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Abstract. The Parameterised Model Checking Problem asks whether an implementation
Impl(t) satisfies a specification Spec(t) for all instantiations of parameter t . In general,
t can determine numerous entities: the number of processes used in a network, the type of
data, the capacities of buffers, etc. The main theme of this paper is automation of uniform
verification of a subclass of PMCP with the parameter of the first kind, i.e. the number of
processes in the network. We use CSP as our formalism.

We present a type reduction theory, which, for a given verification problem, establishes a
function φ that maps all (sufficiently large) instantiations T of the parameter to some fixed

type T̂ and allows us to deduce that if Spec(T̂ ) is refined by φ(Impl(T )), then (subject to
certain assumptions) Spec(T ) is refined by Impl(T ). The theory can be used in practice
by combining it with a suitable abstraction method that produces a t-independent process
Abstr that is refined by φ(Impl(T )) for all sufficiently large T . Then, by testing (with

a model checker) if the abstract model Abstr refines Spec(T̂ ), we can deduce a positive
answer to the original uniform verification problem.

The type reduction theory relies on symbolic representation of process behaviour. We
develop a symbolic operational semantics for CSP processes that satisfy certain normality
requirements, and we provide a set of translation rules that allow us to concretise symbolic
transition graphs. Based on this, we prove results that allow us to infer behaviours of a
process instantiated with uncollapsed types from known behaviours of the same process
instantiated with a reduced type.

One of the main advantages of our symbolic operational semantics and the type reduc-
tion theory is their generality, which makes them applicable in a wide range of settings.

1. Introduction

Until recently the primary method of correctness verification was testing, which, given an
input, checks the produced output against the expected outcome. This approach suffers
from two main problems. Firstly, it is almost always impossible to test every possible
input and execution path. Secondly, testing works only for completed implementations.
This makes it particularly unsuitable for verification of safety-critical systems; it is highly
unlikely that someone would ever want to perform testing to verify that a nuclear power
plant never blows up, for example.
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In contrast to the above, formal verification methods concentrate on proving the cor-
rectness of a given system. One approach to formal verification is model checking. Given
a model Impl of an implementation and a specification Spec that the model should satisfy,
verification via model checking occurs by exploring (explicitly or symbolically) all states
of Impl and checking if they satisfy Spec. The greatest advantage of model checking is
a large scope for automation, at the cost of being applicable only to finite-state systems
and a few families of infinite systems. In addition, if the implementation fails to satisfy
the specification, then model checking can produce a counterexample (a behaviour of the
implementation that is not allowed by the specification) that can be used for debugging
purposes. On the other hand, this approach to formal verification suffers from the state
explosion problem: the time complexity of verification algorithms depends on the size of the
implementation, which is typically exponential in the size of its description. This means
that standard model checking algorithms can only work in cases where the system to be
verified is of finite and (relatively) small size.

One approach to model checking, highly popularised by Clarke, Emerson and Grum-
berg [CE81, CES86, CGL94, CGP99], is based on temporal logics, where specifications are
formulated as expressions in a linear time logic (e.g. LTL [Pnu77]) or a branching time logic
(e.g. CTL [EC80, BAMP81]). Another approach defines a partial order ⊑ on the set of all
expressible systems. The intuitive meaning of P ⊑ Q (pronounced “P refined by Q”) for
systems P and Q is that Q is in some sense “better” than P , e.g. it is more determinis-
tic, less abstract or contains more implementation details (see Section 2.2 for the formal
definition). In this approach Spec and Impl are modelled using the same formalism and
Impl is said to satisfy Spec if and only if Spec ⊑ Impl . An immediate advantage of refine-
ment checking over temporal logic formulae satisfaction is the fact that what constitutes
a specification for a given implementation in one context can be treated as its abstraction
in another. This is a very useful feature when working with compositional construction of
implementations.

In this paper we use the refinement-based approach to model checking, where all imple-
mentations and specifications are modelled using the CSP process algebra [Hoa85, Ros97,
Ros10] (see Section 2) and refinement checks are performed automatically using the FDR
model checker [For09].

It is often the case that specifications or implementations contain free variables. These
can be parameters that affect the topology of the system (e.g. the number of nodes in a
network or the number of users of a system), the types of data variables (e.g. datatypes of
database records or memory contents), performance parameters (e.g. bandwidths, response
times, clock speeds), or capacities of buffers or queues used. One is often interested in
the uniform verification of a given parameterised pair of a specification Spec and an im-
plementation Impl , i.e. in checking whether Impl satisfies Spec for all instantiations of the
parameters. Given such Spec and Impl , the Parameterised Verification Problem (PVP) asks
whether Impl can be uniformly verified against Spec. The Parameterised Model Checking
Problem (PMCP) is a subclass of PVP, where we insist on the verification occurring via
model checking.

In this paper we concentrate on a subclass of PMCP, where specifications and imple-
mentations contains a single parameter t , called the distinguished type, which denotes the
type of identities of node processes running concurrently to form a network, possibly within
some larger system. More precisely, every family of implementations that we consider is of
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the form1

Impl(t) = Ct

[
‖ i ∈ t • [A(i , t)] Ni(t)

]
,

where:

• Ni(t) models a single, finite-state node with identity i , and that can receive, store and
send node identities from t ;
• A(i , t) is the set of all visible events that Ni(t) can communicate (its alphabet);
• Ct [·] is some CSP context, for example that places the nodes in parallel with a controller
(possibly parameterised by t) and may hide some communication.

In fact, the results of this paper apply to more general implementation processes that the
above Impl(t), namely all that are fully symmetric in t (informally, that renaming the
elements of t under an arbitrary bijection gives an equivalent process; see Definition 3.6,
below); however, Impl(t) captures those processes that we are particularly interested in.

Our overall aim, then, is to verify that for all sufficiently large instantiations T of t :

Spec(T ) ⊑ Impl(T ), (1.1)

where Spec(t) is a suitable specification process.
Throughout this paper we assume that every instantiation T of type parameter t is

non-empty and finite. In addition, without loss of generality, we assume that every instan-
tiation T of t is an initial segment of the natural numbers, i.e. T is of the form {0 . . n − 1}
for some n. Our results and techniques extend to other discrete and finite types T of size n
via simple bijections from {0 . .n−1} to T . We allow processes to contain other parameters
in their syntax, but their values must be known and fixed at the time of writing the pro-
cess definition, or an additional technique for handling parameters (e.g. data independence
[Laz99, Ros97]) must be used for complete correctness analysis.

PMCP is, in general, undecidable [AK86], as the Halting Problem [Dav58] can be shown
to reduce to it. Therefore, we focus on sound (but incomplete) verification methods.

One general approach is to build a t-independent abstraction process Abstr that cap-
tures the behaviours of all the Impl(T ) processes, in a sense that we now explain. The
alphabets of Impl(T ) are (in general) unbounded as a function of T ; however, the alphabet
of Abstr needs to be fixed. Therefore, the construction of Abstr collapses T to some fixed
type T̂ = {0 . . B} for some non-negative integer B , treating all identities in {0 . . B − 1}
faithfully, but mapping all other identities onto B . More precisely, for all sufficiently large
instantiations T of type t , Abstr is such that2

Abstr ⊑ φ(Impl(T )) (1.2)

holds by construction, where φ is a B -collapsing function:

Definition 1.1. A B-collapsing function is a function φ : T → {0 . . B} such that

• φ(v) = v for v ∈ {0 . . B − 1};
• φ(v) = B for v ∈ {B . .#T − 1}.

1The process ‖ i ∈ I • [A(i)]P(i) denotes the parallel composition of the processes P(i) for i ∈ I , where

A(i) is the alphabet of P(i), and where nodes synchronise on all events in common between their alphabets;
see Section 2.

2The process f (P) is a process that acts like P , except every event a is renamed to f (a); see Section 2.
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Having constructed such an Abstr , we can use a CSP model checker, such as FDR, to verify
that

Spec(T̂ ) ⊑ Abstr .

Transitivity of refinement then allows us to deduce that

Spec(T̂ ) ⊑ φ(Impl(T )) (1.3)

for all sufficiently large T . An example of such an abstraction method (based on counter
abstraction techniques [Lub84, PXZ02, ML09]) can be found in [Maz10, ML11].

The aim of this paper is to bridge the gap between equations (1.3) and (1.1). We
present a theory that, under suitable assumptions on the specification and implementation
processes, allows us to calculate a suitable value for B such that if equation (1.3) holds (for

the values of φ and T̂ corresponding to B), then equation (1.1) holds for all T such that
#T > B (smaller values of T can be tested directly). In particular, the value of B turns out
to depend only on the syntax of the specification, and is independent of the implementation.

Our theory is general, allowing us to combine it with an arbitrary abstraction method
that can produce an abstraction Abstr such that (1.2) holds.

The rest of this paper is structured as follows. In Section 2 we introduce the syntax
of the CSP process algebra, describe two of its denotational semantics models (traces and
stable failures) and briefly talk about FDR, a model checker for CSP. We also give an
example to illustrate the goals of this paper. In Section 3 we define the conditions we will
require the specification process to satisfy, and also the condition of symmetry in t that we
will require the implementation to satisfy.

Proving the main theorems will require us to develop quite a lot of supporting ma-
chinery, in order to relate behaviours of the specification process for different values of the
parameter t . To this end, Section 4 is devoted to developing a suitable operational seman-
tics for CSP. The main part of this section presents a symbolic operational semantics that
allows us to reason about behaviour of processes without the need for instantiating param-
eters. We also provide a set of translation rules for instantiating symbolic transition graphs
into concrete ones, and we prove that this results in an operational semantics congruent to
a fairly standard one.

Being able to reason about process behaviour in a symbolic way is a prerequisite for
our main theory. We present a number of regularity results for specifications in Section 5,
which show that specifications exhibit certain clarity in their behaviour. Our main type
reduction theory is in Section 6, where we provide type reduction theorems for the traces
and stable failures models. Finally, we conclude in Section 7. In the interests of readability,
we relegate most proofs to appendices.

2. Introduction to CSP

CSP [Hoa85, Ros97, Ros10] is a process algebra used for modelling and verification of
concurrent reactive systems with communication based on synchronous message passing.

CSP processes interact with each other and the environment within which they operate
by communicating events. Events occur on channels; for example, c.a.3 is an event over
channel c, passing data a and 3. We assume that each channel has a fixed type (i.e. can
pass a fixed number of pieces of data, and the type of the data passed in each position is
fixed). The notation {| c |} represents the set of events passed over channel c.
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We let Σ be the set of all visible events. We let τ denote a special, internal event (not
in Σ). We write Στ to mean Σ∪{τ}. We also write Σ∗ to mean the set of all finite sequences
of events from Σ.

2.1. Syntax. In this paper we use the fragment of CSP with the following syntax.

P ::= STOP | α→ P | P ✷ P |✷ i ∈ I • P(i) | P ⊓ P | ⊓ i ∈ I • P(i) | P ⊲ P
| if b then P else P | b & P | P \ X | P [[R]] | P X ‖Y P

| ‖ i ∈ I • [A(i)] P(i) | P ‖
X

P | P ||| P | ||| i ∈ I • P(i) | X

The process STOP is a synonym for deadlock, i.e. it is the process that cannot engage
in any communication with the environment and cannot perform any events on its own.

The process α→ P can perform any event that the construct α describes, and then sub-
sequently behaves like P . The construct α is an expression of the form c§1x1:X1 . . . §kxk :Xk ,
where

• c is a channel name;
• §i ∈ {$, ?, !} is an input/output symbol3;
• if §i ∈ {$, ?}, then xi is an input variable, otherwise it is an output value; and
• if §i ∈ {$, ?}, then Xi is a type parameter or type of input, otherwise it is null .

The ! symbol denotes an output; ? denotes an input; $ denotes a nondeterministic choice
(which we sometimes call a nondeterministic input). The ? and $ operators both bind
variables to concrete values. For example, the process c$x :{0, 1}?y :{2, 3}!4 → d !(x+y) →
STOP nondeterministically chooses a value v ∈ {0, 1} and binds the variable x to that
value; it is then willing to perform any event of the form c.v .w .4 for w ∈ {2, 3}, and binds
the variable y to the value w ; it then performs the event d .(v+w), and deadlocks. For
constructs where §i = ! for every i , we use the more traditional . output symbol instead,
e.g. we write c.v1.v2.v3 to mean c!v1!v2!v3. Whenever Xi is null , we omit it in practice,
e.g. we write c!v instead of c!v :null . The only way a process can communicate a visible
event is via a prefix construct.

For two processes P and Q , the external (or deterministic) choice P ✷ Q is a process
that offers the environment the choice of performing any initial event of P or Q ; if an
initial event of P is performed, then the choice is resolved to P , and if an initial event
of Q is performed, then the choice is resolved to Q . We can define a replicated version of
the operator: ✷ i ∈ I • P(i) is an external choice between processes P(i) for each i in
some finite indexing set I; we consider this as syntactic sugar for repeated use of the binary
operator.

P ⊓ Q represents an internal (or nondeterministic) choice, where the process behaves
either like P or like Q , where the choice is made by some mechanism that we do not
model and which cannot be influenced by the environment. We define a replicated version:

⊓ i ∈ I • P(i) is an internal choice between processes P(i) for each i in some finite, non-
empty indexing set I.

The sliding choice (or timeout) P ⊲ Q is a process that behaves like P for a nonde-
terministically long period of time, but if the environment does not engage in any activity
with P within this time, it switches to behaving like Q .

3Standard CSP commonly also uses the . symbol, but this is only syntactic sugar and can always be
replaced by one of $, ?, !.



6 T. MAZUR AND G. LOWE

The process if b then P else Q is a conditional choice between processes P and Q . If
b evaluates to True, then this process behaves like P ; otherwise it behaves like Q . The
process b & P is syntactic sugar for if b then P else STOP , i.e. P is enabled if and only
if guard b is true. We say “a conditional choice on t” to mean a conditional choice whose
boolean condition involves only variables and/or values of type t .

For any set X ⊆ Σ, P \ X is a process which behaves like P except that whenever P
would normally communicate an event from set X , P \ X performs the internal action, τ ,
instead.

The process P [[R]], where R is a relation over Σ, is a process that behaves like P except
that whenever P would perform an event a, the renamed process performs an event b such
that aR b instead. We sometimes define the renaming relation using notation similar to
substitution: P [[b/a ]] is a process that behaves like P except that whenever P would nor-
mally perform a, the renamed process performs b instead. If R is a function, we sometimes
write the renaming using functional notation, R(P).

The notion of parallel composition of processes is key to CSP, allowing one to model
concurrency. The process P X ‖Y Q is a parallel composition of P and Q , where P is allowed
to communicate only members of the set of visible events X , Q is allowed to communicate
only members of the set of visible events Y , and synchronisation occurs on all common
events (i.e. those in X ∩ Y ). We can define its replicated version: ‖ i ∈ I • [A(i)] P(i)
is the parallel composition of processes P(i) indexed over a finite, non-empty set I, where
each P(i) is allowed to perform only events from A(i), and synchronises on event e ∈ A(i)
with each process P(j ) such that e ∈ A(j ). The process P ‖

X

Q is the parallel composition

of P and Q with handshaken synchronisation on all the members of the set of visible
events X . Finally, P ||| Q is the interleaving of P and Q : the processes run in parallel,
but do not synchronise on any event (note that this is equivalent to P ‖

{}

Q). We write

||| i ∈ I • P(i) for the replicated version.
Processes are defined by means of equations, such as P = a → P . We assume a global

environment E , mapping identifiers to process definitions, capturing these equations. When
a process identifier X is encountered in syntax, E is used to look up which process definition
should be substituted for X .

So far we have used the term “process” loosely. We now make an important distinction
between process syntaxes (also called process definitions) and concrete processes. A process
syntax is an open CSP term (i.e. one with free variables). On the other hand, every closed
CSP term represents a process. For example, if Proc(t) is a term where t is free, then it
is a process syntax and it represents a family of processes Proc(T ), one for each concrete
instantiation T .

2.2. Denotational models and refinement. A trace of a process is a sequence of visible
events that it can perform. We write traces(P) for the traces of P .

Given a process P , we let initials(P) be the set of all the initially available visible
events of P , i.e.

initials(P) = {a | 〈a〉 ∈ traces(P)}.
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In addition, if tr is a trace of P , then P/tr (pronounced “P after tr”) describes the be-
haviours of P after it performs tr . So, in particular,

initials(P/tr) = {a | tr 〈̂a〉 ∈ traces(P)}.

CSP specifications are expressed in the same formalism as implementations, i.e. as
processes. An implementation Impl is said to satisfy a specification Spec if it refines it,
which we denote by writing Spec ⊑ Impl . Intuitively, process Q refines process P (or P is
refined by Q) if Q does not exhibit any behaviour that is not a behaviour of P . The type
of behaviour that identifies a CSP process depends on the denotational model that is used.
In the traces model refinement is defined by:

P ⊑T Q ⇔ traces(Q) ⊆ traces(P).

If P ⊑T Q and Q ⊑T P , then we say that P and Q are traces equivalent, denoted P ≡T Q .
In the stable failures model, a process P is identified by the set of its traces (as above)

together with the set of its failures (written failures(P)). A failure is a pair (tr ,X ), where
tr ∈ traces(P) and X ⊆ Σ, and represents the behaviour where P performs trace tr to reach
a stable state P ′ (i.e. τ is not available in P ′), in which it refuses the whole of X (i.e. none
of the events in X is available), denoted P ′ ref X . When refinement is interpreted over
the stable failures model, we get the notion of stable failures refinement :

P ⊑F Q ⇔ traces(Q) ⊆ traces(P) ∧ failures(Q) ⊆ failures(P).

If P ⊑F Q and Q ⊑F P , then we say that P and Q are stable failures equivalent, denoted
P ≡F Q .

All denotational representations of a process P (including traces(P) and failures(P))
can be obtained using the rules of denotational semantics, which can be found, for example,
in [Ros97, Chapter 8]. An alternative approach (and the one we take most of the time in this
paper) is to extract denotational values from a labelled transition system representing P ,
obtained by applying an operational semantics. We describe this method in more detail in
Section 4.2.2.

The FDR (Failures/Divergences Refinement) model checker [For09] allows one to au-
tomatically perform refinement checks. When a CSP script with process definitions, say P
and Q , is loaded, FDR can automatically test for refinement P ⊑M Q in a given denota-
tional model M .

2.3. Example. We give here a simple example, to illustrate the problem we are addressing
in this paper.

Consider a very simple token-based mutual exclusion protocol for a collection of nodes.
Each node i obtains the token (event getToken.i), enters and then leaves the critical section
(event enterCS .i , respectively, leaveCS .i), and returns the token (event returnToken.i):

Node(i) = getToken.i → Entering(i),

Entering(i) = enterCS .i → CS (i),

CS (i) = leaveCS .i → Leaving(i),

Leaving(i) = returnToken.i → Node(i).

The nodes are interleaved; recall that we use the variable t to denote the type of all node
identities:

Nodes(t) = ||| i : t • Node(i).
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The nodes are combined with a controller that controls the token, repeatedly giving it to
a node and receiving it back. The communications corresponding to passing the token are
considered internal so are hidden.

Controller(t) = getToken?i :t → returnToken?j :t → Controller(t),

Impl(t) = (Nodes(t) ‖
{|getToken,returnToken|}

Controller(t))

\ {| getToken, returnToken |}.

We would like to verify that at most a single node is in the critical section at a time.
We can capture this using the specification process

Spec(t) = enterCS$i :t → leaveCS !i → Spec(t).

Our requirement, then, is

Spec(T ) ⊑T Impl(T ), for all instantiations T of t . (2.2)

The approach we describe in [Maz10, ML11] is to form an abstraction of Nodes(t)
based on counter abstraction [PXZ02]. In the process NodesAbst(n, e, c, l), below, the four
counter parameters n, e, c and l represent the number of nodes in the Node, Entering , CS
and Leaving states, respectively; however the counting is capped at some value z , where
we take z = 2 in this case; hence a counter value of z represents that there are z or more
processes in the corresponding state. The definition of NodesAbst is based on the transitions
within a single Node process. For most transitions, the counter for the prior Node state is
decremented, and the counter for the new state is incremented, but not beyond z ; we define
the following function to perform this:

inc(x ) = min(x + 1, z ).

However, if the counter for the prior state was at the cap z , then there might have been
strictly more than z processes in this state before the transition, so the counter should
(nondeterministically) be able to stay at z .

NodesAbst(n, e, c, l)(t) =
(n > 0 & getToken$i :t →

if n < z then NodesAbst(n − 1, inc(e), c, l)(t)
else NodesAbst(n − 1, inc(e), c, l)(t) ⊓ NodesAbst(n, inc(e), c, l)(t))

✷

(e > 0 & enterCS$i :t →
if e < z then NodesAbst(n, e − 1, inc(c), l)(t)
else NodesAbst(n, e − 1, inc(c), l)(t) ⊓ NodesAbst(n, e, inc(c), l)(t))

✷

(c > 0 & leaveCS$i :t →
if c < z then NodesAbst(n, e, c − 1, inc(l))(t)
else NodesAbst(n, e, c − 1, inc(l))(t) ⊓ NodesAbst(n, e, c, inc(l))(t))

✷

(l > 0 & returnToken$i :t →
if l < z then NodesAbst(inc(n), e, c, l − 1)(t)
else NodesAbst(inc(n), e, c, l − 1)(t) ⊓ NodesAbst(inc(n), e, c, l)(t)).
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We can then build Abst from NodesAbst(z , 0, 0, 0) in the same way that we built Impl from
Nodes:

Abst(t) = (NodesAbst(z , 0, 0, 0)(t) ‖
{|getToken,returnToken|}

Controller(t))

\ {| getToken, returnToken |}.

In [Maz10, ML11], we show that the process built in this way is an abstraction of the
Impl process in the following sense: for every non-negative integer B :

Abst(T̂ ) ⊑T φ(Impl(T )), (2.3)

for all instantiations T of t with #T ≥ B + z , where T̂ = {0 . .B}, and φ is a B -collapsing
function (see Definition 1.1). We pick B = 1 in this case. We can then use FDR to verify
that

Spec(T̂ ) ⊑T Abst(T̂ ),

and so deduce

Spec(T̂ ) ⊑T φ(Impl(T )), for all instantiations T of t with #T ≥ B + z = 3,

by transitivity of refinement. The results in this paper will allow us to deduce our require-
ment (2.2) from this. We stress, though, that the results in this paper can be used with any
abstraction method that produces a process Abst such that (2.3) holds for all sufficiently
large instantiations T of t .

It is worth noting that the technique in [Maz10, ML11] is rather more general than the
above example illustrates. It allows node processes to store the identities of other nodes,
and to pass them on in subsequent events; much of the difficulty of the theory concerns
treating these identities correctly.

3. Conditions on processes

In this section we define various conditions on processes that we will use later. In Section 6.1
we will mention tool support, which is able to test for most of the conditions in this section.

We mentioned above that we restrict our operational semantics to a fragment of the
CSP language when working with specifications. We aim to develop mathematical machin-
ery to prove (in Section 6) useful results about specifications that satisfy a certain normality
condition, which we define in Section 3.3. Earlier, in Section 3.1 we define data indepen-
dence, a crucial part of normality. We will strongly rely on our normality condition when
defining our Semi-Symbolic Operational Semantics (Section 4.3) and when deriving type
reduction theory results in Section 6.

In Section 3.4 we define the notion of type symmetry in the type t ; our main theorems
will require the implementation process to satisfy this property. Then in Section 3.5 we
define a property concerning the use of equality tests; our main theorems will require the
specification process to satisfy this property.
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3.1. Data independence. Intuitively, we say that a process syntax treats type t data
independently if it inputs and outputs values of type t , possibly storing them for later use,
but does not perform any operations on these values that could influence either its control
flow or the instantiations of type t that can be used. The following definition of a data
independent process is based on the one from [Ros97].

Definition 3.1. We say that a CSP process syntax is data independent with respect to
type t if it does not contain:

(i) replicated constructs indexed over any set depending on t , except for replicated
nondeterministic choice (⊓) indexed over the whole of t ; however, we allow the use

of deterministic and nondeterministic input selections, ? and $;
(ii) conditional choices on t , except for equality and inequality tests;
(iii) constants of type t ;
(iv) functions whose domains or co-domains involve type t ;
(v) operations on t , including polymorphic operations (e.g. tupling or lists);
(vi) selections from sets involving t , unless the selection is over the whole of t ; and
(vii) any operations that would extract information about t , e.g. card(t).

Example 3.2. The Node(i)(T ) processes from Section 2.3 are data independent in t .
However, Nodes(t) is not data independent because it uses an indexed interleaving over t .

Remark 3.3. Clauses (v) and (vi) of Definition 3.1 together imply that, for all constructs
c§1x1:X1 . . . §kxk :Xk of a given data independent process syntax, each Xi is either a type
not related to t or precisely the type parameter t , unless §i = !, in which case Xi = null.

3.2. The Seq condition. In order to produce our Semi-Symbolic Operational Semantics,
it is useful to restrict the scope of processes considered.

Definition 3.4. A process syntax Proc(t) satisfies Seq if

(i) it is data independent;
(ii) it is sequential and contains no renaming or hiding;
(iii) it contains no replicated external or nondeterministic choice (but we do allow nonde-

terministic selections through the use of the $ symbol);
(iv) all guards of conditional choices within Proc(t) contain either only variables of type t ,

or only variables and values of types other that t ;
(v) in external and sliding choices, Proc(t) contains no name clashes between type t

nondeterministic-selection variables of one argument and free variables of another ar-
gument; e.g. c$x :t → STOP ✷ d .x → STOP is not allowed;

(vi) constructs of Proc(t) do not contain multiple occurrences of the same input variable
of type t ; e.g. c!x !x , and c?y :Y !y for Y not related to t are allowed, but c?x :t !x is
not.

Seq may be seen as a rather strong condition. However, in practice, almost all useful
specification processes can be easily re-written to meet its requirements; we justify this
below. However, this condition does place restrictions on the way the specifications are
expressed. These restrictions will make the production of the semi-symbolic operational
semantics easier, and also simplify subsequent proofs.
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We assume sequentiality (assumption (ii)). When a process is not sequential, it can be
rewritten into a sequential form using algebraic equivalences [Ros97]. Further, we forbid
indexed choice operators, since (for finite choices) such indexed operators can always be
replaced by binary ones. Note that this means that Seq processes are taken from processes
with the following syntax:

P ::= STOP | α→ P | P ✷ P | P ⊓ P | P ⊲ P | if b then P else P | X .

Assumptions (iv)–(vi) have been introduced for technical reasons, to simplify the pro-
duction of the semi-symbolic operational semantics. With the exception of assumption (vi),
they do not reduce expressiveness.

Assumption (iv) simplifies our treatment of conditionals when working with symbolic
representations of processes (see Section 4.3). Observe that the guard of every conditional
can be expressed using predicates that involve only types other than the distinguished one,
and predicates that involve only the distinguished type, combined together using conjunc-
tion and disjunction. The conjunctions and disjunctions can be eliminated using the laws:

ifP ∨ P ′ then Q else R ≡ ifP then Q else (ifP ′ then Q else R),

ifP ∧ P ′ then Q else R ≡ ifP then (ifP ′ then Q else R) else R.

Hence any process can be rewritten to satisfy assumption (iv).
We have introduced assumption (v) as we will later store assignments of values to

variables explicitly; clashes of variables names could introduce undesirable updates of values
in such assignments. For example, consider the syntax

in1$x :t → (out .x → STOP ✷ in2$x :t → STOP ).

Then, the value of x that is output using construct out .x should be the value that is
assigned to variable x at the time the nondeterministic selection on channel in1 is resolved.
However, unless the output variable x is immediately substituted with the correct value, the
nondeterministic selection on channel in2 can be resolved before the output is performed,
leading to the value of x being overwritten. Using alpha-conversion, every process definition
that fails assumption (v) can be easily rewritten into a form that satisfies it.

Assumption (vi) ensures that values of all outputs of type t have to be previously
stored within a process’s memory. This simplifies the semantics, and does not greatly
reduce expressiveness.

Thus, most processes can be rewritten into a form that satisfies Seq.

3.3. The SeqNorm condition. When working with specification processes, it is desirable
to ensure their clarity and conformance to a certain standard (normality) to make analyses
of their behaviours easier. The SeqNorm condition, defined below, achieves this without
a major expressiveness reduction. Its effect is to remove all nondeterminism whose effect
is not immediately observable. In particular this condition will allow us to deduce that a
process reaches a unique state after a particular trace (Proposition 5.3), and that a unique
construct gives rise to each event following a given trace (Proposition 5.5).
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Given a sequential, data independent process syntax P , we define Channels(P) to be
the set of the channel names of the initial constructs of P . Formally,

Channels(STOP ) =̂ {},

Channels(c§1x1:X1 . . . §kxk :Xk → P) =̂ {c},

Channels(P ✷ Q) =̂ Channels(P) ∪Channels(Q),

Channels(P ⊓ Q) =̂ Channels(P) ∪Channels(Q),

Channels(P ⊲ Q) =̂ Channels(P) ∪Channels(Q),

Channels(X ) =̂ Channels(P), ifE (X ) = P .

Definition 3.5. A process syntax Proc(t) satisfies SeqNorm if it satisfies Seq, and in
addition for all external choices P(t) ✷ Q(t), internal choices P(t) ⊓ Q(t) and sliding
choices P(t) ⊲ Q(t) within Proc(t) we have that

• Channels(P(t)) ∩ Channels(Q(t)) = {},
• every conditional choice on t in P(t) and Q(t) is after a prefix.

Our definition of SeqNorm is similar to definitions of Norm used in the CSP litera-
ture [Ros97, Laz99], except that it includes Seq, since we will always use SeqNorm with
processes that satisfy Seq.

The first clause does restrict expressiveness. It bans processes such as c!x → P ⊓
c!y → Q . This is necessary to ensure that a unique construct gives rise to each event
(after a given trace), and that a process reaches a unique state after a particular trace; for
example, without this condition, the above process could perform the event c.0 resulting
from either construct (assuming x and y have value 0), and could reach either state P or Q
after this event.

If a particular process syntax fails SeqNorm because of the second subclause of
clause (iv), then the following algebraic laws can be used to convert it to an equivalent
process definition, satisfying this subclause:

P ✶ (if b then Q else R) ≡ if b then (P ✶ Q) else (P ✶ R),

(if b then Q else R) ✶ P ≡ if b then (Q ✶ P) else (R ✶ P),

where ✶ is one of ✷,⊓ or ⊲.
Thus, most processes can be rewritten into a form that satisfies SeqNorm. (A similar

observation about the related Norm condition is made in [Ros97, Section 15.2].) Indeed,
we are not aware of any specification used in practice that cannot.

3.4. Type symmetry. In Section 3.1 we defined the concept of data independence which,
undoubtedly, is a very useful property for studying parameterised systems [CR98, RB99,
CR99, Low04, RLN04]. However, in practice it turns out to be too strong for the implemen-
tations we consider, since we study parallel compositions of node processes indexed over the
parameter. Such compositions are banned by data independence. This is why we define a
weaker condition, which only requires all behaviours of a given process to be symmetric in
the parameter. A process syntax satisfies the TypeSym condition if the behaviours of all
its concretisations are invariant under permutations of values of parameter instantiations.
Given such a permutation π, we write [[π]] for the renaming [[π(e)/e | e ∈ Σ]].

Definition 3.6. A process syntax Proc(t) satisfies the condition TypeSym if Proc(T ) and
Proc(T )[[π]] are bisimilar for every T and every bijection π : T → T .
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Example 3.7. Consider the process

COPY (t) = in?x :t → out !x → COPY (t).

This satisfies TypeSym, informally because it treats all elements of t the same. More
formally, given an instantiation T of t , and a bijection π : T → T , the relevant bisimulation
is

{(COPY (t),COPY (t)[[π]])} ∪
{(out !v → COPY (t), (out !π−1(v)→ COPY (t))[[π]]) | v ∈ T}.

Example 3.8. Consider a system of N (where N = #T ) nodes that communicate using a
ring topology, where each node i can send messages only to the node (i + 1) mod N . For
example (rather trivially):

Ni(t) = send !i !i ⊕ 1→ Ni(t) ✷ send !i ⊖ 1!i → Ni(t),

Nodes(t) = ‖ i ∈ t • [{send .i .i ⊕ 1, send .i ⊖ 1.i})] Ni(t),

where⊕ and⊖ represent addition and subtraction mod N . This does not satisfy TypeSym,
which insists that the process is fully symmetric. For example, if T = {0. .3} then Nodes(T )
has trace 〈send .1.2〉, but does not have the trace 〈send .1.3〉, so TypeSym does not hold
for π = {0 7→ 2, 1 7→ 1, 2 7→ 3, 3 7→ 0}.

Semantic definitions, like Definition 3.6, tend to be hard to check efficiently, so we note
here sufficient syntactic conditions for TypeSym.

Proposition 3.9. A process syntax Proc(t) satisfies the condition TypeSym if it uses no

(i) constants of type t;
(ii) operations on type t, including polymorphic operations (e.g. tupling or lists);
(iii) functions whose domains or co-domains involve type t;
(iv) selections or indexing from sets involving t, unless the selection or indexing is over the

whole of t, except this restriction does not apply to the alphabets of nodes in a parallel
composition indexed over t; and

(v) conditional choices on t, except for equality and inequality tests.

Note that the process of Example 3.7 satisfies the conditions of this proposition, but the
process of Example 3.8 does not, because arithmetic operations are applied to type t .

Proof sketch. Let CSPt be the set of CSP syntaxes parameterised by t , all of whose free
variables (other that t itself) are of type t and which satisfy the conditions of the proposition.
We use [Γ] to denote the syntactic substitution [Γ(x )/x | x ∈ dom(Γ)] and FV (P(t)) to
denote the free variables of P(t). Then

B =
{(

P(T )[Γ], (P(T )[π−1(Γ)])[[π]]
)
| P(t) ∈ CSPt , Γ ∈ FV (P(t))→ T

}

is the required strong bisimulation relation. The proof is a structural induction on P(t).

In practice, most systems where the nodes communicate using a fully connected topology
satisfy these conditions. In [Mof10], Moffat proves a very similar result, for a larger fragment
of the machine-readable CSP language, including the underlying functional language.

The syntactic definition of data independence (Definition 3.1) comprises a superset of
the requirements of Proposition 3.9, so we immediately have the following result.

Corollary 3.10. Every data independent process satisfies TypeSym.
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Example 3.11. Consider a system built as the parallel composition of node processesNi(t)
for each i ∈ t :

Nodes(t) = ‖ i ∈ t • [A(i , t)] Ni(t).

This process syntax satisfies TypeSym provided:

• the node process Ni(t) satisfies the conditions of Proposition 3.9, so in particular it treats
its “identity” parameter i polymorphically; informally, different nodes need to be identical
up to renaming of the identities;
• the alphabet A(i , t) satisfies the conditions of Proposition 3.9, so in particular no op-
erations on type t are applied; informally, the different alphabets depend only on the
identities i , polymorphically.

Note, though, that Nodes(t) does not satisfy data independence, since it contains a repli-
cated operator (parallel composition) that is indexed over t .

Further, if we define the context Ct [.] that composes its argument with a controller
process Ctrlt and hides some events:

Ct [X ] = (X ‖
At

Ctrlt) \ Bt

then Ct [Nodes(t)] satisfies TypeSym provided:

• the controller process Ctrlt satisfies the conditions of Proposition 3.9; informally, it needs
to treat different nodes in the same way;
• the sets At and Bt satisfy the conditions of Proposition 3.9.

Recall that this is the type of implementation process that we considered in the Introduction.
In particular, the example from Section 2.3 meets this pattern.

Example 3.12. The process ✷ y :t • c?x :(t \ {y})!y → STOP satisfies TypeSym. How-
ever, it does not satisfy the conditions of Proposition 3.9, in particular because x is selected
from a proper subset of t .

The following remark is a direct consequence of the TypeSym condition.

Remark 3.13. Suppose that Proc(t) satisfies TypeSym. Then, for all T :

• If tr ∈ traces(Proc(T )) then for all bijections π : T → T , π(tr) ∈ traces(Proc(T ));
• If (tr ,X ) ∈ failures(Proc(T )) then for all bijections π : T → T , (π(tr), π(X )) ∈
failures(Proc(T )).

3.5. Equality tests. The syntactic condition PosConjEqT, formulated by Lazić in [LR98,
Chapter 3], specifies that for a conditional choice with an equality test on t , the positive
branch is a prefix and the negative branch is simply STOP . In [Ros98, RB99], a weaker
version of PosConjEqT is discussed, where no restriction on the process in the positive
branch is in place. Both of these definitions talk about the condition only in relation to the
traces model, but it is easy to extend it to other models of CSP as the following definition
shows.

Definition 3.14. Given a CSP model M we say that a process syntax Proc(t) satisfies
PosConjEqTM if for every conditional choice on t of the form

if cond then P(x1, . . . , xk ) else Q(x1, . . . , xk )

within Proc(t), we have that
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• cond is a positive conjunction of equality tests on t (which gives rise to the name of the
condition), and
• P(v1, . . . , vk ) ⊑M Q(v1, . . . , vk ) for all values v1, . . . , vk .

For technical reasons, it will be desirable in our work to assume the opposite condition
for specifications: that every positive branch of a conditional choice is a refinement of the
negative branch. This can be viewed as a reversed version of PosConjEqTM. Hence, we
have the following definition.

Definition 3.15. Given a CSP model M we say that a process syntax Proc(t) satisfies
RevPosConjEqTM if for every conditional choice on t of the form

if cond then P(x1, . . . , xk ) else Q(x1, . . . , xk )

within Proc(t), we have that

• cond is a positive conjunction of equality tests on t , and
• Q(v1, . . . , vk ) ⊑M P(v1, . . . , vk ) for all values v1, . . . vk .

WheneverM is clear from the context, we will simply write RevPosConjEqT.

Example 3.16. The process syntax

Proc(t) = in?x :t?y :t?z :t → if x = y then out .x → out .y → STOP
else out$z → (out .y → STOP ⊓ STOP )

satisfies RevPosConjEqTF. However, the process syntax

Proc(t) = in?x :t?y :t → if x = y then out .x → STOP
else out .y → STOP

does not satisfy RevPosConjEqTT, because if x and y are two distinct values, then
out .y → STOP 6⊑T out .x → STOP .

Most specification processes that one tends to use in practice do not contain condition-
als, so vacuously satisfy both PosConjEqTM and RevPosConjEqTM for all modelsM.
Further, our experience is that many specifications that do contain conditionals satisfy
RevPosConjEqTM.

4. Operational semantics

The main usefulness of a process algebra (like CSP) comes from the fact that it allows us to
reason about programs and processes rigorously. In this section we look into the operational
semantics for CSP. An operational semantics provides a precise step-by-step description of
how processes execute. It describes state changes as effects of events being performed by
representing processes using labelled transition systems, defined as follows.

Definition 4.1. A labelled transition system (LTS) is a tuple L = (S , s0,L,−→), where S
is a set of states, s0 ∈ S is an initial state, L is a set of labels, and −→ ⊆ S × L × S is a
transition relation. We let L̂ = S denote the set of states of L.

In Section 4.1 we give some useful notation and definitions that we will repeatedly use
throughout the rest of this paper.

The various operational semantics we present in this paper do not aim to be complete.
Their main purpose is to formalise the foundations for the results regarding specifications,
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presented in Section 6. This is why we describe only the minimal operational semantics
that allow us to generate transition graphs of the processes that we consider in that section.
We therefore restrict ourselves to processes that satisfy Seq throughout this section. As
noted above, most CSP specifications one uses in practice lie within this fragment of CSP,
and others can be rewritten into this form using algebraic laws. We stress, though, that
implementation processes can be written using the full syntax of CSP.

Operational semantics can be defined at different levels of abstraction. In Section 4.2
we present a fairly standard operational semantics at the lowest, implementation level. It
generates LTSs from process syntax with no free variables. This means that all parameters
must be substituted with concrete values before the transition rules can be used. When
variables become bound as the result of inputs or nondeterministic selections, the binding
is reflected by syntactic substitution.

We introduce a running example, which we use to illustrate the different styles of
operational semantics.

Example 4.2. Let

P(t) = c$x :{a, b}$y :t?z :t → if y = z then d !x → STOP else STOP .

In Figure 1 we represent the standard operational semantics for P(T ) where T = {0, 1}.
We omit part of the semantics because of lack of space. In the figure, we write Qx ,y ,z as
a shorthand for if y = z then d !x → STOP else STOP . For compatibility with the later
semantics, we choose to resolve all non-type-t nondeterministic selections before the type-t
nondeterministic selections: hence the τ transitions from the initial states correspond to
resolving the “$x :{a, b}” selection, and the τ transitions from the subsequent states corre-
spond to resolving the ”$y :t” selection. The transitions labelled with events on channel c
also have the effect of resolving the subsequent conditional (“if y = z . . .”).

P(T )

τ

uu❥❥❥❥
❥❥❥❥

❥❥❥❥
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❙❙❙❙
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τ

||②②
②②
②②

τ

""❊
❊❊

❊❊
❊

c!b$y:T?z :T
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τ

}}④④
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τ

��
❁❁

❁❁
❁
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tt c.a.0.1

$$■
■■

■■
■

c!a!1?z :T
→ Qa,1,zc.a.1.0

zz✉✉
✉✉
✉✉ c.a.1.1

$$❏
❏❏

❏❏
❏

. . . . . .

d !a → STOP
d.a // STOP d !a → STOP

d.aoo

Figure 1: Operational semantics for P(T ) from Example 4.2 with T = {0, 1}.

One of the main shortcomings of such an operational semantics, when working with
parameterised systems, is the need for repetitive application of the transition rules for each
instantiation of the parameters: this is reflected in Figure 1, where the number of transitions
depends on the size of T . Lazić addressed this problem in [Laz99] by defining a symbolic
operational semantics (for a language similar to CSP, but with an addition of certain lambda
calculus terms), where the variables related to the parameters are never instantiated, but
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♦♦♦
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%%❏
❏❏❏
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d !a → STOP
d .a

// STOP d !b → STOP
d .b

// STOP

Figure 2: Semi-symbolic operational semantics for P(t) from Example 4.3.

rather left as symbols, when an LTS is generated. The advantage of such an approach is that,
given a parameterised process syntax, a single symbolic LTS is generated and each of the
concrete LTSs can be easily obtained from it by an assignment of values4. Such a symbolic
LTS can be viewed as a formal structure that captures the essence of the behaviour of a
process; it hides the details of the data values, concentrating on the control states between
which a process can move by executing actions. This sort of symbolic structure is precisely
what we need for our work in Section 6. However, the assumptions we make about the
processes with which we work cause the application of Lazić’s work to be unnecessarily
complex for our needs.

In Section 4.3 we define Semi-Symbolic Operational Semantics (SSOS), a symbolic op-
erational semantics similar to the one from [Laz99]. We explain the idea of SSOS via our
running example.

Example 4.3. Recall the following process from Example 4.2:

P(t) = c$x :{a, b}$y :t?z :t → if y = z then d !x → STOP else STOP .

In Figure 2 we represent the semi-symbolic operational semantics for P(t). We again write
Qx ,y ,z as a shorthand for if y = z then d !x → STOP else STOP . Note that transitions are
symbolic in that they contain variables corresponding to type-t selections; however, non-
type-t values are treated concretely. Further, we include transitions corresponding to the
conditional, labelled with the condition (“y = z”) and its negation (“¬y = z”) respectively.

The states of the resulting semi-symbolic LTSs (SSLTSs) can be viewed as the control
states of families of concrete processes. In order to fully concretise them, it is enough to pro-
vide a map of variable names to concrete values; such a map will be called an environment.
In Section 4.4 we describe Concrete Operational Semantics with Environments (COSE), a
concrete operational semantics which, for a fixed instantiation of the distinguished type,
creates LTSs whose states are triples consisting of a symbolic state (or a modification of
such), an environment giving values to the type-t free variables, and the instantiation of the
distinguished type. The specification of COSE is provided as a set of translation rules from
SSOS, rather than a set of transition rules. We illustrate the idea via our running example.

4In Lazić’s work individual concrete LTSs are, in fact, never generated. Instead, the relationships with
denotational semantics are established and the denotational values are derived directly from symbolic LTSs.
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Figure 3: Concrete operational semantics with environments for P(T ) with T = {0, 1}.

Example 4.4. Recall the process P(t) from above. Figure 3 gives the COSE semantics for
P(T ) with T = {0, 1} (strictly speaking, each state should also include T as a third term;
we omit this due to lack of space). The τ transitions from the initial states correspond to
resolving the “$x :{a, b}” selection; since x is not of type t , the choice of x is reflected by
syntactic substitution. The τ transitions from the subsequent states correspond to resolving
the “$y :t” selection; the environment stores the resulting value for y . The subsequent
transitions with events on channel c resolve the “?z :t” choices; the environment stores the
resulting value for z . Note also that the operational semantics is strongly bisimilar to the
semantics in Figure 1.

We show that the combination of SSOS and the translation rules of COSE is always
bisimilar to the standard one in Section 4.5. Finally, we define the relationship between
symbolic traces and concrete traces in Section 4.6.

4.1. General definitions and notation. We present some notation and definitions that
will often be used in the following sections. Additional pieces of notation and local defini-
tions will be introduced in the relevant parts of this section.

We define V alue to be the set of all values, and V ar to be the set of all variable names;
we assume V ar ∩ V alue = {}.

Prefix constructs may depend on the distinguished type, so, in theory, they should be
decorated with parameter t , e.g. Proc(t) = α(t)→ Proc′(t). However, for brevity, we omit
the parameter (or its instantiation) where it is clear from the context or indifferent.

For any construct α of the form c§1x1:X1 . . . §kxk :Xk , we define functions that return
index sets of variables and values within α, based on their type and the kind of input or
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output they model:

$t(α) =̂ {i ∈ {1 . . k} | §i = $ ∧ Xi = t},

$non-t(α) =̂ {i ∈ {1 . . k} | §i = $ ∧ Xi 6= t},

$(α) =̂ $t (α) ∪ $non-t(α),

?t(α) =̂ {i ∈ {1 . . k} | §i = ? ∧ Xi = t},

?non-t(α) =̂ {i ∈ {1 . . k} | §i = ? ∧ Xi 6= t},

?(α) =̂ ?t(α) ∪ ?non-t(α),

!t(α) =̂ {i ∈ {1 . . k} | §i = ! ∧ xi is of type t},

!non-t(α) =̂ {i ∈ {1 . . k} | §i = ! ∧ xi is not of type t},

!(α) =̂ !t (α) ∪ !non-t(α).

The following functions allow us to modify constructs. Let α = c§1x1:X1 . . . §kxk :Xk

and let † be either t or non-t.

• We define Replace†$7→!(α) to be a construct like α, but where for every i in $†(α) the §i
symbol (which must be a $) is replaced by a ! and Xi is replaced by null;
• Replace$7→! =̂ Replacet$7→! ◦Replacenon-t$7→! .

Example 4.5. Let ǫ = c$x1:t?x2:t$x3:X !x4, where X it a type not related to t and x4 is
some output variable. Then,

Replacet$7→!(ǫ) = c!x1?x2:t$x3:X !x4,

Replacenon-t$7→! (ǫ) = c$x1:t?x2:t !x3!x4,

Replace$7→!(ǫ) = c!x1?x2:t !x3!x4.

Substitution will play an important role in defining the operational semantics in the
following sections. We use square brackets to denote substitution: for a variable x and a
value v , P [v/x ] is like P , but with every free occurrence of x replaced with v (here, P can be
a process, a definition of a set, a definition of a relation, etc). Substitution is different from
renaming, since renaming is a function or relation from values to values, while substitution
is a function from variables to values.

4.2. Standard CSP operational semantics. In this section we present a standard op-
erational semantics for the fragment of CSP corresponding to Seq, i.e. excluding parallel
operators, hiding and renaming. (Rules for the remainder of the syntax can be found in,
e.g., [Ros97], but we do not need them in this paper.) The operational semantics generates
LTSs from syntax without free variables. This means that, when dealing with parameterised
processes, all parameters have to be assigned concrete values before the transitions rules
can be applied. We let T be a fixed instantiation of type t .

We distinguish two types of transitions: visible and internal. An internal transition,
labelled with τ , represents an event that can be performed by a process without any in-
teraction from the environment and which is not observable by the environment. A visible
transition, on the other hand, is labelled with an event that is observable by the environ-

ment, and requires its synchronisation in order to be performed. We write P
a
−→ Q to

mean that there is an a-labelled transition from state P to state Q .
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4.2.1. Transition rules. Most of the transition rules are given in Figure 4, and are stan-
dard. We concentrate our discussion on the semantics for prefixing; a slightly non-standard
treatment is required due to the addition of nondeterministic selections.

P(T )
τ
−→ P ′(T )

P(T ) ✷ Q(T )
τ
−→ P ′(T ) ✷ Q(T )

Q(T )
τ
−→ Q ′(T )

P(T ) ✷ Q(T )
τ
−→ P(T ) ✷ Q ′(T )

P(T )
a
−→ P ′(T ) [

a 6= τ
]

P(T ) ✷ Q(T )
a
−→ P ′(T )

Q(T )
a
−→ Q ′(T ) [

a 6= τ
]

P(T ) ✷ Q(T )
a
−→ Q ′(T )

P(T ) ⊓ Q(T )
τ
−→ P(T ) P(T ) ⊓ Q(T )

τ
−→ Q(T )

P(T ) ⊲ Q(T )
τ
−→ Q(T )

P(T )
τ
−→ P ′(T )

P(T ) ⊲ Q(T )
τ
−→ P ′(T ) ⊲ Q(T )

P(T )
a
−→ P ′(T ) [

a 6= τ
]

P(T ) ⊲ Q(T )
a
−→ P ′(T )

E (X ) = P

X (T )
τ
−→ P(T )

P(T )
a
−→ P ′(T )

ifTrue then P(T ) else Q(T )
a
−→ P ′(T )

Q(T )
a
−→ Q ′(T )

ifFalse then P(T ) else Q(T )
a
−→ Q ′(T )

Figure 4: Operational semantic rules for the choice operators and binding

Let α be a construct of the form c§1x1:X1 . . . §kxk :Xk . In order to define the prefix
transition rules for the language with nondeterministic selections added in, we proceed in
two steps. Firstly, we deal with constructs with no nondeterministic selections.

Prefix Rule 1. (Prefixes with no nondeterministic selections)

[
c.v1 . . . vk ∈ Comms(α) ∧ #$(α) = 0

]
α→ P(T )

c.v1...vk−−−−→ P(T )[vi/xi | i ∈ ?(α)]

where Comms(α) is the set of concrete events that α describes; formally:

Comms(c§1x1:X1 . . . §kxk :Xk ) =
{c.v1 . . . vk | ∀ i ∈ {1 . . k} • (§i = ? ∧ vi ∈ Xi) ∨ (§i = ! ∧ vi = xi)}.

The second step involves deriving transitions from prefix constructs with at least one
nondeterministic selection, producing invisible transitions that resolve the choices, and sub-
stituting the chosen values for the variables of the choices. For reasons that will become
clear later, we simultaneously resolve all nondeterministic selections over types other than t
before simultaneously resolving all nondeterministic selections over type t .

The following rule resolve all nondeterministic selections over types other than t , replac-
ing each variable xi ∈ $non-t(α) with an appropriate value vi ∈ Xi . (Here and subsequently
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we treat subscripting as functional application, i.e. vi is the result of applying function v to
index i .)

Prefix Rule 2a. (Prefixes with nondeterministic selections over non-t types)

dom(v) = $non-t(α) ∧ ∀ i ∈ $non-t(α) • vi ∈ Xi [
#$non-t(α) > 0

]
α→ P(T )

τ
−→

(
Replacenon-t$7→! (α)→ P(T )

)
[vi/xi | i ∈ $non-t(α)]

The following rule then resolve all nondeterministic selections over t , replacing each
variable xi ∈ $t(α) with an appropriate value vi ∈ T .

Prefix Rule 2b. (Prefixes with nondeterministic selections only over type t)

v ∈ $t (α)→ T
[
#$non-t = 0
∧ #$t (α) > 0

]

α→ P(T )
τ
−→

(
Replacet$7→!(α)→ P(T )

)
[vi/xi | i ∈ $t (α)]

The above two rules are consistent with defining α→ P(T ) as

⊓〈xi :Xi | i ∈ $non-t(α)〉 •
(
⊓〈xi :T | i ∈ $t (α)〉 • Replace$7→!(α)→ P(T )

)
,

where we use ⊓〈xi :Xi | i ∈ I〉 • P(xi1 , . . . , xin ) as shorthand for ⊓(xi1 , . . . , xin ) ∈ Xi1×· · ·×
Xin • P(xi1 , . . . , xin ).

Example 4.6. Recall our earlier running example:

P(t) = c$x :{a, b}$y :t?z :t → if y = z then d !x → STOP else STOP .

Figure 1 represents the operational semantics for P(T ) where T = {0, 1}. The first τ
transitions correspond to Prefix Rule 2a; the second τ transitions correspond to Prefix
Rule 2b; the visible transitions correspond to Prefix Rule 1.

4.2.2. Calculating denotational values. It is possible to calculate denotational values of pro-
cesses without resorting to operational semantics. Such a direct way, using denotational
semantics, is discussed in [Ros97, Chapter 8]. However, since we will often work with LTSs,
it makes sense to derive these values directly from transition graphs. Firstly, we need three
definitions (from [Ros97, Chapter 7]).

• Given two states P(T ) and Q(T ), and a sequence of events (visible or invisible) s =

〈ai | i ∈ {1 . . n}〉 for some n ≥ 0, we write P(T ) 7
s
−→ Q(T ) if there exist states

P0(T ) = P(T ),P1(T ), . . . ,Pn(T ) = Q(T ) such that for all i in {0 . . n − 1} we have that

Pi(T )
ai+1
−−→ Pi+1(T ).

• We write P(T )
tr
=⇒ Q(T ) if there is s such that P(T )

s
7−→ Q(T ) and tr is the restriction

of s to visible events.
• We say that Q(T ) refuses X , written Q(T ) ref X , if Q(T ) cannot perform τ (i.e. it’s

stable) and cannot perform any event from X : ∀ x ∈ X ∪ {τ} • Q(T ) 6
x
−−→ .

Using the above, we have

traces(P(T )) = {tr ∈ Σ∗ | ∃Q(T ) • P(T )
tr
=⇒ Q(T )},

failures(P(T )) = {(tr ,X ) ∈ Σ∗ × Σ | ∃Q(T ) • P(T )
tr
=⇒ Q(T ) ∧ Q(T ) ref X }.
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4.3. Semi-Symbolic Operational Semantics. Symbolic representation of models is of-
ten used in model checking (see e.g. [McM92, BCM+92]). In most cases the approach taken
is to create a single, compact structure that represents the behaviour of multiple instances
of a given system. The specification check is then performed on the symbolic model in order
to deduce verification results for all the concretisations this model corresponds to.

In this section we present a symbolic operational semantics for CSP. Its aim, however,
is not to be used to perform abstract refinement checking of processes. Given a process
syntax Proc(t), it generates a single structure, which acts as a bridge between the different
processes obtained from Proc(t) by substituting different concrete values for the parameter t .
This will allow us, in Section 6, to use known behaviours of a given instance of the process
to deduce facts about the behaviours of other instances of the same process definition. In
our work we will apply this operational semantics only to specification processes.

One of the main characteristics of the symbolic operational semantics defined in this
section is that only the parts of systems that involve type t are left in their symbolic
form. All other components are instantiated in a way similar to that used in the standard
operational semantics (Section 4.2). Therefore, the labels of transitions may contain some
symbolic parts and some concrete parts. This is why we call any resulting transition graph
a semi-symbolic labelled transition system (SSLTS ), and call this operational semantics
Semi-Symbolic Operational Semantics (SSOS ).

Throughout this section we assume that all processes satisfy Seq.

4.3.1. Symbolic transitions. In order to be able to tell symbolic and standard transitions

apart, the symbolic transition relation is denoted by −→s , i.e. P(t)
α
−→s Q(t) denotes that

there is an α-labelled transition from symbolic state P(t) to symbolic state Q(t).
We distinguish the following three types of symbolic transitions.

Internal: The internal symbolic transitions, labelled τ , are in a direct correspondence with
the standard internal transitions.

Visible: Visible symbolic transitions are similar to standard visible transitions. The main
difference is that while the labels of standard visible transitions contain no input symbols
and no variables, labels of visible symbolic transitions may contain nondeterministic
selections of type t (e.g. $x :t), deterministic inputs of type t (e.g. ?x :t), outputs of type
t (e.g. !x , where x is a variable of type t), or outputs of non-t parts (e.g. !v where v is a
value not of type t).

Formally, each visible symbolic transition is labelled with a visible symbolic event, a
construct of the form c§1x1:X1 . . . §kxk :Xk , where
• c is a channel name,
• §i ∈ {$, ?, !} is an input/output symbol,
• xi is a variable of type t or a value of type other than t ; it can be a value only if it is
immediately preceded by the output symbol !,
• Xi is t if and only if the preceding input/output symbol, §i , is either $ or ?; otherwise
it is null .

For example, the process c!a?x :t$y :t → STOP has an initial symbolic transition with
label c!a?x :t$y :t . We let V isible denote the set of all visible symbolic events.

Conditional: Since variables of type t are not instantiated within SSLTSs, but left in their
symbolic form, boolean conditions that contain such variables cannot, in general, be
evaluated to either True or False at the time of generating a symbolic transition graph.
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Hence, in order to deal with processes with such conditional choices involving variables
of type t , we introduce conditional symbolic transitions. Each such transition is labelled
with a conditional symbolic event, a boolean expression obtained from the guard of a
conditional choice on t or its negation. For example, the syntax “if x = y then P else Q”
gives raise to the conditional symbolic events “x = y” and “¬x = y”. We let Cond
denote the set of conditional symbolic events. Without loss of generality, we assume that
the process syntax contains no trivial condition such as “x = x”.

Remark 4.7. If ǫ is a visible symbolic event, then $non-t(ǫ) = ?non-t(ǫ) = {}.

We will usually use α and its derivatives (α′, α1, etc.) to denote labels whose kind is
unknown or indifferent and ǫ and its derivatives (ǫ′, ǫ1, etc.) to denote visible symbolic
events.

4.3.2. Transitions rules. We define the Semi-Symbolic Operational Semantics using the in-
ference rules below. Recall that we are considering only processes that satisfy Seq; therefore,
we only provide transition rules for operators that the condition allows.

We begin with prefixing. Let α be a construct of the form c§1x1:X1 . . . §kxk :Xk . There
are two transition rules for prefix. The first one defines the initial symbolic events of
α→ P(t) in the case when α contains no nondeterministic selections over types other than t .
It is similar to Prefix Rule 1 from the standard operational semantics (see Section 4.2.1),
except that variables of type t are left in their symbolic form when a transition label is
obtained from α, so only deterministic selections over types other than t are resolved.

Symbolic Prefix Rule 1.
[
ǫ = c§′1x

′
1:X

′
1 . . . §

′
kx

′
k :X

′
k ∈ Commsnon-t(α)

∧ #$non-t(α) = 0

]

α→ P(t)
ǫ
−→s P(t)[x ′

i/xi | i ∈ ?non-t(α)]

where Commsnon-t(α) is the set of events that α describes (under the assumption that α
contains no nondeterministic selections over types other than t), with the parts involving
type t left in their symbolic form; formally:

Commsnon-t(c§1x1:X1 . . . §kxk :Xk ) =
{c§′1x

′
1:X

′
1 . . . §

′
kx

′
k :X

′
k | ∀ i ∈ {1 . . k} •

§i = ? ∧ Xi 6= t ∧ §′i = ! ∧ x ′
i ∈ Xi ∧ X ′

i = null
∨ §i = §

′
i ∈ {$, ?} ∧ X ′

i = Xi = t ∧ x ′
i = xi

∨ §i = §
′
i = ! ∧ X ′

i = Xi ∧ x ′
i = xi}.

The second transition rule of prefix deals with prefixes that contain at least one non-
deterministic selection over a type other than t . It is similar to Prefix Rule 2a from the
standard operational semantics (see Section 4.2.1). All the nondeterministic selections over
types other than t are resolved simultaneously, the act of which generates a single τ tran-
sition. The values vi chosen are substituted for the variables xi of the selections.

Symbolic Prefix Rule 2.

dom(v) = $non-t(α) ∧ ∀ i ∈ $non-t(α) • vi ∈ Xi [
#$non-t(α) > 0

]
(α→ P(t))

τ
−→s

(
Replacenon-t$7→! (α)→ P(t)

)
[vi/xi | i ∈ $non-t(α)]



24 T. MAZUR AND G. LOWE

P(t)
α
−→s P

′(t) [
α ∈ Cond ∪ {τ}

]
P(t) ✷ Q(t)

α
−→s P

′(t) ✷ Q(t)

Q(t)
α
−→s Q

′(t) [
α ∈ Cond ∪ {τ}

]
P(t) ✷ Q(t)

α
−→s P(t) ✷ Q ′(t)

P(t)
ǫ
−→s P

′(t) [
ǫ ∈ Visible

]
P(t) ✷ Q(t)

ǫ
−→s P

′(t)

Q(t)
ǫ
−→s Q

′(t) [
ǫ ∈ Visible

]
P(t) ✷ Q(t)

ǫ
−→s Q

′(t)

P(t) ⊓ Q(t)
τ
−→s P(t) P(t) ⊓ Q(t)

τ
−→s Q(t)

P(t) ⊲ Q(t)
τ
−→s Q(t)

P(t)
α
−→s P

′(t) [
α ∈ Cond ∪ {τ}

]
P(t) ⊲ Q(t)

α
−→s P

′(t) ⊲ Q(t)

P(t)
ǫ
−→s P

′(t) [
ǫ ∈ Visible

]
P(t) ⊲ Q(t)

ǫ
−→s P

′(t)

E (X ) = P

X (t)
τ
−→s P(t)

Figure 5: Semi-symbolic operational semantics rules for external, internal and sliding choice,
and for binding

The transition rules for external, internal and sliding choice and for binding are very
similar to the standard rules, and are given in Figure 5. One exception is the presence of con-
ditional symbolic transitions, which need to be taken into considerations here. Conditional
choices must be resolved without any other influence on the overall state of the system,
which means that the members of Cond must be promoted by the ✷ and ⊲ operators in the
same way τ ’s are.

Clause (iv) of the definition of Seq (Definition 3.4) implies that guards of conditional
choices may not contain both variables of type t and variables of non-t types. The truth
of any boolean condition that contains no variables of type t (i.e. every conditional not in
Cond) can be fully evaluated at the time of SSLTS generation. Hence we have the following
rules, similar to the standard rules.

P(t)
α
−→s P

′(t)

ifTrue then P(t) else Q(t)
α
−→s P

′(t)

Q(t)
α
−→s Q

′(t)

ifFalse then P(t) else Q(t)
α
−→s Q

′(t)

Every conditional choice with a boolean condition cond that involves type t (i.e. every
conditional in Cond) may either evolve to the positive branch by following a conditional
transition labelled with cond or it may evolve to the negative branch by following a condi-
tional transition labelled with the negation of cond .

[
cond ∈ Cond

]

if cond then P(t) else Q(t)
cond
−−→s P(t)
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[
cond ∈ Cond

]

if cond then P(t) else Q(t)
¬cond
−−−→s Q(t)

Example 4.8. Recall our running example:

P(t) = c$x :{a, b}$y :t?z :t → if y = z then d !x → STOP else STOP .

Figure 2 represents the semi-symbolic operational semantics for P(t). The τ transitions
correspond to Symbolic Prefix Rule 2; the visible transitions correspond to Symbolic Prefix
Rule 1.

4.3.3. Symbolic traces. Symbolic traces will play a vital role in the analysis of behaviour
of process families based on SSOS. They are similar to ordinary CSP traces (Section 2.2),
except they contain visible symbolic events instead of ordinary visible events, and may
contain both conditional and τ symbolic events.

Formally, we define a symbolic trace as follows. Let S = (S , s0,L,−→s) be the SSLTS
obtained by applying the SSOS to process syntax Proc(t). Given two symbolic states P(t)

and Q(t) in S and a sequence of symbolic events σ = 〈αi | i ∈ {1 . .n}〉, we write P(t) 7
σ
−→s

Q(t) to mean that there exist symbolic states P0(t) = P(t),P1(t), . . . ,Pn(t) = Q(t) such

that for all i in {0 . . n − 1} Pi(t)
αi+1
−−→s Pi+1(t); σ is called a symbolic trace of P(t).

Therefore, a symbolic trace of Proc(t) is a sequence of labels of symbolic events that form
a path, starting at s0, through S. We let SymbolicT races(Proc(t)) denote the set of all
symbolic traces of Proc(t). Observe that symbolic traces are quite different from standard
traces as they may contain symbolic τ events and conditional symbolic events, while ordinary
traces contain only visible events. In Section 4.6 we will study the relationship between
symbolic and concrete traces in more detail. We will usually use σ, ρ and their derivatives
(σ′, ρ1, etc.) to denote symbolic traces.

In Section 6 we will work with symbolic traces that are “similar” in the sense that their
restrictions to conditional and visible symbolic events are identical.

Definition 4.9. Let σ and σ′ be two symbolic traces. Then σ and σ are non-τ equivalent,
written σ ≡non-τ σ′, if σ \ {τ} = σ′ \ {τ}.

4.4. Concrete Operational Semantics with Environments. So far we have presented
a concrete and a semi-symbolic operational semantics for CSP (see Section 4.2 and Sec-
tion 4.3, respectively). In this section we present a concrete operational semantics which
joins the two together. We call it Concrete Operational Semantics with Environments
(COSE ). The states of an SSLTS correspond to the control states of a given process. In
order to link the symbolic and concrete states (where the latter contain information not only
about program state, but also about data of type t) we need a mechanism for introducing
concrete values into symbolic states. We do this through the use of environments. The en-
vironments defined in this section are different from the environment with which processes
communicate, or the global map E of identifiers to process definitions that we introduced in
Section 2.1. Intuitively, environments map free variables within process syntaxes to concrete
values that were previously bound to such variables through inputs.

Definition 4.10. Let Env(t) =̂ V ar 7→ t . Then an environment is a partial function
Γ ∈ Env(T ) for some instantiation T of type t .
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For later convenience, we adopt the notational convention that for all v in V alue,
Γ(v) = v . We lift the application of environments to various structures that we use (con-
structs, processes, sets, relations, etc.) in the natural way: if X (T ) is such a structure and
Γ is in Env(T ), then Γ(X (T )) is a structure like X (T ) but with every free variable x of
type t replaced by Γ(x ) (assuming x is in dom(Γ)). In particular, given a process definition
P(t) we define the syntactic substitution

P(t)[Γ] =̂ P(t)[Γ(x )/x | x ∈ dom(Γ)].

Note that for all environments Γ, all symbolic events α, and † ∈ {t ,non-t}, we have
that $†(Γ(α)) = $†(α) and ?†(Γ(α)) = ?†(α), which means that $(Γ(α)) = $(α) and
?(Γ(α)) = ?(α).

Let T and T ′ be two instantiations of type t . Then, given a function f : T → T ′ and
an environment Γ in Env(T ), we define

f (Γ) =̂ {x 7→ f (v) | Γ(x ) = v}.

Observe that f (Γ) is an environment in Env(T ′).
The states of the LTS C that COSE generates from a given process syntax Proc(t) are

configurations (P(t),Γ,T ), where:

• P(t) is a symbolic state, equal to or slightly modified from a state of the SSLTS S of
Proc(t),
• Γ is an environment in Env(T ), and
• T is a concrete instantiation of type t .

Note that the inclusion of the type instantiation as the third element of a configura-
tion means that each choice of T gives rise to a different LTS. Whenever the concrete
type T is clear from the context or indifferent, we omit it from the configurations and use
pairs (P(t),Γ).

The initial state of C is defined to be the configuration (P0(t), {},T ), where P0(t) is
the initial state of S; we sometimes abbreviate this as P0(T ). To emphasise the fact that
COSE is a concrete operational semantics we denote the transition relation using the same
symbol (−→) that we used in Section 4.2.

We treat two configurations as identical if they describe exactly the same process.
Formally, (P(t),Γ,T ) = (P ′(t),Γ′,T ′) if and only if P(t)[Γ] ≡α P ′(t)[Γ′] and T = T ′, where
≡α denotes operational semantics alpha-equivalence, i.e. equality of operational semantics
modulo renaming of bound variables.

Remark 4.11. Observe that5 P(t)[Γ] = P(t)[FV (P(t)) ⊳ Γ] for all symbolic states P(t)
and all environments Γ, where FV (P(t)) denotes the free variables of P(t). Therefore, con-
figurations (P(t),Γ,T ) and (P(t), FV (P(t))⊳Γ,T ) are identical. From now on we always
assume environment minimality within configurations, which we achieve by restricting the
environment Γ of every configuration (P(t),Γ,T ) to the free variables of P(t).

5S ⊳ Γ denotes Γ restricted to domain S , i.e. {x 7→ y | (x 7→ y) ∈ Γ ∧ x ∈ S}.
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4.4.1. Translation rules. We present the specification of COSE using translation rules that
translate transitions within SSLTSs into corresponding COSE transitions. Let T be a fixed
instantiation of the distinguished type parameter t .

Given a symbolic state P(t), we let Q(t) = Replacet$7→!(c,P(t)) be a symbolic state
like P(t), except every transition from P(t) labelled with a visible symbolic transition ǫ on
channel c is replaced with an identical transition in Q(t), but labelled with Replacet$7→!(ǫ)

instead, i.e. if P(t)
ǫ
−→s P ′(t) then Q(t)

Replacet
$7→!

(ǫ)
−−−−−−−→ P ′(t). We will see later (Proposi-

tion 5.5) that all such transitions over c result from the same construct.
Visible symbolic events that contain a nondeterministic selection over type t are trans-

lated into two concrete events: a τ that resolves the nondeterminism; and a subsequent
visible event. The first translation rule shows how the τ is produced; for each nondetermin-
istically chosen variable xi in the symbolic event, the environment is updated to map xi to
some value vi , and the nondeterministic choice in the subsequent symbolic event is replaced
by an output (to be dealt with later).

Translation Rule 1.

P(t)
ǫ
−→s Q(t)

ǫ = c§1x1:X1 . . . §kxk :Xk ∧ v ∈ $t(ǫ)→ T [
#$t(ǫ) > 0

]
.

(P(t),Γ,T )
τ
−→ (Replacet$7→!(c,P(t)),Γ ⊕ {xi 7→ vi | i ∈ $t(ǫ)},T )

Clause (v) of the definition of Seq (Definition 3.4) implies that there is never a clash between
a nondeterministic input variable of type t from one branch of an external or sliding choice
and a free variable present in the other branch. Without this assumption, Translation
Rule 1 could produce wrong answers, as demonstrated by the following example.

Example 4.12. Let Proc(t) = c1?x :t → (c2$x :t?y :t → STOP ✷ c1!x → STOP ) and
T = {0, 1}. Then, after performing c1.0 and a τ resolving the nondeterministic selection by
choosing x = 1, the configuration (Proc(t), {},T ) evolves to (c2!x?y :t → STOP ✷ c1!x →
STOP, {x 7→ 1},T ). Then, by Translation Rule 2 (see below), the event c1.1 is available,
which clearly should not be the case.

Next, we show how visible symbolic events that contain no nondeterministic selections
of type t get instantiated into concrete visible events by substituting values from the envi-
ronment for all the outputs of type t and choosing the values of all deterministic inputs of
type t .

Translation Rule 2.

P(t)
ǫ
−→s Q(t)

ǫ = c§1x1:X1 . . . §kxk :Xk

dom(v) = {1 . . k} ∧ (∀ i ∈ ?t(ǫ) • vi ∈ T ) ∧ ∀ i ∈ !(ǫ) • vi = Γ(xi ) [
#$t(ǫ) = 0

]
.

(P(t),Γ,T )
c.v1...vk−−−−→ (Q(t),Γ⊕ {xi 7→ vi | i ∈ ?t(ǫ)},T )

Example 4.13. Recall our running example

P(t) = c$x :{a, b}$y :t?z :t → if y = z then d !x → STOP else STOP
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whose SSOS semantics appear in Figure 2. In particular, consider the transition

c!a$y :t?z :t → Qa,y ,z
c!a$y :t?z :t
−−−−−−→s Qa,y ,z . (4.1)

Translation Rule 1 implies that configuration (c!a$y :t?z :t → Qa,y ,z , {},T ), with T =
{0, 1}, can do a τ and become either of

conf0 = (Replacet$7→!(c, c!a$y :t?z :t → Qa,y ,z ), {y 7→ 0},T ),

conf1 = (Replacet$7→!(c, c!a$y :t?z :t → Qa,y ,z ), {y 7→ 1},T ).

Now, from (4.1) and the definition of Replace:

Replacet$7→!(c, c!a$y :t?z :t → Qa,y ,z )
c!a!y?z :t
−−−−−→s Qa,y ,z .

Hence, using Translation Rule 2, we can deduce

conf0
c.a.0.0
−−−−→ (Qa,y ,z , {y 7→ 0, z 7→ 0},T ),

conf0
c.a.0.1
−−−−→ (Qa,y ,z , {y 7→ 0, z 7→ 1},T );

and similarly for conf1. (In Figure 3, the process Replacet$7→!(c, c!a$y :t?z :t → Qa,y ,z ) is
written as c!a!y :t?z :t → Qa,y ,z , for convenience.)

Remark 4.14. We can combine Translation Rules 1 and 2 to deduce that if

P(t)
ǫ
−→s Q(t) ∧ ǫ = c§1x1:X1 . . . §kxk :Xk ∧

dom(v) = {1 . . k} ∧ (∀ i ∈ $t (ǫ) ∪ ?t(ǫ) • vi ∈ T ) ∧ ∀ i ∈ !(ǫ) • vi = Γ(xi ),

then

(P(t),Γ,T ) [
τ
−→]

c.v1...vk−−−−→ (Q(t),Γ⊕ {xi 7→ vi | i ∈ $t (ǫ) ∪ ?t(ǫ)},T ),

where [
τ
−→] denotes an optional τ transition, present if and only if #$t(ǫ) > 0.

The next translation rule says that when a concrete LTS is obtained from an SSLTS,
symbolic τ transitions are turned into standard τ transitions.

Translation Rule 3.

P(t)
τ
−→s Q(t)

(P(t),Γ,T )
τ
−→ (Q(t),Γ,T )

The final translation rule shows how conditional symbolic transitions disappear when
an SSLTS is instantiated into a concrete LTS using COSE; the labels are evaluated in the
environment, affecting the availability of the subsequent transitions.

Translation Rule 4.

P(t)
cond
−−→s Q(t)

(Q(t),Γ,T )
a
−→ (R(t),Γ′,T ) [

cond ∈ Cond ∧ [[cond ]]Γ
]
,

(P(t),Γ,T )
a
−→ (R(t),Γ′,T )

where [[cond ]]Γ denotes the truth value of the proposition obtained from cond by substi-
tuting all free variables of type t with their corresponding values contained within the
environment Γ. Note that if (Q(t),Γ,T ) is deadlocked, then so is (P(t),Γ,T ).
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Example 4.15. Recall our running example

P(t) = c$x :{a, b}$y :t?z :t → if y = z then d !x → STOP else STOP

whose SSOS semantics appear in Figure 2. The COSE semantics is given in Figure 3.
The initial τ -transitions follow from Translation Rule 3. The subsequent τ -transitions and
transitions with events on c were explained in Example 4.13. The left-hand final transition
with event d .a follows from Translation Rule 4, noting that [[y = z ]]{y 7→0,z 7→0}, and using

the fact that (d !a → STOP , {y 7→ 0, z 7→ 0},T )
d .a
−→ STOP , by Translation Rule 2; other

transitions on d follow similarly.

4.5. Congruence of COSE to the standard operational semantics. We will often
work with concrete LTSs generated by COSE rather than by the standard operational
semantics. It is therefore important that the two operational semantics are congruent so
that any denotational values extracted from them are identical. The following theorem
proves such a congruence.

Theorem 4.16. (Congruence of COSE to the standard operational semantics.)
Suppose that Proc(t) is some process syntax that satisfies Seq. Let L1 and L2 be the LTSs
generated from Proc(t), for some fixed instantiation T of type t, using COSE and the
standard operational semantics, respectively. Then L1 and L2 are strongly bisimilar.

Proof sketch. By showing that

B =
{
((P(t),Γ),P(T )[Γ]) | (P(t),Γ) ∈ L̂1 ∧ P(T )[Γ] ∈ L̂2

}
.

is a strong bisimulation relation between L̂1 and L̂2 (the states of L1 and L2), using struc-
tural induction on P(t).

One implication of Theorem 4.16 is the fact that we can express denotational values of
configurations of LTSs obtained using COSE in terms of the denotational values calculated
from states of LTSs generated using standard operational semantics; so:

traces(Proc(t),Γ,T ) = traces(Proc(T )[Γ]),

failures(Proc(t),Γ,T ) = failures(Proc(T )[Γ]),

for every process syntax Proc(t), instantiation T of t and environment Γ in Env(T ).

4.6. Relating symbolic and concrete traces. In this section we define what it means for
a concrete trace to be an instantiation of a symbolic trace. We do this by using a ternary
relation generates that links symbolic traces (Section 4.3.3), environments and concrete
traces. The environments are included in the relation, since, in order to relate a symbolic
trace to a concrete trace, concrete values need to be substituted for the free variables that
can occur within the symbolic trace; these concrete values come from environments.

Given a process syntax Proc(t) and an instantiation T of type t , we define a rela-
tion generates written using infix notation: σ generatesΓ tr , for a symbolic trace σ, an
environment Γ and a concrete trace tr :

(i) 〈〉 generatesΓ 〈〉,
(ii) σ generatesΓ tr ⇔ 〈τ 〉̂ σ generatesΓ tr ,
(iii) σ generatesΓ tr ∧ [[cond ]]Γ ⇔ 〈cond 〉̂ σ generatesΓ tr ,
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(iv) e ∈ InstsΓ(ǫ) ∧ σ generatesΓ⊕Match(ǫ,e) tr ⇔ 〈ǫ〉̂ σ generatesΓ 〈e 〉̂ tr ,

where InstsΓ(ǫ) gives all instantiations of ǫ consistent with Γ, and Match(ǫ, e) gives
the extension to the environment caused by instantiating ǫ with e; let ǫ be of the form
c§1x1:X1 . . . §kxk :Xk , and recall that, by Remark 4.7, $non-t(ǫ) = ?non-t(ǫ) = {}:

InstsΓ(ǫ) = {c.v1 . . . vk | ∀ i ∈ $t (ǫ) ∪ ?t(ǫ) • vi ∈ T ∧ ∀ i ∈ !(ǫ) • vi = Γ(xi)},

Match(ǫ, c.v1 . . . vk ) = {xi 7→ vi | i ∈ $t(ǫ) ∪ ?t(ǫ)}.

Observe that rule (ii) indicates that we essentially ignore any τ ’s present in the symbolic
traces. For brevity we write σ, σ′ generatesΓ tr to mean that both σ generatesΓ tr and
σ′ generatesΓ tr .

Using the above definition we can describe what it means for a (concrete) visible event
to match a visible symbolic event. In the following definition we treat two concrete events
as essentially different if they are available after different traces.

Definition 4.17. A visible event e that is available in Proc(T ) immediately after a trace tr
matches a visible symbolic event ǫ if there exists a symbolic trace σ such that σ 〈̂ǫ〉 is in
SymbolicT races(Proc(t)) and σ 〈̂ǫ〉 generates{} tr 〈̂e〉.

5. Regularity results

In this section we present a series of regularity results that are consequences of the Seq-
Norm condition. These results show that specifications exhibit certain clarity in their
behaviour. Our main findings can be summarised as follows:

(1) There is no ambiguity about what configuration a process reaches after performing a
sequence of concrete events that does not end with an internal event (Proposition 5.3);

(2) There is no ambiguity which construct gives rise to a given concrete event that is
available after a given trace (Proposition 5.5); and

(3) Every event available in a process syntax instantiated with a collapsed type is also an
event available in the same process syntax instantiated with the uncollapsed type, and
the target configurations are the same except for the underlying type (Proposition 5.7).

Regularity results will play a vital role in proving the main theorems of the type reduction
theory.

In Section 4.6 we defined what it means for a concrete visible event to match a visible
symbolic event. In the following sections we will often need to relate concrete and sym-
bolic visible events and syntax constructs that give rise to them. The following definition
establishes such relationships formally.

Definition 5.1. Given a sequential process syntax Proc(t), let α1, α2, . . . be the prefix
constructs of Proc(t) (where two prefix constructs are regarded as different if they appear
in different places in Proc(t)). Let T be a given instantiation of type t . Then, for every
pair of a trace tr and a visible event e such that tr 〈̂e〉 is a trace of Proc(T ), there must be
at least one αi that gives rise to e immediately after tr . We then say that αi is matched
by e (or that e matches αi ). We define visible symbolic events to match syntax constructs
in an analogous way.

Example 5.2. Let

P(t) = c?x :t → STOP ✷ c$x :t → c.x → STOP.



A TYPE REDUCTION THEORY FOR SYSTEMS WITH REPLICATED COMPONENTS 31

Then, for T = {0, 1}, given trace tr = 〈〉, the event e = c.1 matches both the constructs
c?x :t and c$x :t , but not c.x (as c.x may give rise to c.1, but only after the trace 〈c.1〉 and
not the empty trace).

Note that the process in the above example does not satisfy SeqNorm. We will show (in
Proposition 5.5) that for processes that do satisfy SeqNorm, each event (after a given
trace) matches a unique construct.

An important property of normality is the lack of ambiguity about what state a process
reaches after performing a sequence of visible concrete events not followed by a τ . The
following proposition establishes this formally.

Proposition 5.3. Suppose that Proc(t) satisfies SeqNorm. Suppose further that

(Proc(t),Γinit )
s
7−→ (P(t),Γ) and (Proc(t),Γinit )

s′
7−→ (Q(t),Γ′),

where s, s ′ do not end with a τ , and s \ τ = s ′ \ τ . Then P(t) = Q(t) and Γ = Γ′.

Further, SeqNorm implies that every two symbolic traces that give rise to the same
concrete trace, and are either the empty symbolic trace or both end in a visible symbolic
event, are identical up to internal actions.

Proposition 5.4. Suppose that Proc(t) satisfies SeqNorm. Then, if σ, σ′ are symbolic
traces of Proc(t) such that σ generatesΓ tr and σ′ generatesΓ tr , and either σ = σ′ = 〈〉
or both σ and σ′ end in a visible symbolic event, then σ ≡non-τ σ′.

For a process that satisfies SeqNorm, for each visible event that is performed after a
given trace, there is never any ambiguity what construct this event matches.

Proposition 5.5. Suppose that Proc(t) satisfies SeqNorm. Then, if tr 〈̂e〉 is a trace
of (Proc(t),Γ,T ) for some type T and some environment Γ, and e matches constructs α
and α′, then α = α′.

The following lemma compares corresponding constructs in two processes, one of which
refines the other.

Lemma 5.6. Suppose that P(t) and Q(t) satisfy SeqNorm. Let T be an instantiation
of type t. Suppose that (Q(t),Γinit ,T ) ⊑T (P(t),Γinit ,T ). Then for all visible symbolic
events ǫ, ǫ′, symbolic traces σ, σ′ and traces tr such that:

(i) tr 〈̂e〉 ∈ traces(P(t),Γinit ,T );
(ii) σ 〈̂ǫ〉 ∈ SymbolicT races(P (t)) generatesΓinit

tr̂ 〈e〉; and
(iii) σ ′̂ 〈ǫ′〉 ∈ SymbolicT races(Q(t)) generatesΓinit

tr̂ 〈e〉;

we have that !(ǫ′) ⊆ !(ǫ).

The following proposition and its corollary form our final consequence of SeqNorm.
The proposition says that every event available in a process syntax instantiated with some
type is also an event available in the same process syntax instantiated with a larger type.
In addition, the target configurations are the same (except for the underlying type). Corol-
lary 5.8 then extends this observation to traces.

Proposition 5.7. Suppose that Proc(t) satisfies SeqNorm. Let T and T̂ be instantiations

of type t such that T̂ ⊆ T and let Γ be an environment in Env(T ). Then, if

(Proc(t),Γ, T̂ )
a
−→ (Proc′(t),Γ′, T̂ ) (5.1)
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then

(Proc(t),Γ,T )
a
−→ (Proc′(t),Γ′,T ).

Corollary 5.8. Suppose that Proc(t) satisfies SeqNorm. Let T and T̂ be instantiations

of type T such that T̂ ⊆ T. Then, if

(Proc(t),Γ, T̂ )
tr
=⇒ (Proc′(t),Γ′, T̂ ),

then

(Proc(t),Γ,T )
tr
=⇒ (Proc′(t),Γ′,T ).

6. Type reduction theory

Recall that given an instantiation T of type t and a non-negative integer B , we defined
(Definition 1.1) a B-collapsing function φ to be a function from T to {0 . . B} such that

• φ(v) = v for all v in {0 . . B − 1};
• φ(v) = B for all v in {B . .#T − 1}.

In other words, φ replaces all but a fixed finite number of members of t by a single value.
Whenever B is clear from context, we call φ a collapsing function.

As described in the Introduction, our aim is develop a type reduction theory, to show
that

Spec(T̂ ) ⊑ φ(Impl(T )) implies that Spec(T ) ⊑ Impl(T ),

for all T such that T ⊇ T̂ , where φ : T → T̂ is a collapsing function

(6.1)

The use of parameters in specifications and/or implementations leads to the problem
of having to decide infinitely many refinements in order to deduce the answer to a verifica-
tion problem. Our technique of using collapsing functions treats some values of type t as
essentially identical.

Our two main results, Theorem 6.5 and Theorem 6.13, prove (6.1) in the traces and
stable failures models, respectively. They require suitable assumptions on Spec (including

SeqNorm) and Impl (that it is symmetric in t); they give a lower bound on the size of T̂
based on the syntax of Spec.

A significant part of this section is devoted to showing how certain behaviours (either
in the traces or the stable failures model) of specifications instantiated with uncollapsed
types can be inferred from known behaviours of the same specification instantiated with
reduced types (justifying the name of our theory).

We present and prove type reduction theorems for both the traces and the stable fail-
ures models in Sections 6.1 and 6.2, respectively. Proofs of some subsidiary results are in
Appendix B.

First, we lift φ to various settings. Given a boolean condition cond , we define φ(cond)
to be like cond , except that every value or variable x of type t is replaced by φ(x ). We
adopt the notational convention that if x is a value or a variable of a type other than t or
it is a type other than t , then φ(x ) = x .

We lift the application of φ to other common objects used in this paper in the natural
way (see Table 1).
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Object Application Meaning

event φ(c.v1 . . . vk ) c.φ(v1) . . . φ(vk )

set/type φ(S ) {φ(x ) | x ∈ S}

trace φ(tr) 〈φ(e) | e ← tr〉

environment φ(Γ) {x 7→ φ(v) | Γ(x ) = v}

process φ(P) P [[φ(e)/e | e ∈ Σ]]

Table 1: Lifting the definition of φ.

Finally, given an instantiation T of type t , a B -collapsing function φ, and a value v in
{0 . . B}, we define

φ−1(v) =

{
{v ′ ∈ T | φ(v ′) = v}, if v ∈ {0 . . B},
{v}, otherwise.

Also, given T , we lift the definition of φ−1 to events:

φ−1(c.v1 . . . vk ) = {c.v ′1 . . . v
′
k | ∀ i ∈ {1 . . k} • v

′
i ∈ φ−1(vi)},

and to sets of events:

φ−1(S ) =
⋃
{φ−1(e) | e ∈ S}.

6.1. Threshold results for the traces model. In this section we present the main results
of our type reduction theory for use within the traces model.

We begin with a proposition that establishes that, provided Proc(t) satisfies SeqNorm
and RevPosConjEqTT and given a collapsing function φ, if

• tr is a trace of (Proc(t),Γinit ,T ) (for some sufficiently large T ),
• φ(tr )̂ 〈e〉 is a trace of (Proc(t), φ(Γinit ),T ), and
• e does not have outputs of type t from outside of {0 . . B − 1},

then every event that is like e, except with arbitrary values of inputs of type t , is in
initials(Proc(t),Γinit ,T )/tr). In both the statement and the proof of this proposition we
take the underlying type of all configurations to be the fixed type T .

Proposition 6.1. Let B be some natural number. Suppose that

• Proc(t) satisfies SeqNorm and RevPosConjEqTT;
• φ is a B-collapsing function; and
• T is an instantiation of type t of size at least B + 1.

Suppose further that

(i) tr ∈ traces(Proc(t),Γinit );
(ii) φ(tr )̂ 〈e〉 ∈ traces(Proc(t), φ(Γinit )) with e = c.v1 . . . vk ;
(iii) σ 〈̂ǫ〉 ∈ SymbolicT races(Proc(t)) and σ 〈̂ǫ〉 generatesφ(Γinit) φ(tr )̂ 〈e〉, where ǫ is a

visible symbolic event of the form c§1x1:X1 . . . §kxk :Xk ; and
(iv) ∀ i ∈ !t(ǫ) • vi ∈ {0 . . B − 1}.
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Then6

∀ v ′ ∈ {1 . . k} → V alue | (∀ i ∈ $t (ǫ) ∪ ?t(ǫ) • v ′i ∈ T ) ∧ (∀ i ∈ !(ǫ) • v ′i = vi) •
tr 〈̂c.v ′1 . . . v

′
k 〉 ∈ traces(Proc(t),Γinit ).

Proof sketch. By a structural induction on Proc(t). The details are in Appendix B.1.

The following example illustrates some aspects of Proposition 6.1.

Example 6.2. Let

Proc(t) = c!x$y :t?z :t → if y = z then d !x → STOP else d$w :t → STOP .

Note in particular that Proc(t) satisfies RevPosConjEqTT. Let T = {0, 1, 2}, B = 1 and
let φ be the appropriate 1-collapsing function. We consider four instances.

(1) Let Γinit(x ) = 0, tr = 〈〉, e = c.0.1.2, σ = 〈〉 and ǫ = c!x$y :t?z :t . It is easy to check
that conditions (i)–(iv) of the proposition hold. The proposition then implies

∀ v ′2, v
′
3 ∈ T • 〈c.0.v ′2.v

′
3〉 ∈ traces(Proc(t),Γinit ),

which is clearly true.
(2) Now suppose Γinit(x ) = 2 and again tr = 〈〉 and ǫ = c!x$y :t?z :t . Then condition (ii)

implies e is of the form c.1.v2.v3 for some v2, v3. But now condition (iv) does not hold,
so no conclusion can be reached from the proposition; and indeed traces(Proc(t),Γinit )
does not include traces of the form 〈c.1.v ′2.v

′
3〉. Condition (iv) ensures that all the values

vi for i ∈ !(ǫ) are not collapsed within φ(tr )̂ 〈e〉.
(3) Now consider Γinit(x ) = 0, tr = 〈c.0.0.2〉, so φ(tr) = 〈c.0.0.1〉, and e = d .2, σ =
〈c!x$y :t?z :t ,¬y = z 〉 and ǫ = d$w :t . It is easy to check that conditions (i)–(iv) of the
proposition hold. The proposition then implies

∀ v ′1 ∈ T • 〈c.0.0.2, d .v ′1〉 ∈ traces(Proc(t),Γinit ),

which is clearly true, since the process reaches the “else” branch after 〈c.0.0.2〉.
(4) Now suppose tr = 〈c.0.1.2〉, so φ(tr) = 〈c.0.1.1〉, and e = d .0, σ = 〈c!x$y :t?z :t , y = z 〉

and ǫ = d !x . It is easy to check that conditions (i)–(iv) of the proposition hold. The
proposition then implies

〈c.0.1.2, d .0〉 ∈ traces(Proc(t),Γinit ),

which is clearly true. This case shows the importance of RevPosConjEqTT: the
“else” branch must be able to perform (at least) the same events as the “then” branch.

We will need the following definition in order to define our threshold.

Definition 6.3. We say that visible symbolic events ǫ and ǫ′ are non-t equivalent, written
ǫ ≡non-t ǫ

′, if they agree on all the fields not of type t . For example, c!a?t :T ≡non-t c!a$t :T ,
but c!a?t :T 6≡non-t c!b?t :T where a and b are not of type t .

We lift the relation to sequences of visible symbolic events by pointwise application.
Finally we say that symbolic traces σ and σ′ are non-t equivalent, written σ ≡non-t σ

′,
if their restrictions to visible symbolic events are non-t equivalent.

The following function returns the indices of all output variables of type t in all con-
structs of P(t) corresponding to a symbolic trace that is non-t equivalent to σ 〈̂ǫ〉.

!t (σ, ǫ)(P(t)) =
⋃
{!t (ǫ′) | σ ′̂ 〈ǫ′〉 ∈ SymbolicT races(P (t)) ∧ σ 〈̂ǫ〉 ≡non-t σ

′̂ 〈ǫ′〉}.

6The notation ∀ x ∈ X | P(x) • Q(x) is equivalent to ∀ x ∈ X • P(x) ⇒ Q(x).
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Example 6.4. Consider

P(t) = in?x :t?y :t?z :t →
if x = y then (if x = z then STOP else out !x$w :t → STOP)
else (if x = z then out$w :t !y → STOP else out$v :t$w :t → STOP).

Then !t(〈in?x :t?y :t?z :t ,¬x = y ,¬x = z 〉, out$v :t$w :t)(P(t)) = {1, 2}, since all the con-
structs using out can be reached on a trace that is non-t equivalent to 〈in?x :t?y :t?z :t ,
¬x = y ,¬x = z , out$v :t$w :t〉.

Now consider

Q(t) = in?x :{a, b}?i :t → if x = a then c?j :t !i → STOP else c!i?j :t → STOP ,

where a and b are not of type t . Then !t(〈in!a?i :t〉, c?j :t !i)(Q(t)) = {2}, since the construct
in the else branch cannot be reached after a symbolic trace that is non-t equivalent to
〈in!a?i :t〉.

We now present the first of our two main results of this paper. The following theorem
establishes a threshold ThreshT such that if Spec(t) and Impl(t) fulfil certain requirements,
then, for all B ≥ ThreshT, if φ is a B -collapsing function, then for all n ≥ B

if Spec({0 . . B}) ⊑T φ(Impl({0 . . n}), then Spec({0 . . n}) ⊑T Impl({0 . . n}).

In Section 6.2 we will present an analogous result for the stable failures model.

Theorem 6.5 (Extendibility of traces refinement of systems with replicated components).
Suppose that

(i) Spec(t) satisfies SeqNorm and RevPosConjEqTT;
(ii) Impl(t) satisfies TypeSym;
(iii) ThreshT is the maximum number of output positions reachable on non-t equivalent

symbolic traces of Spec(t), i.e.

ThreshT = max{#!t(σ, ǫ)(Spec(t)) | σ 〈̂ǫ〉 ∈ SymbolicT races(Spec(t))};

(iv) B ≥ ThreshT;
(v) T is an instantiation of type t of size at least B + 1; and
(vi) φ is a B-collapsing function.

Then if Spec(φ(T )) ⊑T φ(Impl(T )), then Spec(T ) ⊑T Impl(T ).

Proof. Suppose that Spec(φ(T )) ⊑T φ(Impl(T )) and assume for a contradiction that
Spec(T ) 6⊑T Impl(T ). Consider a shortest trace that demonstrates this non-refinement;
this trace is necessarily non-empty, so of the form tr 〈̂e〉 such that

tr 〈̂e〉 ∈ traces(Impl(T )),

tr ∈ traces(Spec(T )),

tr 〈̂e〉 6∈ traces(Spec(T )).

Suppose that e = c.v1 . . . vk . Suppose tr is generated by symbolic trace σ1 of Spec(t). We
can construct a symbolic event ǫ1 = c§x1:X1 . . . §xk :Xk to generate e (although σ1 〈̂ǫ1〉 might
not be a symbolic trace of Spec(t)): if vi is of type t we set §xi :Xi to $xi :t ; otherwise we
set §xi :Xi to !vi :null .

By assumptions (iii) and (iv), #!t(σ1, ǫ1)(Spec(t)) ≤ B , so let π : T → T be a bijection
that maps {vi | i ∈ !t(σ1, ǫ1)(Spec(t))} into {0 . .B − 1}. By Corollary 3.10 Spec(t) satisfies
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TypeSym, and by assumption Impl(t) satisfies TypeSym, so by Remark 3.13 we have
that

π(tr )̂ 〈π(e)〉 ∈ traces(Impl(T )),

π(tr) ∈ traces(Spec(T )), (6.2)

π(tr )̂ 〈π(e)〉 6∈ traces(Spec(T )).

Hence,

φ(π(tr))̂ 〈φ(π(e))〉 ∈ traces(φ(Impl(T ))).

But Spec(φ(T )) ⊑T φ(Impl(T )), so

φ(π(tr))̂ 〈φ(π(e))〉 ∈ traces(Spec(φ(T ))).

However, by Corollary 5.8, Spec(T ) ⊑T Spec(φ(T )), so

φ(π(tr))̂ 〈φ(π(e))〉 ∈ traces(Spec(T )). (6.3)

We can now apply Proposition 6.1 to Spec(T ), with π(tr) in place of tr , and φ(π(e)) in
place of e: condition (i) is satisfied, by (6.2); condition (ii) is satisfied, by (6.3); condition (iii)
is satisfied by taking a suitable choice of σ to generate φ(π(tr)), and taking ǫ to be the sym-
bolic event that generates φ(π(e)); condition (iv) is satisfied since !t (ǫ) ⊆ !t(σ1, ǫ1)(Spec(t))
(since σ 〈̂ǫ〉 ≡non-t σ1 〈̂ǫ1〉), and by construction, all the corresponding fields of φ(π(e)) are
in {0 . . B − 1}. Considering the valuation v ′ such that π(e) = c.v ′1 . . . v

′
k then allows us to

deduce that

π(tr )̂ 〈π(e)〉 ∈ traces(Spec(T )).

This is a contradiction, which completes our proof.

Remark 6.6. For every verification problem, the value of ThreshT in Theorem 6.5 depends
only on the specification.

Example 6.7. Recall the process syntax P(t) from Example 6.4. We argued there that
!t(〈in?x :t?y :t?z :t ,¬x = y ,¬x = z 〉, out$v :t$w :t)(P(t)) = {1, 2}. Clearly !t (σ, ǫ)(P(t)) has
fewer elements for other values of σ and ǫ. Hence ThreshT = 2 in this case.

If Spec(t) contains no conditional choices, then we can obtain a simpler expression for
the threshold.

Proposition 6.8. If Spec(t) contains no conditional choices then

ThreshT ≤ max{#!t (α) | α is a construct of Spec(t)}.

The proof is in Appendix B, and shows that in this case there is a unique construct
that contributes towards the calculation of each !t (σ, ǫ)(Spec(t)).

If Spec(t) uses a conditional, then there may be two such constructs, but by Lemma 5.6,
!t(αthen) ⊇ !t(αelse), where αthen and αelse are the constructs in the “then” and “else”
branches, respectively; hence the above equality still holds. It’s only when Spec(t) contains
nested conditionals, as in Example 6.4, that one needs to consider multiple constructs
together.

Remark 6.9. For all specifications with a finite SSLTS, the value of ThreshT in Theo-
rem 6.13 can be calculated in a finite amount of time. All states that can be reached by
non-t equivalent traces need to be considered together; this can be performed by a process
similar to normalisation [Ros97, Appendix C].



A TYPE REDUCTION THEORY FOR SYSTEMS WITH REPLICATED COMPONENTS 37

Example 6.10. Recall the example from Section 2.3. Earlier, we explained how to use
counter abstraction techniques from [Maz10, ML11] to show

Spec(φ(T )) ⊑T φ(Impl(T )), for all instantiations T of t with #T ≥ 3,

where

Spec(t) = enterCS$i :t → leaveCS !i → Spec(t),

and where we took B = 1. We can now apply Theorem 6.5. It’s clear that condition (i)
holds. Condition (ii) holds from the discussion in Example 3.11. From condition (iii) we
obtain ThreshT = 1, essentially because Spec(t) contains a single “!”; hence condition (iv)
holds. Condition (v) gives a lower bound of 2 on the size of T , which is a weaker condition
than we have already imposed. Finally condition (vi) holds by construction. Hence we can
apply the theorem to deduce

Spec(T ) ⊑T Impl(T ), for all instantiations T of t with #T ≥ 3.

Smaller values of T can be verified directly.

In [ML11], we describe tool support, called TomCAT, for our counter abstraction tech-
niques. In particular, the tool checks the conditions of Theorem 6.5, and calculates the
threshold ThreshT. This part of the tool could easily be adapted to other abstraction
techniques that build on the type reduction theory of this paper.

6.2. Threshold results for the stable failures model. In this section we present type
reduction theory results analogous to those in Section 6.1, but extended to the stable failures
model.

We begin with a proposition that shows that, provided Proc(t) satisfies SeqNorm and
RevPosConjEqTF and given a collapsing function φ, if tr is a trace of (Proc(t),Γinit ,T )
(for some sufficiently large T ), (φ(tr),X ) is a failure of (Proc(t), φ(Γinit ),T ) and events in
initials(Proc(t),Γinit ,T )/tr do not have outputs of type t from outside {0 . . B − 1}, then
(tr ,X ) is a failure of (Proc(t),Γinit ,T ). In this proposition we assume that the underlying
type of all configurations is the fixed type T .

Proposition 6.11. Let B be some natural number. Suppose that

• Proc(t) satisfies SeqNorm and RevPosConjEqTF;
• φ is a B-collapsing function; and
• T is an instantiation of type t of size at least B + 1.

Suppose further that

(i) tr ∈ traces(Proc(t),Γinit );
(ii) (φ(tr),X ) ∈ failures(Proc(t), φ(Γinit )); and

(iii) if P is a configuration such that (Proc(t),Γinit )
tr
=⇒ P, then every output value of

type t of every event in initials(P) is in {0 . . B − 1}.

Then (tr ,X ) ∈ failures(Proc(t),Γinit ).

Proof sketch. By a structural induction on Proc(t). The details are in Appendix B.2.
The following example illustrates some aspects of Proposition 6.11.
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Example 6.12. Recall the following process from Example 6.2:

Proc(t) = c!x$y :t?z :t → if y = z then d !x → STOP else d$w :t → STOP .

Note in particular that Proc(t) satisfies RevPosConjEqTF. Let T = {0, 1, 2}, B = 1 and
let φ be the appropriate 1-collapsing function. We consider four instances.

(1) Let Γinit(x ) = 0, tr = 〈〉 and X = {|c|}−{|c.0.1|}. Condition (i) of the proposition clearly
holds. Condition (ii) holds, considering the case that the nondeterministic selection
picks y = 1. Condition (iii) holds since the only output value in an event after tr is the
value 0 for x . The proposition then implies (tr ,X ) ∈ failures(Proc(t),Γinit ), which is
clearly true, considering the case that the nondeterministic selection again picks y = 1.

(2) Now suppose Γinit(x ) = 2, tr = 〈〉 and X = {|c.2|}. Condition (i) clearly holds;
condition (ii) holds since the environment φ(Γinit) maps x to 1. However, condi-
tion (iii) does not hold, since the initial configuration can output 2 for x . And indeed
(tr ,X ) /∈ failures(Proc(t),Γinit ), since for some y ∈ T the event c.2.y .0 will be avail-
able. Condition (iii) ensures that the output values in initial events after tr are not
collapsed.

(3) Now consider Γinit(x ) = 0, tr = 〈c.0.0.2〉, so φ(tr) = 〈c.0.0.1〉, and X = {|c|} ∪ {d .v |
v 6= 2}. Conditions (i) and (iii) clearly hold. Condition (ii) holds, since after φ(tr) the
process takes the “else” branch and can select w = 2. The proposition then implies
(tr ,X ) ∈ failures(Proc(t),Γinit ), which is clearly true, since after tr the process again
takes the “else” branch and can select w = 2.

(4) Now suppose tr = 〈c.0.1.2〉, so φ(tr) = 〈c.0.1.1〉, and X = {|c|} ∪ {d .v | v 6= 0}. It is
easy to check the three conditions; note that for condition (ii), the failure corresponds
to the “then” branch. The proposition then implies (tr ,X ) ∈ failures(Proc(t),Γinit ),
which is clearly true, since after tr the process takes the “else” branch and can select
w = 0. This case shows the importance of RevPosConjEqTF: the “else” branch must
have (at least) all the failures of the “then” branch.

The following theorem is our second key result of this paper. It extends Theorem 6.5 to
the stable failures model by establishing a threshold Thresh such that if Spec(t) and Impl(t)
fulfil certain requirements, then, for all B ≥ Thresh, if Spec({0 . . B}) ⊑F φ(Impl({0 . . n})
then Spec({0 . . n}) ⊑F Impl({0 . . n}) for all n ≥ B .

Recall that, given a symbolic conditional event cond and an environment Γ, [[cond ]]Γ
denotes the truth value of the proposition obtained from cond by substituting all free
variables of type t with their corresponding values contained within Γ. We lift the definition
of [[ · ]]Γ to symbolic traces without visible symbolic events in the following way. Given a
symbolic trace σ in (Cond ∪ {τ})∗ we let [[σ]]Γ be equal to

∧
{[[cond ]]Γ | cond in σ, cond ∈

Cond}.

Theorem 6.13 (Extendibility of stable failures refinement of systems with replicated com-
ponents). Suppose that

(i) Spec(t) satisfies SeqNorm and RevPosConjEqTF, and is divergence-free and has a
finite alphabet for every finite instantiation of type t;

(ii) Impl(t) satisfies TypeSym;
(iii) no construct α in Spec(t) combines nondeterministic inputs of type t and deterministic

input of any type, i.e. if #$t (α) > 0, then #?(ǫ) = 0;
(iv) T is an instantiation of type t such that #T ≥ B + 1, where B is as below;
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(v) Thresh = max{ThreshT,
max{Thresh!t (σ,Γ) + Thresh?t (σ,Γ) |

σ ∈ SymbolicT races(Spec(t))
∧ (σ = 〈〉 ∨ last(σ) ∈ V isible) ∧ Γ ∈ Env(T )}},

where
• Thresh!t (σ,Γ) counts the number of unique output variables of type t in all the visible
symbolic events ǫ available in Spec(t) immediately after σ such that all conditionals
between the last symbolic event of σ and ǫ evaluate to True, i.e.

Thresh!t (σ,Γ) =

#{xi | Spec(t) 7
σ
−→s 7

ρ
−→s

ǫ
−→s ∧ ρ ∈ (Cond ∪ {τ})∗ ∧ [[ρ]]Γ = True

∧ ǫ = c§1x1:X1 . . . §kxk :Xk ∈ V isible ∧ i ∈ !t(ǫ)};

• Thresh?t (σ,Γ) counts the number of (not necessarily unique) input variables of type
t in all the visible symbolic events ǫ available in Spec(t) immediately after σ such
that all conditionals between the last symbolic event of σ and ǫ evaluate to True, i.e.

Thresh?t (σ,Γ) =
∑
{#?t(ǫ) | Spec(t) 7

σ
−→s 7

ρ
−→s

ǫ
−→s ∧ ρ ∈ (Cond ∪ {τ})∗

∧ ǫ ∈ V isible ∧ [[ρ]]Γ = True};

• ThreshT is as in Theorem 6.5;
(vi) B ≥ Thresh; and
(vii) φ is a B-collapsing function.

Then, if Spec(φ(T )) ⊑F φ(Impl(T )), then Spec(T ) ⊑F Impl(T ).

Proof. Suppose that the refinement Spec(φ(T )) ⊑F φ(Impl(T )) holds and assume for a
contradiction that Spec(T ) 6⊑F Impl(T ). Refinement in the stable failures model im-
plies refinement in the traces model, so Spec(φ(T )) ⊑T φ(Impl(T )). Then, by Theo-
rem 6.5 (which is applicable since its assumptions are weaker than those of this theorem),
Spec(T ) ⊑T Impl(T ).

Consider a minimal counterexample (tr ,X ) to the refinement Spec(T ) ⊑F Impl(T ), i.e.

(tr ,X ) ∈ failures(Impl(T )), (6.4)

(tr ,X ) 6∈ failures(Spec(T )), (6.5)

∀ e ∈ X • (tr ,X \ {e}) ∈ failures(Spec(T )). (6.6)

Observe that there is such a minimal counterexample since we have assumed that specifi-
cations are divergence-freedom and have finite alphabets.

Combining (6.5) and (6.6) we obtain that for all events e in X there exists a state
Pe(T ) such that

Spec(T )
tr
=⇒ Pe(T ) ∧ Pe(T ) ref (X ) \ {e} ∧ Pe(T )

e
−→ . (6.7)

This also means that every event in X is accepted in some stable state of Spec(T ) after tr .
Hence,

X ⊆ initials(Spec(T )/tr). (6.8)

We now aim to show that X is dependent upon at most Thresh values from T , in a
sense that we make precise below. We begin with two properties of X .

(1) Firstly, we prove that X is closed under type t nondeterministic inputs of the spec-
ification, i.e. we suppose that e = c.v1 . . . vk ∈ X matches a construct α of Spec(t)
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Figure 6: The LTS of Proc({0, 1, 2}), where Proc(t) = chn$x :{a, b}$y :t → STOP .

(uniqueness follows from Proposition 5.5) with #$t (α) > 0 (which, by assumption (iii),
implies that #?(α) = 0) and show that

∀ v ′ : {1 . . k} → V alue |
(∀ i ∈ $t(α) • v ′i ∈ T ) ∧ (∀ i ∈ {1 . . k} \ $t (α) • v ′i = vi) •

c.v ′1 . . . v
′
k ∈ X .

(6.9)

Let v ′ be as in (6.9) and let e ′ = c.v ′1 . . . v
′
k . Assume for a contradiction that e ′ is

not an event in X . Consider the same behaviour that leads to the stable state Pe(T )
of (6.7) where X \ {e} is refused and e is accepted, except that the nondeterministic
selections of α are resolved in a way such that the values v ′i are chosen instead of vi for
all i ∈ $t (α); call this stable state Pe′(T ) (see Figure 6 for an example). The initials of
Pe′(T ) are the same7 as those of Pe(T ), except they contain e ′ instead of e. Therefore,
since X \{e} is refused in Pe(T ), X \{e ′} must be refused in Pe′(T ). However, e ′ 6∈ X
by assumption, so X is refused in Pe′(T ), which contradicts (6.5).

(2) Secondly, we show that X contains no pairs of events that differ only in values of
deterministic inputs of any type, i.e. we suppose that e = c.v1 . . . vk ∈ X is an event
matching a construct α of Spec(t) (uniqueness guaranteed by Proposition 5.5) with
#?(α) > 0 (which, by assumption (iii), implies that #$t(α) = 0) and show that

∀ v ′ : {1 . . k} → V alue |
(∀ i ∈ {1 . . k} \ ?(α) • v ′i = vi) ∧ (∃ i ∈ ?(α) • v ′i 6= vi) •

c.v ′1 . . . v
′
k 6∈ X .

(6.10)

Let v ′ be as in (6.10) and assume for a contradiction that e ′ = c.v ′1 . . . v
′
k is an event in

X . Consider the state Pe(T ) of (6.7) where X \{e} is refused and e is available. Clearly
e ′ is refused in this state, since we assumed it to be in X and hence in X \ {e} (since
e 6= e ′). This is a contradiction since e and e ′ differ only in the values of deterministic
inputs and hence e is available if and only if e ′ is.

Recall that tr is a trace of Spec(T ) = (Spec(t), {},T ); let (Spec′(t),Γ,T ) be the unique
resulting configuration (with uniqueness following from Proposition 5.3); i.e.

(Spec(t), {},T ) 7
s
−→ (Spec′(t),Γ,T ), (6.11)

7This would not be true if specifications could contain constructs that combine nondeterministic selections
over type t and deterministic inputs over any type; see Example 6.17 and Example 6.18 below.
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for some sequence of concrete events s such that s does not end with a τ and s \ {τ} = tr .
Observe that

(Spec(t), {},T )
tr
=⇒ (Spec′(t),Γ,T ).

So, thanks to the uniqueness of Spec′(t) and Γ, and since s does not end with a τ ,

initials(Spec(T )/tr) = initials(Spec′(t),Γ,T ).

Let S = S1 ∪ S2, where

S1 = {vi | e = c.v1 . . . vk ∈ initials(Spec(T )/tr)
∧ e matches construct α of Spec(t) ∧ i ∈ !t(α)},

(6.12)

S2 = {vi | c.v1 . . . vk ∈ X ∧ i ∈ {1 . . k} ∧ vi ∈ T
∧ ∃ v ′ ∈ T • c.v1 . . . vi−1.v

′.vi+1 . . . vk 6∈ X }.
(6.13)

We now show that B is an upper bound on #S .
Firstly, we deduce from the closure of X under type t nondeterministic inputs of the

specification (clause 1, above) that S2 contains no values of type t that come from non-
deterministic selections of constructs of Spec(t). Hence and by (6.8), S2 is a subset of
the set of values of type t in the events in initials(Spec(T )/tr) = initials(Spec′(t),Γ,T )
that come from deterministic inputs and outputs only. Observe that if a concrete event
of the specification is obtained from a symbolic event using the translation rules of COSE,
then all the preceding conditional symbolic events have to evaluate to True in appropri-
ate environments. Also, all conditional symbolic events occurring between any two visi-
ble symbolic events are always evaluated within the same environment. Therefore, when
working out initials(Spec′(t),Γ,T ), we can ignore those initial visible symbolic events of
Spec′(t) that are preceded by a conditional symbolic event that evaluates to False in Γ.
Finally, from (6.11) and the translation rules of COSE (see Section 4.4.1) we have that
there exists σ ∈ SymbolicT races(Spec(t)) such that either σ = 〈〉 or last(σ) ∈ V isible and

Spec(t) 7
σ
−→s Spec

′(t) (so σ generates{} s). Hence, the number of type t values matched by
deterministic inputs in the events in S2 is at most

Thresh?t (σ,Γ) =
∑
{#?t(ǫ) | Spec(t) 7

σ
−→s 7

ρ
−→s

ǫ
−→s ∧ ρ ∈ (Cond ∪ {τ})∗

∧ ǫ ∈ V isible ∧ [[ρ]]Γ = True}.

Now, since we assumed no constants of type t in the definition of Spec(t), any type t
output value in S must come from some environment. Therefore, the total number of
output values of type t in S can never be greater than the total number of different output
variable names used in the constructs of Spec(t) that are matched by the members of
initials(Spec(T )/tr), i.e. the total number of output values of type t in S is at most

Thresh!t (σ,Γ) = #{xi | Spec(t) 7
σ
−→s 7

ρ
−→s

ǫ
−→s ∧ ρ ∈ (Cond ∪ {τ})∗ ∧ [[ρ]]Γ = True

∧ ǫ = c§1x1:X1 . . . §kxk :Xk ∈ V isible ∧ i ∈ !t(ǫ)}.

Summarising the last two paragraphs: all elements of S either match deterministic
inputs in the events in S2 (at most Thresh?t (σ,Γ) such values), or match outputs in either S1



42 T. MAZUR AND G. LOWE

or S2 (at most Thresh!t (σ,Γ) such values). Therefore,

#S
≤ Thresh!t (σ,Γ) + Thresh?t (σ,Γ)
≤ max{Thresh!t (σ

′,Γ′) +Thresh?t (σ
′,Γ′) | σ′ ∈ SymbolicT races(Proc(t))

∧ (σ′ = 〈〉 ∨ last(σ′) ∈ V isible)
∧ Γ′ ∈ Env(T )}

≤ Thresh
≤ B .

Let π : T → T be a bijection that maps S into {0 . .B − 1}. Then, using Remark 3.13,
we can infer from (6.4) and (6.5) that

(π(tr), π(X )) ∈ failures(Impl(T )), (6.14)

(π(tr), π(X )) 6∈ failures(Spec(T )). (6.15)

Now, by the denotational semantics of renaming [Ros97],

failures(φ(Impl(T ))) = {(φ(tr ′),Y ) | (tr ′, φ−1(Y )) ∈ failures(Impl(T ))}. (6.16)

Let c.v1 . . . vk be an event in X . Let i be in {1 . . k} such that vi is of type t . Our
construction of S implies that either (1) vi is in S , in which case π(vi) is in {0 . . B − 1},
or (2) vi matches a nondeterministic input of type t , in which case the closure of X under
nondeterministic inputs of the specification (clause 1 on p. 39) implies that for all values
v ′ in T , c.v1 . . . vi−1.v

′.vi+1 . . . vk is in X . Therefore, if c.w1 . . .wk is an event in π(X ),
then for every i in {1 . . k} such that wi is of type t , we have that either (1) wi is in
{0 . . B − 1}, or (2) c.w1 . . .wi−1.w

′.wi+1 . . .wk is in π(X ) for all values w ′ in T . This,
thanks to the definition of φ, means that ∀ e ∈ φ(π(X )) • φ−1(e) ⊆ π(X ). This implies
that φ−1(φ(π(X ))) ⊆ π(X ), which trivially implies that

φ−1(φ(π(X ))) = π(X ).

Combining with (6.14) and (6.16), we get that

(φ(π(tr)), φ(π(X ))) ∈ failures(φ(Impl(T ))).

However, Spec(φ(T )) ⊑F φ(Impl(T )), so

(φ(π(tr)), φ(π(X ))) ∈ failures(Spec(φ(T ))). (6.17)

We now show that

(φ(π(tr)), π(X )) ∈ failures(Spec(T )). (6.18)

Firstly, (6.17) implies that there exists a configuration (P(t),Γ, φ(T )) such that

Spec(φ(T )) = (Spec(t), {}, φ(T ))
φ(π(tr))
====⇒ (P(t),Γ, φ(T )) ref φ(π(X )). (6.19)

Let e = c.v1 . . . vk be in φ(initials(P(t),Γ,T )) and let α be the unique construct of Spec(t)
that e matches (with uniqueness following from Proposition 5.5). Then there exists a
function v ′ : {1 . . k} → V alue such that

e ′ = c.v ′1 . . . v
′
k ∈ initials(P(t),Γ,T ) (6.20)

and φ(e ′) = e, i.e.

∀ i ∈ {1 . . k} • φ(v ′i ) = vi . (6.21)
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We know that (P(t),Γ, φ(T )) must be a stable state, as otherwise it would not be able to
refuse φ(π(X )). This means that all values of nondeterministic selections of constructs that
generate the events in initials(P(t),Γ, φ(T )) had been chosen before this state was reached
(and are necessarily in φ(T )). Hence, and since Γ ∈ Env(φ(T )) implies Γ ∈ Env(T ), we
have that initials(P(t),Γ, φ(T )) and initials(P(t),Γ,T ) are the same, except for values of
deterministic inputs of type t . Formally,

initials(P(t),Γ, φ(T )) =
{c.w1 . . .wk | c.w

′
1 . . .w

′
k ∈ initials(P(t),Γ,T ) matches construct α′ ∧

w ∈ {1 . . k} → V alue ∧ (∀ i ∈ {1 . . k} \ ?t(α′) • wi = w ′
i ) ∧

∀ i ∈ ?t(α′) • wi ∈ φ(T )}.

(6.22)

Also, since Γ ∈ Env(φ(T )), all values of type t used in the events of initials(P(t),Γ,T )
and that match nondeterministic selections or outputs, are in φ(T ) = {0 . . B}:

∀ i ∈ $t(α) ∪ !t (α) • v ′i ∈ {0 . . B},

which, thanks to the properties of φ, and combined with the fact that for all non-t values
val , φ(val) = val , gives us that

∀ i ∈ {1 . . k} \ ?t(α) • φ(v ′i ) = v ′i .

Hence and by the definition of v ′ (6.21),

∀ i ∈ {1 . . k} \ ?t(α) • vi = v ′i . (6.23)

In addition, since c.v1 . . . vk is in φ(initials(P(t),Γ,T )), it must be that

∀ i ∈ ?t(α) • vi ∈ φ(T ). (6.24)

Combining (6.20), (6.22), (6.23) and (6.24) we get that e is in initials(P(t),Γ, φ(T )). Hence

φ(initials(P(t),Γ,T )) ⊆ initials(P(t),Γ, φ(T )). (6.25)

Conversely, let e = c.v1 . . . vk be in initials(P(t),Γ, φ(T )). From Proposition 5.7 we
can infer that

initials(P(t),Γ, φ(T )) ⊆ initials(P(t),Γ,T ),

so e is in initials(P(t),Γ,T ). Hence, φ(e) is in φ(initials(P(t),Γ,T )). However, for all i
in {1 . . k}, vi is either a value of a non-t type or it is a value in φ(T ). Hence,

∀ i ∈ {1 . . k} • φ(vi) = vi ,

so φ(e) = e and therefore e ∈ φ(initials(P(t),Γ),T ). Hence,

initials(P(t),Γ, φ(T )) ⊆ φ(initials(P(t),Γ,T )).

Combining the above with (6.25) we have that

φ(initials(P(t),Γ,T )) = initials(P(t),Γ, φ(T )). (6.26)

We now aim to show that

(P(t),Γ,T ) ref π(X ). (6.27)

Suppose for a contradiction that there exists an event x in π(X ) ∩ initials(P(t),Γ,T ).
Then (6.26) implies that φ(x ) ∈ φ(π(X ))∩ initials(P(t),Γ, φ(T )). This in turn means that
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φ(π(X )) ∩ initials(P(t),Γ, φ(T )) is non-empty, contradicting (6.19). Hence, (6.27) holds.
Finally, applying Corollary 5.8 to (6.19), we have that

(Spec(t), {},T )
φ(π(tr))
====⇒ (P(t),Γ,T ).

This, combined with (6.27) implies that (6.18) holds.
We now seek to apply Proposition 6.11 to π(tr) and π(X ). From equation (6.14),

π(tr) ∈ traces(Impl(T )). However, we have already shown that Spec(T ) ⊑T Impl(T ), so

π(tr) ∈ traces(Spec(T )) = traces(Spec(t), {},T ).

This gives us condition (i) of Proposition 6.11. Equation (6.18) (and the fact that φ({}) =
{}) gives us condition (ii). In addition, our definition of S1 (6.12), combined with the defini-
tion of π, implies that every output value of type t of every event in initials(Spec(T )/π(tr))
is in {0 . . B − 1}, which gives us condition (iii). Hence, we can infer that

(π(tr), π(X )) ∈ failures(Spec(t), {},T ) = failures(Spec(T )).

This is a contradiction to (6.15), which completes our proof.

Some observations related to Theorem 6.13 are now in order.

Remark 6.14. For every verification problem, the value of Thresh in Theorem 6.13 depends
only on the specification.

Remark 6.15. For all specifications with a finite SSLTS, the value of Thresh in Theo-
rem 6.13 can be calculated in a finite amount of time. The term ThreshT can be calculated as
in Remark 6.9. The other term can be obtained by calculating Thresh!t (σ,Γ)+Thresh?t (σ,Γ)
for each symbolic state that is either the initial state or that has an incoming visible tran-
sition.

Example 6.16. Recall the example from Section 2.3. In Example 6.10 we showed how to
apply Theorem 6.5 to deduce results in the traces model. We now, similarly, show how to
apply Theorem 6.13 to deduce results in the stable failures model. We can use the counter
abstraction techniques to verify

Spec(φ(T )) ⊑F φ(Impl(T )), for all instantiations T of t with #T ≥ 3,

where again

Spec(t) = enterCS$i :t → leaveCS !i → Spec(t),

and where we took B = 1. It is clear that conditions (i), (ii) and (iii) of Theorem 6.13 hold.
From condition (v) we obtain Thresh = 1, essentially because Spec(t) contains a single “!”
and no “?”; hence condition (vi) holds. Condition (iv) gives a lower bound of 2 on the size
of T , which is a weaker condition than we have already imposed. Finally condition (vii)
holds by construction. Hence we can apply the theorem to deduce

Spec(T ) ⊑F Impl(T ), for all instantiations T of t with #T ≥ 3.

Smaller values of T can be verified directly.

As with the theorem for the traces model, the tool TomCAT can be used to verify the
conditions of Theorem 6.13 and to calculate the threshold.

At first, condition (iii) of Theorem 6.13 —that no construct of the specification combines
nondeterministic inputs of type t and deterministic inputs of any type— may seem some-
what arbitrary. However, without it, there are specifications Spec(t) and implementations
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Impl(t) such that no threshold exists: for all values of B , there exists an instantiation T of
type t such that Spec(φ(T )) ⊑F φ(Impl(T )) and yet Spec(T ) 6⊑F Impl(T ). The following
examples illustrate such pairs of processes, where a nondeterministic input of type t is com-
bined with a deterministic input of type t (Example 6.17) and with a deterministic input
of a non-t type (Example 6.18).

Example 6.17. Let

Spec(t) = c$x :t?y :t → STOP,

Impl(t) = ✷ y :t • c?x :(t \ {y})!y → STOP.

Note, in particular, that Impl(t) satisfies TypeSym.
Let B be an arbitrary positive number, and let φ be as in the statement of Theo-

rem 6.13. Let T = {0 . .N } where N ≥ B + 1. It is easy to see that traces(φ(Impl(T ))) ⊆
traces(Spec(φ(T ))). Further, whatever value Impl(T ) chooses for y , (T \{y})∩{B . .N } 6=
{}; hence (〈〉, {c.B .B}) 6∈ failures(φ(Impl(T ))). This helps to see that

failures(φ(Impl(T )))
= {(〈〉,X ) | X ⊆ {c.x .x | x ∈ {0 . . B − 1}}}
∪{(〈c.x .y〉,X ) | y ∈ {0 . . B} ∧ x ∈ {0 . . B} \ {y} ∧ X ⊆ Σ}

⊆ {(〈〉,X ) | X ⊆ {c.x .y | x ∈ {0 . . B} \ {p} ∧ y ∈ {0 . . B}} ∧ p ∈ {0 . . B}}
∪{(〈c.x .y〉,X ) | x , y ∈ {0 . . B} ∧ X ⊆ Σ}

= failures(Spec(φ(T ))).

Hence Spec(φ(T )) ⊑F φ(Impl(T )).
However,

(〈〉, {c.x .x | x ∈ T}) ∈ failures(Impl(T )) \ failures(Spec(T )),

so Spec(T ) 6⊑F Impl(T ).

Example 6.18. Let B be an arbitrary positive integer, and Y = {y1, y2} a type other
than t of size 2. Let

Spec(t) = c$x :t?y :Y → STOP ,

ImplB (t) = ✷ y :Y •
(
⊓X ⊆ t ∧ #X = B + 1 • c?x :X !y → STOP

)
.

Note, in particular, that Impl(t) satisfies TypeSym.
Let φ be as in the statement of Theorem 6.13, and let T = {0 . .N } where N ≥ 2B +1.

It is easy to see that traces(φ(ImplB (T ))) ⊆ traces(Spec(φ(T ))). Further, whatever value
ImplB (T ) chooses for X , X ∩{B . .N } 6= {}; hence (〈〉, {c.B .y}) 6∈ failures(φ(ImplB (T )))
for every y ∈ Y . This helps to see that

failures(φ(ImplB (T )))
⊆ {(〈〉,R) | R ⊆ {c.x .y | x ∈ {0 . . B − 1} ∧ y ∈ Y }}
∪{(〈c.x .y〉,R) | x ∈ {0 . . B} ∧ y ∈ Y ∧ R ⊆ Σ}

⊆ {(〈〉,R) | R ⊆ {c.x .y | x ∈ {0 . . B} \ {p} ∧ y ∈ Y } ∧ p ∈ {0 . . B}}
∪{(〈c.x .y〉,R) | x ∈ {0 . . B} ∧ y ∈ Y ∧ R ⊆ Σ}

= failures(Spec(φ(T ))).

Hence Spec(φ(T )) ⊑F φ(ImplB (T )).
However, suppose the two values chosen for X when y = y1 and y = y2 are disjoint

(this is possible since #T ≥ 2B + 2). Then ImplB (T ) has an initial failure (〈〉,R) such
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that for each x ∈ T , there is some z such that c.x .z ∈ R; this is not a failure allowed by
Spec(T ), so Spec(T ) 6⊑F ImplB (T ).

7. Conclusions

Given a specification Spec(t) and an implementation Impl(t), direct model checking can help
us to find bugs in the implementation for a finite (and small) number of instantiations T
of parameter t . However, one is often interested in uniform verification, i.e. in proving
correctness for all T .

Lazić’s theory of data independence [Laz99] (see Section 3.1) for the CSP process algebra
solves the problem of uniform verification of parameterised systems with the parameter
being a datatype. Inspired by these results, we have developed a type reduction theory
(with the key results captured by Theorem 6.5 and Theorem 6.13), which establishes the

size of a fixed type T̂ and a collapsing function φ that maps all types T larger than T̂ to T̂ ,
and such that for all T such that T̂ ⊆ T ,

Spec(T̂ ) ⊑ φ(Impl(T )) implies that Spec(T ) ⊑ Impl(T ) (7.1)

with both refinements in either the traces or the stable failures model. In order for the
above to hold, the processes have to satisfy certain conditions, the most important of which
include a normality condition, SeqNorm (see Definition 3.5), for specifications and a type
symmetry condition, TypeSym (see Definition 3.6), for implementations.

Our type reduction theory makes extensive use of symbolic representation of process
behaviour, which allows us to use known behaviours of one instantiation of a specification
to deduce behaviours of another one. In Section 4 we presented a symbolic operational
semantics for CSP processes that satisfy Seq, and we provided a set of translation rules
that allow us to concretise symbolic transition graphs. We also showed that, crucially, the
combination of the symbolic operational semantics and the translation rules is congruent
to a fairly standard operational semantics.

Since the process φ(Impl(T )) used in (7.1) still depends on T , the type reduction
theory, on its own, does not resolve the problem of an infinite number of refinement checks
needed to solve a given verification problem. However, the usefulness of the theory comes
from the fact that it can be combined with an abstraction method that produces models
Abstr such that for all sufficiently large T ,

Abstr ⊑ φ(Impl(T )). (7.2)

We can then test, using a model checker, that Spec(T̂ ) ⊑ Abstr . This allows us to deduce,
from transitivity of refinement and (7.1), that Spec(T ) ⊑ Impl(T ) holds for all sufficiently
large T (and the verification problem can be solved directly for all smaller T ). One suitable
abstraction technique (based on ideas of counter abstraction) can be found in [Maz10,
ML11].

7.1. Automation. We can automatically check process syntaxes for the syntactic require-
ments of data independence (Definition 3.1) and SeqNorm (Definition 3.5). Checking for
the semantic requirements of the TypeSym condition (Definition 3.6) is difficult in practice
due to the universal quantification over all instantiations of the type parameter t . However,
we can automatically verify implementation definitions as to whether they satisfy the five
simple syntactic conditions of Proposition 3.9 and infer TypeSym.
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Checking RevPosConjEqT (Definition 3.15) is the most problematic when it comes
to automation. The problem lies in the universal quantification over all instantiations of
the parameter variables of the arguments of conditional choices. Currently, it is left to
the user to provide a proof that for every conditional choice of the form “if cond then
P(x1, . . . , xk ) else Q(x1, . . . , xk )” in a given specification, where cond ∈ Cond , cond is a
positive conjunction of equality tests on t and Q(v1, . . . , vk ) ⊑ P(v1, . . . , vk ) for all values
v1, . . . , vk . In general, the problem of RevPosConjEqT satisfiability is undecidable, since

a general (undecidable) PMCP problem of the form Spec(x ) ⊑
?

Impl(x ), where x is a param-
eter, can be reduced to checking whether in?i :x?j :x → if i = j then Impl(x ) else Spec(x )
satisfies RevPosConjEqT. However, in most practical situations it is not too difficult to
provide a convincing proof that, regardless of parameters, the “then” branch of every condi-
tional choice on t forms a refinement of its “else” branch, as often the branches are similar,
except for the use of operators that introduce different levels of nondeterminism (e.g. using
⊓ in the positive branch versus ✷ in the negative one).

As noted in Remarks 6.9 and 6.15, the calculation of the thresholds in Theorems 6.5
and 6.13 can be fully automated.

7.2. Multiple distinguished types. Throughout this paper we assumed the presence of
a single distinguished type t . It is easy to extend our techniques to any finite number of
distinguished types, say t1, t2, . . . , tn , provided all of them are pairwise independent. All
requirements are extended in the natural way, e.g. each specification Spec(t1, t2, . . . , tn) must
now be data independent in each of the n types, and each implementation Impl(t1, . . . tn)
must satisfy TypeSym with respect to each of t1, t2, . . . , tn . The threshold in each of
Theorems 6.5 and 6.13 is then replaced by a tuple of values (Thresh1,Thresh2, . . . ,Threshn ),
where each Threshi is a threshold for the collapsing of the values of type ti .

7.3. Related work. We are not aware of any other, similar type reduction theory for
parameterised systems with the parameter describing the number of node processes forming
a network. Ideas closest to ours are those of data independence. In [Laz99] Lazić provides
results similar to ours, except that allows us to deduce that

Spec(T̂ ) ⊑ Impl(T̂ ) implies that Spec(T ) ⊑ Impl(T )

instead of (7.1). This makes data independence theory applicable without the need for
abstraction techniques, but, since both Spec and Impl are assumed to be data independent,
it does not allow the use of replicated operators indexed over the distinguished type, which
is a key part of all the implementations we consider.

7.4. Future work. The operational semantics that we presented in Section 4.3 served
an important purpose in proving the results of our type reduction theory. However, our
type reduction theory assumes that processes satisfy the Seqcondition. Therefore, for
brevity, we provided operational semantics rules only for those operators that Seqallows.
To increase the generality, it would be desirable to formalise symbolic transition rules for
parallel compositions, renaming, hiding and replicated choices.

We would like to extend our type reduction theory to the failures/divergences model
of CSP (see e.g. [Ros97]). However, usually the only divergences property one is interested
in is full divergence-freedom. In practice, this might be an easier problem to verify for
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all instantiations of the distinguished type than verifying failures/divergences refinement.
Once a system is shown to be divergence-free, a refinement check in the stable failures model
implies refinement in the failures/divergences model.

Finally, we presented our type reduction techniques for processes modelled using the
CSP process algebra. It would be desirable to research how well these ideas map across to
other formalisms.
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Appendix A. Proofs for Section 5

In this appendix, we prove the results from Section 5. We start with a few lemmas that are
used in the proofs of those results.

In some proofs by structural induction in this and subsequent appendices, some of the
cases are straightforward and are omitted; they can be found in [Maz10].

The following lemma shows that (for a process that satisfies SeqNorm), each visible
or conditional symbolic event leads to a unique symbolic state.

Lemma A.1. Suppose that Proc(t) satisfies SeqNorm. Let ǫ be a visible or conditional
symbolic event and suppose that

Proc(t) 7
σ1−→s Proc

′
1(t) and Proc(t) 7

σ2−→s Proc
′
2(t),

where σ1 = τa 〈̂ǫ〉 for a ≥ 0, and σ2 = τ b 〈̂ǫ〉 for b ≥ 0. Then Proc′1(t) = Proc′2(t).

Proof. We prove the result by a structural induction on Proc(t). We give just the cases for
prefix and external choice.

Prefix. Suppose Proc(t) = α → Proc′(t) for some construct α = c§1x1:X1 . . . §kxk :Xk .
Clearly ǫmust be a visible symbolic event matching α, say c§′1x

′
1:X

′
1 . . . §

′
kx

′
k :X

′
k . We consider

two different cases, corresponding to the number of nondeterministic selections over non-t
types of α.
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Case 1. Suppose that #$non-t(α) = 0. Then, by Symbolic Prefix Rule 1 (p. 23), it must be
that σ1 = σ2 = 〈ǫ〉 with ǫ in Commsnon-t(α) and

Proc′1(t) = Proc′2(t) = Proc′(t)[x ′
i/xi | i ∈ ?non-t(α)].

Case 2. Suppose that #$non-t(α) > 0. Then, Symbolic Prefix Rule 2 (p. 23) implies that
the only symbolic transitions in Proc(t) are

Proc(t)
τ
−→s

(
Replacenon-t$7→! (α)→ Proc′(t)

)
[vi/xi | i ∈ $non-t(α)],

for each function v with dom(v) = {1 . . k} and such that if i is in $non-t(α), then vi is in Xi .
We are guaranteed that #$non-t(Replacenon-t$7→! (α)) = 0, so, Symbolic Prefix Rule 1 (p. 23)

implies that there are two functions v as above, say v1 and v2, such that for j ∈ {1, 2}:

Proc′j (t) = (Proc′(t)[v ji /xi | i ∈ $non-t(α)])[x ′
i /xi | i ∈ ?non-t(α)],

ǫ ∈ Commsnon-t((Replacenon-t$7→! (α))[v
j
i /xi | i ∈ $non-t(α)]).

Then, thanks to the definition of Commsnon-t, v1 and v2 are equal under domain restriction
to $non-t(α). Therefore, Proc′1(t) = Proc′2(t).

External choice. Suppose that Proc(t) = P(t) ✷ Q(t) for some process syntaxes P(t)
and Q(t). Since Proc(t) satisfies SeqNorm, we know that neither P(t) nor Q(t) contains a
conditional choice on t before a prefix. Therefore ǫ cannot be a conditional symbolic event,
so must be a visible symbolic event. SeqNorm implies that the channels of the initial

visible symbolic events of P(t) and Q(t) are disjoint, so we have that either P(t)
τ
−→∗

s
ǫ
−→s

or Q(t)
τ
−→∗

s
ǫ
−→s , but not both. Without loss of generality we assume the former. Then

the inductive hypothesis implies that there is a unique symbolic state P ′(t) such that

P(t)
τ
−→∗

s
ǫ
−→s P ′(t).

Even though there may be some τ ’s, contributed by Q(t), in the symbolic trace of P(t)
leading to Proc′1(t), the uniqueness of P ′(t) implies that Proc′1(t) = Proc′2(t) = P ′(t).

The following corollary lifts the previous lemma to traces.

Corollary A.2. Suppose that Proc(t) satisfies SeqNorm. Suppose further that

Proc(t) 7
σ
−→s P(t) and Proc(t) 7

σ′

−→s Q(t).

Then if neither σ nor σ′ ends with a τ and σ ≡non-τ σ′, then P(t) = Q(t).

Proof. By induction on the number of visible and conditional symbolic events of σ and σ′

(which must be equal, since σ ≡non-τ σ′), and using Lemma A.1.
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The following lemma relates two initial visible symbolic events on the same channel.

Lemma A.3. Suppose that Proc(t) satisfies SeqNorm, and σ, σ′ ∈ (Cond ∪ {τ})∗ are

such that σ ≡non-τ σ′. Then, if Proc(t) 7
σ
−→s

ǫ
−→s and Proc(t) 7

σ′

−→s
ǫ′
−→s , where ǫ =

c§1x1:X1 . . . §kxk :Xk and ǫ′ = c′§′1x
′
1:X

′
1 . . . §

′
lx

′
l :X

′
l are visible symbolic events, then:

(i) if the channels of ǫ and ǫ′ are identical (i.e. c = c′), then the parts of ǫ and ǫ′ involving
type t are equal, i.e.

$t(ǫ) ∪ ?t(ǫ) ∪ !t(ǫ) = $t(ǫ′) ∪ ?t(ǫ′) ∪ !t(ǫ′) ∧
∀ i ∈ $t(ǫ) ∪ ?t(ǫ) ∪ !t (ǫ) • §i = §

′
i ∧ xi = x ′

i ∧ Xi = X ′
i ;

(ii) if InstsΓ(ǫ) ∩ InstsΓ(ǫ
′) 6= {} for some environment Γ, then ǫ = ǫ′.

Proof. Firstly, observe that if InstsΓ(ǫ) ∩ InstsΓ(ǫ
′) 6= {}, then the channels of ǫ and ǫ′

must be the same. Hence in both cases c = c′. Since every channel has a fixed structure
of the communication along it, the number of components of ǫ and ǫ′ must be identical, i.e.
k = l . We can prove both clauses using a structural induction on Proc(t). We give just the
case for prefix, since it is the most interesting.

Suppose that Proc(t) = α→ Proc′(t) for some construct α = c§1x1:X1 . . . §kxk :Xk and
some process syntax Proc′(t). We perform a case analysis on the number of nondeterministic
selections over non-t types of α.

Case 1. Suppose that #$non-t(α) = 0. Then, by Symbolic Prefix Rule 1 (p. 23) (observe that
the other symbolic firing rules are not applicable in this case), it must be that σ = σ′ = 〈〉,
and that both ǫ and ǫ′ are in Commsnon-t(α). By the definition of Commsnon-t (p. 23),
ǫ and ǫ′ may differ only in the values of deterministic inputs of non-t types of α. Hence,
clause (i) of the lemma holds. To prove clause (ii), we let c.v1 . . . vk be a common member
of InstsΓ(ǫ) and InstsΓ(ǫ

′). Then the definition of InstsΓ (p. 30) implies that

∀ i ∈ !(ǫ) • §i = §
′
i = ! ∧ xi = x ′

i ∧ vi = Γ(xi) ∧ Xi = X ′
i = null. (A.1)

The definition of Commsnon-t implies that ?non-t(α) ⊆ !(ǫ), so

∀ i ∈ ?non-t(α) • §i = §
′
i = ! ∧ xi = x ′

i ∧ Xi = X ′
i = null.

This, combined with clause (i) of the lemma, (A.1) and the fact that $non-t(α) = 0, implies
that ǫ = ǫ′.

Case 2. Suppose that #$non-t(α) > 0. Then, by Symbolic Prefix Rule 2 (p. 23) (observe
that the other symbolic firing rules are not applicable in this case), the only transitions in
Proc(t) are

Proc(t)
τ
−→s

(
Replacenon-t$7→! (α)→ Proc′(t)

)
[vi/xi | i ∈ $non-t(α)]

= Replacenon-t$7→! (α)[vi/xi | i ∈ $non-t(α)]→ Proc′(t)[vi/xi | i ∈ $non-t(α)]

for functions v such that dom(v) = $non-t(α), and if i is in $non-t(α) then vi is in Xi . Clearly

#$non-t
(
Replacenon-t$7→! (α)[vi/xi | i ∈ $non-t(α)]

)
= 0

for every such function v , so Symbolic Prefix Rule 1 (p. 23) implies that

ǫ ∈ Commsnon-t
((
Replacenon-t$7→! (α)

)
[vi/xi | i ∈ $non-t(α)]

)
,

ǫ′ ∈ Commsnon-t
((
Replacenon-t$7→! (α)

)
[v ′i/xi | i ∈ $non-t(α)]

)
,
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for some functions v and v ′ such that dom(v) = dom(v ′) = $non-t(α) and if i is in $non-t(α),
then vi and v ′i are in Xi . The definition of Commsnon-t (p. 23) implies that the parts of
ǫ and ǫ′ that involve type t are identical, which proves clause (i) of the lemma. To prove
clause (ii), we let c.v1 . . . vk be a common member of InstsΓ(ǫ) and InstsΓ(ǫ

′). Then, the
definition of InstsΓ (p. 30) implies that

∀ i ∈ !(ǫ) • §i = §
′
i = ! ∧ xi = x ′

i ∧ vi = Γ(xi) ∧ Xi = X ′
i = null. (A.2)

However, the definition of Commsnon-t implies that

?non-t(α) = ?non-t
((
Replacenon-t$7→! (α)

)
[vi/xi | i ∈ $non-t(α)]

)
⊆ !(ǫ),

$non-t(α) ⊆ !non-t
((
Replacenon-t$7→! (α)

)
[vi/xi | i ∈ $non-t(α)]

)
⊆ !(ǫ).

Hence,

∀ i ∈ $non-t(α) ∪ ?non-t(α) • §i = §
′
i ∧ xi = x ′

i ∧ Xi = X ′
i .

This, combined with clause (i) of the lemma and (A.2), implies that ǫ = ǫ′.

The following lemma shows that if a process can perform a conditional event initially
(after only τs), then all its initial events (after τs) must be that conditional or its negation.

Lemma A.4. Suppose that Proc(t) satisfies SeqNorm. Then, if Proc(t) 7
σ
−→s

cond
−−→s and

Proc(t) 7
σ′

−→s
α
−→s , where σ, σ′ ∈ {τ}∗, cond ∈ Cond and α 6= τ , then α ∈ {cond ,¬cond}.

Proof. Since Proc(t) satisfies SeqNorm, we know that there are no conditionals before
prefixes in branches of external, internal and sliding choices. Hence one of the following
must hold:

(i) Proc(t) is a conditional choice on t , where the boolean condition is equal to cond or
¬cond ;

(ii) Proc(t) is a process identifier bound by the global environment E to a conditional
choice like that in clause (i) or (iii); or

(iii) Proc(t) is a conditional choice whose boolean condition immediately evaluates to True
or False, and the appropriate branch is a process syntax as in clause (i) or (ii).

This means that the only transitions available in Proc(t) are Proc(t)
τ
−→∗

s
cond
−−→s and

Proc(t)
τ
−→∗

s
¬cond
−−−→s .

The following lemma shows that if two symbolic traces each contain a single visible sym-
bolic event, and each trace can be instantiated in the same environment, then they contain
the same conditional events before the visible event, essentially because those conditionals
must evaluate to True in the initial environment.

Lemma A.5. Suppose that Proc(t) satisfies SeqNorm. Let σ 〈̂ǫ〉, σ ′̂ 〈ǫ′〉 be symbolic traces
of Proc(t) such that σ, σ′ ∈ (Cond ∪ {τ})∗, ǫ, ǫ′ ∈ V isible, σ 〈̂ǫ〉 generatesΓ 〈e〉 and
σ ′̂ 〈ǫ′〉 generatesΓ 〈e

′〉 for some environment Γ and some visible events e and e ′. Then
σ ≡non-τ σ′.

Proof. Let κ : SymbolicT races(Proc(t)) → N be a function that returns the number of
conditional symbolic events within a given symbolic trace. We prove the result using an
induction on κ(σ).
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Base case. Suppose that κ(σ) = 0. Then σ ∈ {τ}∗, so Proc(t)
τ
−→∗

s
ǫ
−→s . Suppose, for a

contradiction, κ(σ′) > 0. Then σ′ = τa 〈̂cond 〉̂ ρ for some a ≥ 0, some cond ∈ Cond and

some symbolic trace ρ ∈ (Cond ∪ {τ})∗. Therefore Proc(t)
τ
−→∗

s
cond
−−→s . By Lemma A.4,

ǫ ∈ {cond ,¬cond}. This is a contradiction as ǫ ∈ V isible. Therefore κ(σ′) = 0, which
means that σ′ ∈ {τ}∗. Hence σ ≡non-τ σ′.

Inductive case. Suppose that the result holds for all process syntaxes and all their symbolic
traces with exactly k conditional symbolic events. Consider κ(σ) = k + 1. Then σ =
τa 〈̂cond 〉̂ ρ for some a ≥ 0, some cond ∈ Cond and some ρ ∈ (Cond ∪{τ})∗ with κ(ρ) = k .
Arguing similarly in the base case, κ(σ′) > 0. Therefore, σ′ = τ b 〈̂cond ′ 〉̂ ρ′ for some b ≥ 0,
some cond ′ ∈ Cond and some ρ′ ∈ (Cond ∪ {τ})∗. By Lemma A.4, cond ′ ∈ {cond ,¬cond}.
Since σ 〈̂ǫ〉 generatesΓ 〈e〉 and σ ′̂ 〈ǫ′〉 generatesΓ 〈e

′〉, cond and cond ′ must both evaluate
to True within Γ, because there are no visible symbolic events within σ and σ′ before cond
and cond ′, respectively, that could modify the environment Γ. So it must be that cond =

cond ′. By Lemma A.1, there is a unique state P(t) such that Proc(t)
τ
−→∗

s
cond
−−→s P(t).

Hence, ρ̂ 〈ǫ〉 and ρ′̂ 〈ǫ′〉 are both symbolic traces of P(t) such that ρ̂ 〈ǫ〉 generatesΓ 〈e〉 and
ρ′̂ 〈ǫ′〉 generatesΓ 〈e

′〉. Therefore, by the inductive hypothesis, ρ ≡non-τ ρ′, which implies
that σ ≡non-τ σ′.

A.1. Proofs of main results. We can now prove the results stated in Section 5. In order
to prove Proposition 5.3. We will need the following lemma.

Lemma A.6. Suppose that Proc(t) satisfies SeqNorm. Suppose further that

(Proc(t),Γinit )
τ
−→∗ e
−→ (P(t),Γ),

(Proc(t),Γinit )
τ
−→∗ e
−→ (Q(t),Γ′),

where e is a visible event. Then P(t) = Q(t) and Γ = Γ′.

Proof. By the translation rules of COSE (see Section 4.4.1), there must exist symbolic
traces σ, σ′ and visible symbolic events ǫ = c§1x1:X1 . . . §kxk :Xk and ǫ′ = c′§′1x

′
1:X

′
1 . . . §

′
lx

′
l :X

′
l

such that

• Proc(t) 7
σ
−→s

ǫ
−→s P(t) and Proc(t) 7

σ′

−→s
ǫ′
−→s Q(t); and

• σ 〈̂ǫ〉 generatesΓinit
〈e〉 and σ ′̂ 〈ǫ′〉 generatesΓinit

〈e〉.

Then it must be that σ, σ′ ∈ (Cond ∪ {τ})∗. So, by Lemma A.5, σ ≡non-τ σ′. From the
definition of the generates relation (p. 29) we have that e ∈ InstsΓinit

(ǫ)∩ InstsΓinit
(ǫ′), so

Lemma A.3 implies that ǫ = ǫ′. Hence, σ 〈̂ǫ〉 ≡non-τ σ ′̂ 〈ǫ′〉 and so we can infer, using Corol-
lary A.2, that P(t) = Q(t). In addition, the translation rules of COSE (see Section 4.4.1)
imply that if e = c.v1 . . . vk , then

Γ = Γinit ⊕ {xi 7→ vi | i ∈ $t (ǫ) ∪ ?t(ǫ)},

Γ′ = Γinit ⊕ {x
′
i 7→ vi | i ∈ $t (ǫ′) ∪ ?t(ǫ′)}.

However, ǫ = ǫ′, so Γ = Γ′, as required.

Proof of Proposition 5.3. By a straightforward induction on the length of s \ {τ} and using
Lemma A.6.
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Proof of Proposition 5.4. We prove the result by an induction on the length of tr .

Base case. Suppose that tr = 〈〉. Then σ generatesΓ 〈〉 and σ′ generatesΓ 〈〉. Therefore,
by the definition of the generates relation (p. 29), σ and σ′ cannot contain visible symbolic
events. Hence, by the assumptions of this proposition, σ = σ′ = 〈〉, which means that
σ ≡non-τ σ′.

Inductive case. Suppose that the result holds for all traces of length k . Consider a trace
trk+1 of length k + 1. Then there exists a trace trk of length k and a visible event e such
that trk+1 = trk 〈̂e〉. There must also exist symbolic traces σ1, σ

′
1, σ2, and σ′

2 such that

• either σ1 = σ′
1 = 〈〉 or both σ1 and σ′

1 end in a visible symbolic event;
• σ = σ1 σ̂2 and σ′ = σ′

1 σ̂′
2; and

• σ1 generatesΓ trk and σ′
1 generatesΓ trk .

Then, by the inductive hypothesis, σ1 ≡non-τ σ′
1. Hence, if P(t) and Q(t) are such that

Proc(t) 7
σ1−→s P(t) and Proc(t) 7

σ′
1−→s Q(t), then, by Corollary A.2, P(t) = Q(t).

Let Γ be the environment reached after trk , i.e. such that (Proc(t),Γ) 7
s
−→ (P(t),Γ)

for some s such that s \ τ = trk ; by Proposition 5.3, Γ is unique. We now have that
σ2 generatesΓ 〈e〉 and σ′

2 generatesΓ 〈e〉. Hence, σ2, σ
′
2 6= 〈〉. Therefore, both σ2 and σ′

2

must end in a visible symbolic event (since they are suffixes of σ and σ′). So, σ2 = ρ̂ 〈ǫ〉
and σ′

2 = ρ′̂ 〈ǫ′〉 for some symbolic traces ρ, ρ′ ∈ (Cond ∪ {τ})∗ and some visible symbolic
events ǫ and ǫ′. Hence, by Lemma A.5, ρ ≡non-τ ρ′. Also from the definition of generates
we have that e ∈ InstsΓ(ǫ)∩InstsΓ(ǫ

′), so, by Lemma A.3, ǫ = ǫ′. Therefore, σ2 ≡non-τ σ′
2,

and hence σ ≡non-τ σ′.

Proof of Proposition 5.5. Suppose for contradiction that α 6= α′. Definition 5.1 implies that
α and α′ give rise to e immediately after tr . By Proposition 5.4, if σ 〈̂ǫ〉 and σ ′̂ 〈ǫ′〉 are both
symbolic traces of Proc(t) such that σ 〈̂ǫ〉, σ ′̂ 〈ǫ′〉 generates{} tr 〈̂e〉 and where ǫ and ǫ′ are

visible, then σ ≡non-τ σ′ and ǫ = ǫ′. We now have that ǫ matches both α and α′. Then, the
firing rules of SSOS (see Section 4.3.2) imply that α and α′ must be constructs in different
branches of an external, internal or sliding choice. Since both of these constructs give rise
to the same concrete event, e, their channels must be identical. Hence, Proc(t) contains
a binary choice with branches sharing a common channel name. This contradicts the fact
that Proc(t) satisfies SeqNorm, so it must be that α = α′.

Proof of Lemma 5.6. Suppose for a contradiction that there is some j ∈ !(ǫ′) \ !(ǫ). Then
j ∈ $t (ǫ) ∪ ?t(ǫ) (since $non-t(ǫ) = ?non-t(ǫ) = {} by Remark 4.7). This means that the
j -th variable or value of ǫ′ is of type t , so j ∈ !t(ǫ′). Suppose e = c.v1 . . . vk and let
e ′ = c.v1 . . . vj−1.v

′
j .vj+1 . . . vk , where v ′j ∈ T \ {vj }. By Remark 3.3, if a process can

perform a given event, then it can also perform every other event that differs only in the
values of inputs. Therefore, tr 〈̂e ′〉 ∈ traces(P(t),Γinit ,T ), i.e. e ′ matches ǫ.

Since (Q(t),Γinit ,T ) ⊑T (P(t),Γinit ,T ), we must have tr 〈̂e ′〉 ∈ traces(Q(t),Γinit ,T ).
Clause (iii), combined with the fact that v ′j is an output for Q(t), different from vj , implies

that σ ′̂ 〈ǫ′〉 cannot generate tr 〈̂e ′〉 within Γinit . So let ρ̂ 〈ǫ′′〉 ∈ SymbolicT races(Q(t))
be such that ρ̂ 〈ǫ′′〉 generatesΓ init tr 〈̂e ′〉. Also, let σ′ = σ1 σ̂2 and ρ = ρ1 ρ̂2, where
σ1 and ρ1 are either both the empty symbolic trace or both end with visible symbolic
events, and σ2, ρ2 ∈ (Cond ∪ {τ})∗. Then, clause (iii) implies that σ1 generatesΓinit

tr
and ρ1 generatesΓinit

tr , so by Proposition 5.4, σ1 ≡non-τ ρ1. Hence, if Q ′(t) and Q ′′(t)
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are symbolic states such that Q(t) 7
σ1−→s Q ′(t) and Q(t) 7

ρ1
−→s Q ′′(t), then, thanks to

Corollary A.2, we have that Q ′(t) = Q ′′(t).

σ1 ≡non-τ ρ1 σ2 〈̂ǫ
′〉 generatesΓ 〈e〉

• ✤
s

〈ǫ′〉
// •

Q(t)
❁ s

σ1

$$

✄
sρ1
::

Q ′(t) = Q ′′(t)
✩

σ2
s
22❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

✚

s

ρ2
,,❩❩❩❩❩❩

❩❩❩❩❩❩❩
❩❩

• ✤
s

〈ǫ′′〉
// •

σ1, ρ1 generatesΓinit
tr ρ2 〈̂ǫ

′′〉 generatesΓ 〈e
′〉

Figure 7: Illustration of the proof of Lemma 5.6

Let Γ be the environment reached after tr , i.e. such that (Q(t),Γinit ,T )
s
7−→ (Q ′(t),Γ,T )

for some s such that s \ τ = tr ; by Proposition 5.3, Γ is unique. Then, we have that

• σ2 〈̂ǫ
′〉, ρ2 〈̂ǫ

′′〉 ∈ SymbolicT races(Q′(t));
• 〈e〉, 〈e ′〉 ∈ traces(Q ′(t),Γ,T );
• σ2 〈̂ǫ

′〉 generatesΓ 〈e〉; and
• ρ2 〈̂ǫ

′′〉 generatesΓ 〈e
′〉.

Hence, we can deduce from Lemma A.5 that σ2 ≡non-τ ρ2. Let ǫ
′ = c§′1x

′
1:X

′
1 . . . §

′
kx

′
k :X

′
k and

ǫ′′ = c§′′1x
′′
1 :X

′′
1 . . . §′′kx

′′
k :X

′′
k . Then, since the channels of ǫ′ and ǫ′′ are the same, Lemma A.3

implies that !t (ǫ′) = !t(ǫ′′) and x ′
j = x ′′

j . Since σ2 〈̂ǫ
′〉 generatesΓ 〈e〉 = 〈c.v1 . . . vk 〉 and

ρ2 〈̂ǫ
′′〉 generatesΓ 〈e

′〉 = 〈c.v1 . . . vj−1.v
′
j .vj+1 . . . vk 〉 and j ∈ !t(ǫ′′) (as j ∈ !t(ǫ′)), we have

that x ′
j = vj and x ′′

j = v ′j . Hence vj = v ′j . This is a contradiction, so !(ǫ′) ⊆ !(ǫ).

Proof of Proposition 5.7. Since T̂ is a subset of T , we have that Γ,Γ′ ∈ Env(T̂ ) implies

Γ,Γ′ ∈ Env(T ), since every partial function from V ar to T̂ is also a partial function from
V ar to T . We now prove the result using an induction on n, the number of times Translation
Rule 4 of COSE (p. 28) had to be applied in order to obtain the transition in (5.1).

Base case. Suppose that n = 0. We separately consider the cases for a being τ or visible.

Case 1. Suppose that a = τ . Then, the translation rules of COSE (see Section 4.4.1) imply
that the transition in (5.1) can be a result of either Translation Rule 1 (p. 27) or Translation
Rule 3 (p. 28).

For Translation Rule 1, it must be that Proc(t)
ǫ
−→s P(t) for some visible symbolic

event ǫ = c§1x1:X1 . . . §kxk :Xk such that #$t (ǫ) > 0 and some symbolic state P(t). In
addition, Proc′(t) = Replace t$7→!(c,Proc(t)) and Γ′ = Γ ⊕ {xi 7→ vi | i ∈ $t(ǫ)}, where v is

a function in $t(ǫ) → T̂ . Then, v is also a function in $t(ǫ) → T , so Translation Rule 1
implies that

(Proc(t),Γ,T )
τ
−→ (Replace t$7→!(c,Proc(t)),Γ ⊕ {xi 7→ vi | i ∈ $t(ǫ)},T )

= (Proc′(t),Γ′,T ).

If the transition in (5.1) results from Translation Rule 3, then Proc(t)
τ
−→s Proc′(t) and

Γ = Γ′. The same rule then yields (Proc(t),Γ,T )
τ
−→ (Proc′(t),Γ′,T ).
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Case 2. Suppose that a = c.v1 . . . vk is a visible event. Then, the translation rules of COSE
imply that the transition in (5.1) must be the result of Translation Rule 2 (p. 27). The rule

implies that Proc(t)
ǫ
−→s Proc

′(t) for some visible symbolic event ǫ = c§1x1:X1 . . . §kxk :Xk

such that #$t(ǫ) = 0. In addition, Γ′ = Γ ⊕ {xi 7→ vi | i ∈ ?t(ǫ)}, and for all i in ?t(ǫ),

vi is in T̂ . However, since T̂ ⊆ T , we have that for all i in ?t(ǫ), vi is in T . Therefore,
Translation Rule 2 implies that

(Proc(t),Γ,T )
a
−→ (Proc′(t),Γ⊕ {xi 7→ vi | i ∈ ?t(ǫ)},T ) = (Proc′(t),Γ′,T ).

This completes the base case.

Inductive case. Suppose the result holds for some n = k , where k ≥ 0. Suppose that the
transition in (5.1) requires k + 1 applications of Transition Rule 4. Then it must be that

Proc(t)
cond
−−→s P(t) and (P(t),Γ, T̂ )

a
−→ (Proc′(t),Γ′, T̂ ). The latter transition requires k

applications of Transition Rule 4, so the inductive hypothesis implies that (P(t),Γ,T )
a
−→

(Proc′(t),Γ′,T ). Hence, by Translation Rule 4, (Proc(t),Γ,T )
a
−→ (Proc′(t),Γ′,T ), which

completes our proof.

Proof of Corollary 5.8. Let s be an event-sequence with (Proc(t),Γ, T̂ ) 7
s
−→ (Proc′(t),Γ′, T̂ )

and s \ {τ} = tr . Then the result follows from a simple induction on the length of s using
Proposition 5.7.

Appendix B. Proofs for Section 6

B.1. Proofs for Section 6.1.

Proof of Proposition 6.1. We prove the result using a structural induction on Proc(t). We
give just the cases for prefix and conditional choice.

Prefix. Suppose that Proc(t) = α → P(t) where α = c′§′1x
′
1:X

′
1 . . . §

′
kx

′
k :X

′
k . We consider

two cases.

Subcase 1. Suppose that tr = 〈〉. Then, σ ∈ {τ}∗, and Proc(t)
τ
−→∗

s
ǫ
−→s . Using Translation

Rule 3 (p. 28) and Remark 4.14 we get that

∀ v ′ ∈ {1 . . k} → V alue |
(∀ i ∈ $t(ǫ) ∪ ?t(ǫ) • v ′i ∈ T ) ∧ (∀ i ∈ !(ǫ) • v ′i = Γinit(xi )) •
〈c.v ′1 . . . v

′
k〉 ∈ traces(Proc(t),Γinit )

(B.1)

Since tr = 〈〉, assumption (iii) of the proposition implies that 〈ǫ〉 generatesφ(Γinit) 〈e〉.
Therefore, by assumption (iv),

∀ i ∈ !t(ǫ) • vi = (φ(Γinit ))(xi ) ∧ vi ∈ {0 . . B − 1}.

Suppose that

v ′ ∈ {1 . . k} → V alue is such that
(∀ i ∈ $t(ǫ) ∪ ?t(ǫ) • v ′i ∈ T ) ∧ (∀ i ∈ !(ǫ) • v ′i = vi )

Then ∀ i ∈ !t(ǫ) • v ′i = (φ(Γinit))(xi ) ∧ v ′i ∈ {0 . .B − 1}. However, the properties of φ imply
that for all variables var and all values val , we have that

(φ(Γinit))(var) = val ∧ val ∈ {0 . . B − 1} ⇒ Γinit(var) = val ,
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so

∀ i ∈ !t(ǫ) • v ′i = Γinit(xi ). (B.2)

In addition, from the definition of generates, ∀ i ∈ !non-t(ǫ) • vi = φ(Γinit )(xi ). But we
know that ∀ i ∈ !non-t(ǫ) • v ′i = vi , so

∀ i ∈ !non-t(ǫ) • v ′i = (φ(Γinit))(xi ) = Γinit(xi )

with the last equality following from the fact that for all i in !non-t(ǫ), xi must be of a non-t
type. Hence and from (B.2),

∀ i ∈ !(ǫ) • v ′i = Γinit(xi ).

Therefore, (B.1) implies that 〈c.v ′1 . . . v
′
k 〉 ∈ traces(Proc(t),Γinit ). We have shown:

∀ v ′ ∈ {1 . . k} → V alue | (∀ i ∈ $t (ǫ) ∪ ?t(ǫ) • v ′i ∈ T ) ∧ (∀ i ∈ !(ǫ) • v ′i = vi) •
〈c.v ′1 . . . v

′
k 〉 ∈ traces(Proc(t),Γinit ),

which is what we wanted to show.

Subcase 2. Suppose that tr = 〈e ′〉̂ tr ′ for some visible event a and some trace tr ′. Then
φ(tr) = 〈φ(e ′)〉̂ φ(tr ′). So clearly φ(tr) is non-empty and we know that σ generatesφ(Γinit)

φ(tr). By the definition of generates, it must be that there is at least one visible symbolic
event within σ. Hence, σ = σ1 〈̂ǫ

′〉̂ σ2 for some visible symbolic event ǫ′ and some symbolic
traces σ1 and σ2 such that σ1 is in {τ}∗ (σ1 cannot contain any conditional symbolic events
because Proc(t) is a prefix). Then,

Proc(t)
τ
−→∗ ǫ′
−→ P ′(t) and σ2 〈̂ǫ〉 ∈ SymbolicT races(P ′(t)), (B.3)

where P ′(t) is like P(t), but with some substitutions of concrete values for the non-t type
input variables of α, as dictated by the SSOS firing rules for prefix (Section 4.3.2). We aim
to apply the inductive hypothesis to P ′(t).

We can infer using Translation Rule 3 (p. 28) and Remark 4.14 that

(Proc(t), φ(Γinit ))
τ
−→∗ φ(e′)
−−→ (P ′(t), φ(Γinit )⊕Match(ǫ′, φ(e ′))),

where, recall from Section 4.6, Match(ǫ′, φ(e ′)) is a map from type t input variables
of ǫ′ to the corresponding concrete values of event φ(e ′). We have that configuration
(P ′(t), φ(Γinit ) ⊕Match(ǫ′, φ(e ′))) is unique (thanks to Proposition 5.3). We know from
assumption (ii) that 〈φ(e ′)〉̂ φ(tr ′)̂ 〈e〉 ∈ traces(Proc(t), φ(Γinit )). Hence

φ(tr ′)̂ 〈e〉 ∈ traces(P ′(t), φ(Γinit )⊕Match(ǫ′, φ(e ′))). (B.4)

Similarly, since Proc(t)
τ
−→∗ ǫ′
−→ P ′(t) and tr = 〈e ′〉̂ tr ′ ∈ traces(Proc(t),Γinit ) (from

assumption (i)), using Translation Rule 3 (p. 28), Remark 4.14 and Proposition 5.3 we can
infer that

(Proc(t),Γinit )
τ
−→∗ e′
−→ (P ′(t),Γinit ⊕Match(ǫ′, e ′))

tr ′
=⇒ . (B.5)

Hence,

tr ′ ∈ traces(P ′(t),Γinit ⊕Match(ǫ′, e ′)). (B.6)

Finally, assumption (iii) implies that

σ 〈̂ǫ〉 = σ1 〈̂ǫ
′〉̂ σ2 〈̂ǫ〉 generatesφ(Γinit) φ(tr )̂ 〈e〉 = 〈φ(e ′)〉̂ φ(tr ′)̂ 〈e〉.
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So, by the definition of generates (p. 29)

σ2 〈̂ǫ〉 generatesφ(Γinit)⊕Match(ǫ′,φ(e′)) φ(tr ′ )̂ 〈e〉. (B.7)

We can now deduce the inductive hypothesis for P ′(t), with tr ′ in place of tr , σ2 in
place of σ, and Γinit⊕Match(ǫ′, e ′) in place of Γinit : (B.6) gives us condition (i); (B.4) gives
us condition (ii), observing that φ(Γinit)⊕Match(ǫ′, φ(e ′)) = φ(Γinit ⊕Match(ǫ′, e ′)); and
(B.3) and (B.7) give us condition (iii). Hence

∀ v ′ ∈ {1 . . k} → V alue | (∀ i ∈ $t (ǫ) ∪ ?t(ǫ) • v ′i ∈ T ) ∧ (∀ i ∈ !(ǫ) • vi = v ′i ) •
tr ′̂ 〈c.v ′1 . . . v

′
k 〉 ∈ traces(P ′(t),Γinit ⊕Match(ǫ′, e ′)).

This, combined with (B.5), gives us that

∀ v ′ ∈ {1 . . k} → V alue | (∀ i ∈ $t (ǫ) ∪ ?t(ǫ) • v ′i ∈ T ) ∧ (∀ i ∈ !(ǫ) • vi = v ′i ) •
〈e ′〉̂ tr ′̂ 〈c.v ′1 . . . v

′
k〉 ∈ traces(Proc(t),Γinit ).

However, tr = 〈e ′〉̂ tr ′, so the result holds.

Conditional choice. Suppose that Proc(t) = if cond then P(t) else Q(t). If cond is not
in Cond , then cond immediately evaluates to True or False and the result is immediately
implied by the inductive hypothesis for P(t) or Q(t), respectively. So suppose cond is in
Cond . Then, by the SSOS firing rules for conditional choice (see Section 4.3.2) it must be
that

σ = 〈cond 〉̂ ρ or σ = 〈¬cond 〉̂ ρ

for some symbolic trace ρ. We now perform a case analysis on the truth value of the
evaluation of cond within the environments Γinit and φ(Γinit ).

Case 1. Suppose that [[cond ]]φ(Γinit ) = [[cond ]]Γinit
= True. Then it must be that ρ ∈

SymbolicT races(P (t)). From assumption (iii) we have that

ρ̂ 〈ǫ〉 generatesφ(Γinit) φ(tr )̂ 〈e〉.

In addition, from assumptions (i) and (ii) we have that

tr ∈ traces(P(t),Γinit ) and φ(tr )̂ 〈e〉 ∈ traces(P(t), φ(Γinit )).

The result is now implied in this case by the inductive hypothesis for P(t) and the fact that

(Proc(t),Γinit )
〈〉
=⇒ (P(t),Γinit ).

Case 2. Suppose that [[cond ]]φ(Γinit ) = [[cond ]]Γinit
= False. This case is like Case 1, above,

with Q(t) in place of P(t).

Case 3. Suppose that [[cond ]]φ(Γinit ) = True ∧ [[cond ]]Γinit
= False. Then, by assump-

tion (i) and (ii),

tr ∈ traces(Q(t),Γinit) and φ(tr )̂ 〈e〉 ∈ traces(P(t), φ(Γinit )).

Since Proc(t) satisfies RevPosConjEqT, we have that (Q(t), φ(Γinit )) ⊑T (P(t), φ(Γinit )),
so

φ(tr )̂ 〈e〉 ∈ traces(Q(t), φ(Γinit )).
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Let ρ′̂ 〈ǫ′〉 ∈ SymbolicT races(Q(t)) be such that ρ′̂ 〈ǫ′〉 generatesφ(Γinit) φ(tr )̂ 〈e〉. Then,

by Lemma 5.6, !(ǫ′) ⊆ !(ǫ). Hence, !t(ǫ′) ⊆ !t (ǫ), so assumption (iv) implies that

∀ i ∈ !t(ǫ′) • vi ∈ {0 . . B − 1}.

Therefore, by the inductive hypothesis for Q(t),

∀ v ′ ∈ {1 . . k} → V alue |
(∀ i ∈ $t(ǫ′) ∪ ?t(ǫ′) • v ′i ∈ T ) ∧ (∀ i ∈ !(ǫ′) • v ′i = vi) •

tr 〈̂c.v ′1 . . . v
′
k 〉 ∈ traces(Q(t),Γinit).

(B.8)

Suppose v ′ ∈ {1 . . k} → V alue is such that

(∀ i ∈ $t (ǫ) ∪ ?t(ǫ) • v ′i ∈ T ) ∧ (∀ i ∈ !(ǫ) • v ′i = vi).

The fact that !(ǫ′) ⊆ !(ǫ) implies that

∀ i ∈ !(ǫ′) • v ′i = vi . (B.9)

In addition, we know that both ǫ and ǫ′ give rise to c.v1 . . . vk , so

$t (ǫ′) ∪ ?t(ǫ′) ∪ !t(ǫ′) = $t(ǫ) ∪ ?t(ǫ) ∪ !t (ǫ),

which means that

$t (ǫ′) ∪ ?t(ǫ′) ⊆ $t (ǫ) ∪ ?t(ǫ) ∪ !t(ǫ).

Therefore, since ∀ i ∈ !t (ǫ) • v ′i ∈ T (as ∀ i ∈ !t(ǫ) • v ′i = vi and, by assumption (iv),
∀ i ∈ !t(ǫ) • vi ∈ T ) and ∀ i ∈ $t(ǫ) ∪ ?t(ǫ) • v ′i ∈ T (by our assumption about v ′),

∀ i ∈ $t(ǫ′) ∪ ?t(ǫ′) • v ′i ∈ T .

Combining this with (B.9) and (B.8), we get that

∀ v ′ ∈ {1 . . k} → V alue | (∀ i ∈ $t (ǫ) ∪ ?t(ǫ) • v ′i ∈ T ) ∧ (∀ i ∈ !(ǫ) • v ′i = vi) •
tr 〈̂c.v ′1 . . . v

′
k 〉 ∈ traces(Q(t),Γinit ).

The result now follows, because (Proc(t),Γinit )
〈〉
=⇒ (Q(t),Γinit).

Case 4. Suppose that [[cond ]]φ(Γinit ) = False ∧ [[cond ]]Γinit
= True. This case is not possible

since cond is a conjunction of equality tests and for no function φ we can ever have x = y
and φ(x ) 6= φ(y).

We now prove Proposition 6.8. We will need the following lemma which shows that in
this case non-t equivalent symbolic traces are in fact non-τ equivalent.

Lemma B.1. Suppose σ, σ′ are symbolic traces that contain no conditional symbolic events,
σ ≡non-t σ

′, neither σ nor σ′ ends in τ , and

P(t) 7
σ
−→s Q(t) and P(t) 7

σ′

−→s Q
′(t).

Then σ ≡non-τ σ′ and Q(t) = Q ′(t).

Proof. We prove the result by induction on the number of visible symbolic events in σ
and σ′. The base case of σ = σ′ = 〈〉 is trivial.

Suppose σ = σ0 τ̂a 〈̂ǫ〉, σ′ = σ′
0 τ̂ b 〈̂ǫ′〉, and σ0, σ

′
0 do not end in τ . Then σ0 ≡non-t σ

′
0,

ǫ ≡non-t ǫ
′, and

P(t) 7
σ0−→s Q0(t) 7

τa 〈̂ǫ〉
−−→s Q(t) and P(t) 7

σ′
0−→s Q

′
0(t) 7

τb 〈̂ǫ′〉
−−→s Q

′(t)
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for some Q0(t) and Q ′
0(t). Then by the inductive hypothesis, σ0 ≡non-τ σ′

0 and Q0(t) =
Q ′

0(t). Then by Lemma A.3, the t parts of ǫ and ǫ′ are equal, so ǫ = ǫ′; hence σ ≡non-τ σ′.
Finally, by Lemma A.1, Q(t) = Q ′(t).

Proof of Proposition 6.8. Let σ 〈̂ǫ〉 be a symbolic trace of Spec(t). If σ ′̂ 〈ǫ′〉 is a symbolic
trace of Spec(t) such that σ 〈̂ǫ〉 ≡non-t σ ′̂ 〈ǫ′〉, then by the above lemma, ǫ = ǫ′. Hence
!t(σ, ǫ)(Spec(t)) = !t(ǫ). So in Theorem 6.5,

ThreshT = max{#!t(ǫ)(Spec(t)) | σ 〈̂ǫ〉 ∈ SymbolicT races(P (t))}

≤ max{#!t(α) | α is a construct of Spec(t)}

with equality in the normal case that every construct is reachable.

B.2. Proofs for Section 6.2.

Proof of Proposition 6.11. We prove the result using a structural induction on Proc(t). We
give just the cases for prefix and conditional choice.

Prefix. Suppose that Proc(t) = α → Proc′(t) for some construct α = c§1x1:X1 . . . §kxk :Xk

and some process syntax Proc′(t). We now consider two cases.

Subcase 1. Suppose that tr = 〈〉. The fact that (φ(tr),X ) ∈ failures(Proc(t), φ(Γinit ))
implies that there exists an environment Γ with dom(Γ) = $t (α) such that

(Proc(t), φ(Γinit ))
〈〉
=⇒ (P(t), φ(Γinit )⊕ Γ) ref X ,

where P(t) is like Proc(t), but with some substitutions of concrete values for the nonde-
terministic input variables of non-t types of α and with the effects of the application of
Replace$7→!, as dictated by the SSOS firing rules for prefix (see Section 4.3.2). Then,

(Proc(t),Γinit )
〈〉
=⇒ (P(t),Γinit ⊕ Γ)

by resolving the nondeterministic selections of α (if any) in the same way. We now show
that (P(t),Γinit ⊕ Γ) ref X . Observe that the only difference between the initial events of
two configurations (S ,Γ1) and (S ,Γ2) are the output values of type t that come from the
environments Γ1 and Γ2. Therefore,

initials(P(t),Γinit ⊕ Γ) =
{c.v ′1 . . . v

′
k | (∀ i ∈ !t(α) • v ′i = (Γinit ⊕ Γ) (xi ))
∧ ∃ c.v1 . . . vk ∈ initials(P(t), φ(Γinit )⊕ Γ) •

∀ i ∈ {1 . . k} \ !t(α) • v ′i = vi)}.

Let v be such that c.v1 . . . vk is in initials(P(t), φ(Γinit )⊕Γ) and let v ′ be such that c.v ′1 . . . v
′
k

is in initials(P(t),Γinit ⊕ Γ) with ∀ i ∈ {1 . . k} \ !t (α) • v ′i = vi . Also, let i ∈ !t(α). Hence
vi = (φ(Γinit )⊕Γ)(xi ) and v ′i = (Γinit⊕Γ)(xi ). Hence, by assumption (iii) of the proposition,
v ′i ∈ {0 . .B−1}. So, thanks to the properties of φ, φ(v ′i ) = v ′i . Hence (φ(Γinit )⊕Γ)(xi ) = v ′i
since xi /∈ dom(Γ). Therefore

∀ i ∈ !t(α) • v ′i = (Γinit ⊕ Γ)(xi ) = (φ(Γinit )⊕ Γ)(xi ) = vi .

Hence,

initials(P(t),Γinit ⊕ Γ) = initials(P(t), φ(Γinit )⊕ Γ). (B.10)
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Since (P(t),Γinit ⊕ Γ) is stable, (P(t),Γinit ⊕ Γ) ref Y for all Y ⊆ Σ \ initials(P(t),
Γinit ⊕ Γ). However, from the fact that (P(t), φ(Γinit ) ⊕ Γ) ref X we can infer that X ⊆
Σ \ initials(P(t), φ(Γinit ) ⊕ Γ), so by (B.10) (P(t),Γinit ⊕ Γ) ref X . This implies that
(〈〉,X ) ∈ failures(Proc(t),Γinit ), as required.

Subcase 2. Suppose that tr 6= 〈〉. Then tr = 〈e 〉̂ tr ′ for some visible event e that matches α
and trace tr ′. Let Γ = φ(Γinit) ⊕Match(α, φ(e)) and Γ′ = Γinit ⊕Match(α, e). From the
assumptions of the proposition we can infer that

tr ′ ∈ traces(P(t),Γ′) and (φ(tr ′),X ) ∈ failures(P(t),Γ),

where P(t) is like Proc′(t), but with some substitutions of concrete values for the non-t
type input variables of α, as dictated by the SSOS firing rules for prefix (see Section 4.3.2).

Assumption (iii), combined with the fact that (Proc(t),Γinit )
〈e〉
=⇒ (P(t),Γ′), implies that if

P is a configuration such that (P(t),Γ′)
tr ′
=⇒ P , then every output of type t of every event

in initials(P) is in {0 . . B − 1}. Observe that Γ = φ(Γ′). So, by the inductive hypothesis
for P(t), (tr ′,X ) ∈ failures(P(t),Γ′), which implies that (tr ,X ) ∈ failures(Proc(t),Γinit ).

Conditional choice. Suppose that Proc(t) = if cond then P(t) else Q(t) for some process
syntaxes P(t) and Q(t). If cond is not in Cond , then it immediately evaluates to True
or False, in which case the result is implied by the inductive hypothesis for P(t) or Q(t),
respectively. For a condition cond in Cond we perform a case analysis on the result of the
evaluation of cond within environments Γinit and φ(Γinit).

Case 1. Suppose that [[cond ]]φ(Γinit ) = [[cond ]]Γinit
= True. Then

(φ(tr),X ) ∈ failures(P(t), φ(Γinit )) and tr ∈ traces(P(t),Γinit ).

In addition, assumption (iii), combined with the fact that (Proc(t),Γinit )
〈〉
=⇒ (P(t),Γinit ),

implies that if P is a configuration such that (P(t),Γinit )
tr
=⇒ P , then every output of type t

of every event in initials(P) is in {0 . . B − 1}. Then, the inductive hypothesis for P(t)
implies that (tr ,X ) ∈ failures(P(t),Γinit ). Therefore, (tr ,X ) ∈ failures(Proc(t),Γinit ).

Case 2. Suppose that [[cond ]]φ(Γinit ) = [[cond ]]Γinit
= False. This case is like Case 1, above,

with Q(t) in place of P(t).

Case 3. Suppose that [[cond ]]φ(Γinit ) = True ∧ [[cond ]]Γinit
= False. Then

(φ(tr),X ) ∈ failures(P(t), φ(Γinit )) and tr ∈ traces(Q(t),Γinit).

However, Proc(t) satisfiesRevPosConjEqTF, so (Q(t), φ(Γinit )) ⊑F (P(t), φ(Γinit ). Hence,

(φ(tr),X ) ∈ failures(Q(t), φ(Γinit )).

In addition, assumption (iii), combined with the fact that (Proc(t),Γinit )
〈〉
=⇒ (Q(t),Γinit),

implies that if P is a configuration such that (Q(t),Γinit)
tr
=⇒ P , then every output of type t

of every event in initials(P) is in {0. .B−1}. The inductive hypothesis for Q(t) implies now
that (tr ,X ) ∈ failures(Q(t),Γinit), which implies that (tr ,X ) ∈ failures(Proc(t),Γinit ).

Case 4. Suppose that [[cond ]]φ(Γinit ) = False ∧ [[cond ]]Γinit
= True. This case is not possible,

since cond is a conjunction of equality tests and for no function φ we can ever have x = y
and φ(x ) 6= φ(y).
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