from dynamically created closures over lambda terms
create recursive dependencies between control- and data-flow; k-CFA co-
analyzes control and data to factor and order these dependencies [21].

2. Environment-bearing closures over lambda terms impart fundamental in-
tractabilities unto context-sensitive analysis [22]—intractabilities that were
only recently side-stepped via flattened abstract environments [15].

3. The functional emphasis on recursion over iteration made achieving high
precision difficult (or hopeless) without abstract garbage collection to recycle
tail-call-bound parameters and continuations [14].

4. When closures keep multiple bindings to the same variable live, precise rea-
soning about side effects to these bindings requires the adaptation of shape-
analytic techniques [11,13].

5. Precise reasoning about first-class continuations (and kin such as exceptions)
required a harmful conversion to continuation-passing style until the advent
of small-step abstraction interpretations for the pointer-refined CESK ma-
chine [23].

We see this work as another milestone on the path to robust static analysis of
full-featured higher-order programs.

7 Limitations and future work

Since the shape of the store and the values within were not the primary focus
of this work, it utilized a blunt abstraction. A compelling next step of this
work would generalize the abstraction of the store relationally, so as to capture
relations between the values at specific addresses. The key challenge in such an
extension is the need to handle relations between abstract addresses which may
represent multiple concrete addresses. Relations which universally quantify over
the concrete constituents of an abstract address are a promising approach.

Acknowledgements This material is based upon work supported by the NSF
under Grant No. 1035658. The second author was supported by the National
Science Foundation under Grant No. 0937060 to the Computing Research As-
sociation for the CIFellow Project. We also acknowledge support from the Park
City Research Institute for Computer Science.

References

1. Balakrishnan, G., and Reps, T. Recency-Abstraction for Heap-Allocated stor-
age. In SAS ’06: Static Analysis Symposium (Berlin, Heidelberg, 2006), K. Yi, Ed.,
vol. 4134 of Lecture Notes in Computer Science, Springer-Verlag, pp. 221–239.

2. Chase, D. R., Wegman, M., and Zadeck, F. K. Analysis of pointers and
structures. In PLDI ’90: Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (New York, NY, USA, 1990),
PLDI ’90, ACM, pp. 296–310.

3. Cousot, P., and Cousot, R. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth ACM Symposium on Principles of Programming
Languages (New York, NY, USA, 1977), ACM Press, pp. 238–252.

4. Cousot, P., and Cousot, R. Systematic design of program analysis frameworks.
In POPL ’79: Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (New York, NY, USA, 1979), POPL ’79,
ACM Press, pp. 269–282.

5. Feeley, M. An Efficient and General Implementation of Futures on Large Scale
Shared-Memory Multiprocessors. PhD thesis, Brandeis University, Apr. 1993.

6. Felleisen, M., and Friedman, D. P. Control operators, the SECD-machine,
and the lambda-calculus. In 3rd Working Conference on the Formal Description
of Programming Concepts (Aug. 1986).

7. Flanagan, C., and Felleisen, M. The semantics of future and its use in program
optimization. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (New York, NY, USA, 1995),
ACM, pp. 209–220.

8. Flanagan, C., and Felleisen, M. The semantics of future and an application.
Journal of Functional Programming 9, 01 (1999), 1–31.

9. Flanagan, C., Sabry, A., Duba, B. F., and Felleisen, M. The essence of com-
piling with continuations. In PLDI ’93: Proceedings of the ACM SIGPLAN 1993
Conference on Programming Language Design and Implementation (New York,
NY, USA, June 1993), ACM, pp. 237–247.

10. Hudak, P. A semantic model of reference counting and its abstraction. In LFP ’86:
Proceedings of the 1986 ACM Conference on LISP and Functional Programming
(New York, NY, USA, 1986), ACM, pp. 351–363.

11. Jagannathan, S., Thiemann, P., Weeks, S., and Wright, A. Single and
loving it: must-alias analysis for higher-order languages. In POPL ’98: Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (New York, NY, USA, 1998), POPL ’98, ACM, pp. 329–341.

12. Jones, N. D. Flow analysis of lambda expressions (preliminary version). In Pro-
ceedings of the 8th Colloquium on Automata, Languages and Programming (Lon-
don, UK, 1981), Springer-Verlag, pp. 114–128.

13. Might, M. Shape analysis in the absence of pointers and structure. In VM-
CAI 2010: International Conference on Verification, Model-Checking and Abstract
Interpretation (Madrid, Spain, Jan. 2010), pp. 263–278.

14. Might, M., and Shivers, O. Exploiting reachability and cardinality in higher-
order flow analysis. Journal of Functional Programming 18, Special Double Issue
5-6 (2008), 821–864.

15. Might, M., Smaragdakis, Y., and Van Horn, D. Resolving and exploiting the
k-CFA paradox: illuminating functional vs. object-oriented program analysis. In
PLDI ’10: Proceedings of the 2010 ACM SIGPLAN Conference on Programming
Language Design and Implementation (New York, NY, USA, 2010), ACM, pp. 305–
315.

16. Navabi, A., and Jagannathan, S. Exceptionally safe futures. In Coordination
Models and Languages, J. Field and V. Vasconcelos, Eds., vol. 5521 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2009, ch. 3,
pp. 47–65.

17. Palsberg, J. Closure analysis in constraint form. ACM Transactions on Pro-
gramming Languages and Systems 17, 1 (Jan. 1995), 47–62.

18. Queinnec, C. Continuations and web servers. Higher-Order and Symbolic Com-
putation 17, 4 (Dec. 2004), 277–295.

19. Sagiv, M., Reps, T., and Wilhelm, R. Parametric shape analysis via 3-valued
logic. ACM Transactions on Programming Languages and Systems 24, 3 (May
2002), 217–298.

20. Shivers, O. Control flow analysis in Scheme. In PLDI ’88: Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementation
(New York, NY, USA, 1988), ACM, pp. 164–174.

21. Shivers, O. G. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA, 1991.

22. Van Horn, D., and Mairson, H. G. Deciding kCFA is complete for EXPTIME.
In ICFP ’08: Proceeding of the 13th ACM SIGPLAN International Conference on
Functional Programming (New York, NY, USA, 2008), ACM, pp. 275–282.

23. Van Horn, D., and Might, M. Abstracting abstract machines. In ICFP ’10:
Proceedings of the 15th ACM SIGPLAN International Conference on Functional
Programming (New York, NY, USA, 2010), ACM, pp. 51–62.

24. Yahav, E. Verifying safety properties of concurrent java programs using 3-valued
logic. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (2001), POPL ’01, ACM Press, pp. 27–40.

	A family of abstract interpretations for static analysis of concurrent higher-order programs

