Hybrid classification approach for imbalanced datasets

Thumbnail Image
Date
2015-01-01
Authors
Gao, Tianxiang
Major Professor
Advisor
Sigurdur Olafsson
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Abstract

The research area of imbalanced dataset has been attracted increasing attention from both academic and industrial areas, because it poses a serious issues for so many supervised learning problems. Since the number of majority class dominates the number of minority class are from minority class, if training dataset includes all data in order to fit a classic classifier, the classifier tends to classify all data to majority class by ignoring minority data as noise. Thus, it is very significant to select appropriate training dataset in the prepossessing stage for classification of imbalanced dataset. We propose an combination approach of SMOTE (Synthetic Minority Over-sampling Technique) and instance selection approaches. The numeric results show that the proposed combination approach can help classifiers to achieve better performance.

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
article
Comments
Rights Statement
Copyright
Thu Jan 01 00:00:00 UTC 2015
Funding
Subject Categories
Supplemental Resources
Source