Abstract
Although the gender gap in math course-taking and performance has narrowed in recent decades, females continue to be underrepresented in math-intensive fields of Science, Technology, Engineering, and Mathematics (STEM). Career pathways encompass the ability to pursue a career as well as the motivation to employ that ability. Individual differences in cognitive capacity and motivation are also influenced by broader sociocultural factors. After reviewing research from the fields of psychology, sociology, economics, and education over the past 30 years, we summarize six explanations for US women’s underrepresentation in math-intensive STEM fields: (a) cognitive ability, (b) relative cognitive strengths, (c) occupational interests or preferences, (d) lifestyle values or work-family balance preferences, (e) field-specific ability beliefs, and (f) gender-related stereotypes and biases. We then describe the potential biological and sociocultural explanations for observed gender differences on cognitive and motivational factors and demonstrate the developmental period(s) during which each factor becomes most relevant. We then propose evidence-based recommendations for policy and practice to improve STEM diversity and recommendations for future research directions.
Similar content being viewed by others
References
Ackerman, P. L., Bowen, K. R., Beier, M. E., & Kanfer, R. (2001). Determinants of individual differences and gender differences in knowledge. Journal of Educational Psychology, 93, 797–825.
Alexander, G. M., Wilcox, T., & Woods, R. (2009). Sex differences in infants’ visual interest in toys. Archives of Sexual Behavior, 38, 427–433. doi:10.1007/s10508-008-9430-1.
Allen, S. (2004). Designs for learning: studying science museum exhibits that do more than entertain. Science Education. doi:10.1002/sce.20016.
American Association of University Women Educational Foundation. (2008). Where the girls are: the facts about gender equity in education. Washington: Author.
Baker, M., & Milligan, K. (2013). Boy-girl differences in parental time investments: evidence from three countries. National Bureau of Economic Research (NBER) Working Paper 18893. Retrieved from http://www.nber.org/papers/w18893. doi: 10.3386/w18893
Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: a longitudinal study and an intervention. Child Development, 78, 246–263. doi:10.1111/j.1467-8624.2007.00995.x.
Bleeker, M. M., & Jacobs, J. E. (2004). Achievement in math and science: do mothers’ beliefs matter 12 years later? Journal of Educational Psychology, 96, 97–109. doi:10.1037/0022-0663.96.1.97.
Ceci, S. J., & Williams, W. M. (2011). Understanding current causes of women’s underrepresentation in science. PNAS, 108, 3157–3162. doi:10.1073/pnas.1014871108.
Ceci, S. J., Williams, W. M., & Barnett, S. M. (2009). Women’s underrepresentation in science: sociocultural and biological considerations. Psychological Bulletin, 135, 218–261. doi:10.1037/a0014412.
Ceci, S. J., Ginther, D. K., Kahn, S., & Williams, W. M. (2014). Women in academic science: a changing landscape. Psychological Science in the Public Interest, 15, 75–141. doi:10.1177/1529100614541236.
Cheryan, S., & Plaut, V. C. (2010). Explaining underrepresentation: a theory of precluded interest. Sex Roles, 63, 475–488. doi:10.1007/s11199-010-9835-x.
Cheryan, S., Plaut, V. C., Davies, P. G., & Steele, C. M. (2009). Ambient belonging: how stereotypical cues impact gender participation in computer science. Journal of Personality and Social Psychology, 97, 1045–1060. doi:10.1037/a0016239.
Cheryan, S., Meltzoff, A. N., & Kim, S. (2011a). Classrooms matter: the design of virtual classrooms influences gender disparities in computer science classes. Computers & Education, 57, 1825–1835. doi:10.1016/j.compedu.2011.02.004.
Cheryan, S., Siy, J. O., Vichayapai, M., Drury, B. J., & Kim, S. (2011b). Do female and male role models who embody STEM stereotypes hinder women’s anticipated success in STEM? Social Psychological and Personality Science, 2, 656–664. doi:10.1177/1948550611405218.
Chow, A., Eccles, J. S., & Salmela-Aro, K. (2012). Task value profiles across subjects and aspirations to physical and IT-related sciences in the United States and Finland. Developmental Psychology, 48, 1612–1628. doi:10.1037/a0030194.
Correll, S. J. (2001). Gender and the career choice process: the role of biased self‐assessments. American Journal of Sociology, 106, 1691–1730. doi:10.1086/321299.
Crosnoe, R., Riegle-Crumb, C., Field, S., Frank, K., & Muller, C. (2008). Peer group contexts of girls’ and boys’ academic experiences. Child Development, 79, 139–155. doi:10.1111/j.1467-8624.2007.01116.x.
Crowley, K., Callanan, M. A., Tenenbaum, H. R., & Allen, E. (2001). Parents explain more often to boys than to girls during shared scientific thinking. Psychological Science, 12, 258–261. doi:10.1111/1467-9280.00347.
Cvencek, D., Meltzoff, A. N., & Greenwald, A. G. (2011). Math–gender stereotypes in elementary school children. Child Development, 82, 766–779. doi:10.1111/j.14678624.2010.01529.x.
Deutsch, F. M. (2003). How small classes benefit high school students. NASSP Bulletin, 87, 35–44. doi:10.1177/019263650308763504.
Diekman, A. B., Brown, E., Johnston, A., & Clark, E. (2010). Seeking congruity between goals and roles: a new look at why women opt out of STEM careers. Psychological Science, 21, 1051–1057. doi:10.1177/0956797610377342.
Diekman, A. B., Clark, E. K., Johnston, A. M., Brown, E. R., & Steinberg, M. (2011). Malleability in communal goals and beliefs influences attraction to STEM careers: evidence for a goal congruity perspective. Journal of Personality and Social Psychology, 101, 902–918. doi:10.1037/a0025199.
Dweck, C. S. (2002). The development of ability conceptions. In A. Wigfield & J. S. Eccles (Eds.), Development of achievement motivation. A volume in the educational psychology series: Vol. xvii, (pp. 57–88). San Diego, CA: Academic Press. doi:10.1016/B978-012750053-9/50005-X.
Dweck, C. (2007). Is math a gift? Beliefs that put females at risk. In S. J. Ceci & W. M. Williams (Eds.), Why aren’t more women in 1460 science? Top researchers debate the evidence (pp. 47–55). Washington: APA Press. doi:10.1037/11546-004.
Eccles, J. S. (2009). Who am I and what am I going to do with my life? Personal and collective identities as motivators of action. Educational Psychologist, 44, 78–89. doi:10.1080/00461520902832368.
Eccles, J. S., Wigfield, A., Harold, R. D., & Blumenfeld, P. (1993). Age and gender differences in children’s self- and task perceptions during elementary school. Child Development, 64, 830–847. doi:10.1111/j.1467-8624.1993.tb02946.x.
Eccles, J. S., Barber, B., & Jozefowicz, D. (1999). Linking gender to educational, occupational, and recreational choice: applying the Eccles et al. model of achievement-related choices. In J. T. Spence (Ed.), Sexism and stereotypes in modern society: the gender science of Janet Taylor Spence (pp. 153–191). Washington: APA. doi:10.1037/10277-007.
Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: a meta-analysis. Psychological Bulletin, 136, 103–127. doi:10.1037/a0018053.
Ferriman, K., Lubinski, D., & Benbow, C. P. (2009). Work preferences, life values, and personal views of top math/science graduate students and the profoundly gifted: developmental changes and gender differences during emerging adulthood and parenthood. Journal of Personality and Social Psychology, 97, 517–532. doi:10.1037/a0016030.
Freund, A. M., Weiss, D., & Wiese, B. S. (2012). Graduating from high school: the role of gender-related attitude, attributes, and motives for a central transition in late adolescence. Switzerland: Department of Psychology, University of Zurich. doi:10.1080/17405629.2013.772508. Unpublished manuscript.
Frick, A., & Wang, S. H. (2014). Mental spatial transformations in 14‐ and 16‐month‐old infants: effects of action and observational experience. Child Development, 85, 278–293. doi:10.1111/cdev.12116.
Friedel, J. M., Cortina, K. S., Turner, J. C., & Midgley, C. (2007). Achievement goals, efficacy beliefs and coping strategies in mathematics: the role of perceived parent and teacher goal emphases. Contemporary Educational Psychology, 32, 434–458. doi:10.1016/j.cedpsych.2006.10.009.
Glick, P., & Fiske, S. T. (1997). Hostile and benevolent sexism: measuring ambivalent sexist attitudes toward women. Psychology of Women Quarterly, 21, 119–135. doi:10.1111/j.1471-6402.1997.tb00104.x.
Hakim, C. (2006). Women, careers, and work-life preferences. British Journal of Guidance and Counseling, 34, 279–294. doi:10.1080/03069880600769118.
Hanson, S. L. (2004). African American women in science: experiences from high school through the post-secondary years and beyond. NWSA Journal, 16, 96–115. doi:10.1353/nwsa.2004.0033.
Hanson, S. L. (2007). Success in science among young African American women: the role of minority families. Journal of Family Issues, 28, 3–33. doi:10.1177/0192513X06292694.
Haughey, M., Snart, F., & da Costa, J. (2001). Literacy achievement in small grade 1 classes in high-poverty environments. Canadian Journal of Education, 26, 301–320. doi:10.2307/1602210.
Hill, C., Corbett, C., & St. Rose, A. (2010). Why so few? Women in science, technology, engineering and mathematics. Washington: American Association of University Women.
Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A. B., & Williams, C. C. (2008). Gender similarities characterize math performance. Science, 321, 494–495. doi:10.1126/science.1160364.
Jacobs, J. E., & Eccles, J. S. (1992). The impact of mothers’ gender-role stereotypic beliefs on mothers’ and children’s ability perceptions. Journal of Personality and Social Psychology, 63, 932–944. doi:10.1037/0022-3514.63.6.932.
Jacobs, J. E., & Winslow, S. E. (2004). Overworked faculty: job and stresses and family demands. Annals of American Political and Social Scientist, 596, 104–129. doi:10.1177/0002716204268185.
Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling alice motivates middle school girls to learn computer programming. Proceeding of the SIGCHI Conference on Human Factors in Computing Systems, 1455-1464.
Kena, G., Musu-Gillette, L., Robinson, J., Wang, X., Rathbun, A., Zhang, J., et al. (2015). The condition of education 2015 (NCES 2015–144). U.S. Department of Education, National Center for Education Statistics. Washington, DC. Retrieved from http://nces.ed.gov/pubsearch. Accessed 26 Aug 2015.
King, D. K. (1992). Unraveling fabric, missing the beat: class and gender in Afro-American social issues. The Black Scholar, 22, 36–44.
Knobloch-Westerwick, S., Glynn, C. J., & Huge, M. (2013). The Matilda effect in science communication: an experiment on gender bias in publication quality perceptions and collaboration interest. Science Communication, 35, 603–625. doi:10.1177/1075547012472684.
Leaper, C., Anderson, K. J., & Sanders, P. (1998). Moderators of gender effects on parents’ talk to their children: a meta-analysis. Developmental Psychology, 34, 3–27. doi:10.1037/0012-1649.34.1.3.
Leaper, C., Farkas, T., & Brown, C. S. (2012). Adolescent girls’ experiences and gender-related beliefs in relation to their motivation in math/science and English. Journal of Youth and Adolescence, 41, 268–282. doi:10.1007/s10964-011-9693-z.
Leslie, S.-J., Cimpian, A., Meyer, M., & Freeland, E. (2015). Expectations of brilliance underlie gender distributions across academic disciplines. Science, 347, 262–265. doi:10.1126/science.1261375.
Liben, L. S., & Coyle, E. F. (2014). Chapter three-developmental interventions to address the STEM gender gap: exploring intended and unintended consequences. Advances in Child Development and Behavior, 47, 77–115.
Lindberg, S. M., Hyde, J. S., Petersen, J. L., & Linn, M. C. (2010). New trends in gender and mathematics performance: a meta-analysis. Psychological Bulletin, 136, 1123–1135. doi:10.1037/a0021276.
Lippa, R. A., Collaer, M. L., & Peters, M. (2010). Sex differences in mental rotation and line angle judgments are positively associated with gender equality and economic development across 53 nations. Archives of Sexual Behavior, 39, 990–997. doi:10.1007/s10508-008-9460-8.
Lohman, D. F., Gambrell, J., & Lakin, J. (2008). The commonality of extreme discrepancies in the ability profiles of academically gifted students. Psychology Science Quarterly, 50, 269–282.
Lubienski, S. T., Robinson, J. P., Crane, C. C., & Ganley, C. M. (2013). Girls’ and boys’ mathematics achievement, affect, and experiences: findings from ECLS-K. Journal for Research in Mathematics Education, 44, 634–645. doi:10.5951/jresematheduc.44.4.0634.
Lubinski, D., & Benbow, C. P. (2006). Study of mathematically precocious youth after 35 years: uncovering antecedents for the development of math-science expertise. Perspectives on Psychological Science, 1, 316–345. doi:10.1111/j.1745-6916.2006.00019.x.
Lubinski, D., Benbow, C. P., Webb, R. M., & Bleske-Rechek, A. (2006). Tracking exceptional human capital over two decades. Psychological Science, 17, 194–199. doi:10.1111/j.1467-9280.2006.01685.x.
Maeda, Y., & Yoon, S. Y. (2013). A meta-analysis on gender differences in mental rotation ability measured by the Purdue spatial visualization tests: visualization of rotations (PSVT: R). Educational Psychology Review, 25, 69–94. doi:10.1007/s10648-012-9215-x.
Maltese, A. V., & Tai, R. H. (2010). Eyeballs in the fridge: sources of early interest in science. International Journal of Science Education, 32, 669–685. doi:10.1080/09500690902792385.
Maltese, A. V., & Tai, R. H. (2011). Pipeline persistence: examining the association of educational experiences with earned degrees in STEM among U.S. students. Science Education, 95, 877–907. doi:10.1002/sce.20441.
Mason, M. A., & Goulden, M. (2004). Marriage and baby blues: redefining gender equity and the academy. Annals of the American Political and Social Sciences, 596, 86–103. doi:10.1177/000271620459600104.
Meece, J. L., Anderman, E. M., & Anderman, L. H. (2006). Classroom goal structure, student motivation, and academic achievement. Annual Review of Psychology, 57, 387–503. doi:10.1146/annurev.psych.56.091103.070258.
Meyer, M., Cimpian, A., & Leslie, S. J. (2015). Women are underrepresented in fields where success is believed to require brilliance. Frontiers in Psychology, 6, 1–12. doi:10.3389/fpsyg.2015.00235.
Miller, D. I., & Halpern, D. F. (2014). The new science of cognitive sex differences. Trends in Cognitive Sciences, 18, 37–45. doi:10.1016/j.tics.2013.10.011.
Miller, D. I., Eagly, A. H., & Linn, M. C. (2015). Women’s representation in science predicts national gender-science stereotypes: evidence from 66 nations. Journal of Educational Psychology, 107, 631–644.
Möhring, W., & Frick, A. (2013). Touching up mental rotation: effects of manual experience on 6-month-old infants’ mental object rotation. Child Development, 84, 1554–1565. doi:10.1111/cdev.12065.
Moore, D. S., & Johnson, S. P. (2008). Mental rotation in human infants: a sex difference. Psychological Science, 19, 1063–1066. doi:10.1111/j.1467-9280.2008.02200.x.
Moss-Racusin, C. A., Dovidio, J. F., Brescoll, V. L., Graham, M. J., & Handelsman, J. (2012). Science faculty’s subtle gender biases favoring male students. PNAS, 109, 16474–16479. doi:10.1073/pnas.1211286109.
Mueller, C. M., & Dweck, C. S. (1998). Praise for intelligence can undermine children’s motivation and performance. Journal of Personality and Social Psychology, 75, 33–52. doi:10.1037/0022-3514.75.1.33.
National Science Foundation. (2011). Women, minorities, and persons with disabilities in science and engineering: 2011. Arlington: National Science Foundation.
Park, G., Lubienski, D., & Benbow, C. P. (2007). Contrasting intellectual patterns predict creativity in the arts and sciences. Psychological Science, 18, 948–952.
Quinn, P. C., & Liben, L. S. (2008). A sex difference in mental rotation in young infants. Psychological Science, 19, 1067–1070. doi:10.1111/j.1467-9280.2008.02201.x.
Reuben, E., Sapienza, P., & Zingales, L. (2014). How stereotypes impair women’s careers in science. PNAS, 111, 4403–4408. doi:10.1073/pnas.1314788111.
Robinson, J. P., & Lubienski, S. T. (2011). The development of gender achievement gaps in mathematics and reading during elementary and middle school: examining direct cognitive assessments and teacher ratings. American Educational Research Journal, 48, 268–302. doi:10.3102/0002831210372249.
Roseth, C. J., Johnson, D. W., & Johnson, R. T. (2008). Promoting early adolescents’ achievement and peer relationships: the effects of cooperative, competitive and individualistic goal structure. Psychological Bulletin, 134, 223–246. doi:10.1037/0033-2909.134.2.223.
Sadik, A. (2008). Digital storytelling: A meaningful technology-integrated approach for engaged student learning. Educational Technology Research and Development, 56, 487–506. doi:10.1007/s11423-008-9091-8.
Simpkins, S. D., Davis-Kean, P. E., & Eccles, J. S. (2006). Math and science motivation: a longitudinal examination of the links between choices and beliefs. Developmental Psychology, 42, 70–83. doi:10.1037/0012-1649.42.1.70.
Spelke, E. S. (2005). Sex differences in intrinsic aptitude for mathematics and science? American Psychologist, 60, 950–958. doi:10.1037/0003-066X.60.9.950.
Stake, J. E., & Nickens, S. D. (2005). Adolescent girls’ and boys’ science peer relationships and perceptions of the possible self as scientist. Sex Roles, 52, 1–11. doi:10.1007/s11199-005-1189-4.
Stecher, B. M., & Bohrnstedt, G. W. (Eds.). (2002). Class size reduction in California: findings from 1999-00 and 2000-01. Sacramento: California Department of Education.
Stout, J. G., Dasgupta, N., Hunsinger, M., & McManus, M. A. (2011). STEMing the tide: using ingroup experts to inoculate women’s self-concept in science, technology, engineering, and mathematics (STEM). Journal of Personality and Social Psychology, 100, 255–270. doi:10.1037/a0021385.
Su, R., Rounds, J., & Armstrong, P. I. (2009). Men and things, women and people: a meta-analysis of sex differences in interests. Psychological Bulletin, 135, 859–884. doi:10.1037/a0017364.
Swim, J. K., & Cohen, L. L. (1997). Overt, covert, and subtle sexism: a comparison between attitudes toward women and modern sexism scales. Psychology of Women Quarterly, 21, 103–118. doi:10.1111/j.1471-6402.1997.tb00103.x.
Swim, J. K., Aikin, K. J., Hall, W. S., & Hunter, B. A. (1995). Sexism and racism: old-fashioned and modern prejudices. Journal of Personality and Social Psychology, 68, 199–214. doi:10.1037/0022-3514.68.2.199.
Swim, J. K., Mallett, R., Russo-Devosa, Y., & Stangor, C. (2005). Judgements of sexism: a comparison of the subtlety of sexism measures and sources of variability in judgements of sexism. Psychology of Women Quarterly, 29, 406–411. doi:10.1111/j.1471-6402.2005.00240.x.
Tai, R. H., Liu, C. Q., Maltese, A. V., & Fan, X. (2006). Planning early for careers in science. Science, 312, 1143–1144. doi:10.1126/science.1128690.
Tenenbaum, H. R. (2009). ‘You'd be good at that’: gender patterns in parent‐child talk about courses. Social Development, 18, 447–463. doi:10.1111/j.1467-9507.2008.00487.x.
Tenenbaum, H. R., & Leaper, C. (2002). Are parents’ gender schemas related to their children’s gender-related cognitions? A meta-analysis. Developmental Psychology, 38, 615–630. doi:10.1037//0012-1649.38.4.615.
Tiedemann, J. (2000a). Gender-related beliefs of teachers in elementary school mathematics. Educational Studies in Mathematics, 41, 191–207. doi:10.1023/A:1003953801526.
Tiedemann, J. (2000b). Parents’ gender stereotypes and teachers’ beliefs as predictors of children's concept of their mathematical ability in elementary school. Journal of Educational Psychology, 92, 144–151. doi:10.1007/s11199-011-9996-2.
Turner, J. C., & Patrick, H. (2004). Motivational influences on student participation in math classroom learning activities. Teachers College Record, 106, 1759–1785. doi:10.1111/j.1467-9620.2004.00404.x.
U.S. Department of Education, National Center for Education Statistics. (2012). Higher education: gaps in access and persistence study. Retrieved from http://nces.ed.gov/pubs2012/2012046/index.asp
U.S. Department of Education, National Center for Education Statistics (NCES). (2014). Digest of education statistics. Retrieved from https://nces.ed.gov/programs/digest/2014menu_tables.asp
Valla, J., & Ceci, S. J. (2011). Can sex differences in science be tied to the long reach of prenatal hormones? Brain organization theory, digit ratio (2D/4D), and sex differences in preference and cognition. Perspectives on Psychological Science, 6, 134–136. doi:10.1177/174569161140023.
Valla, J. M., & Ceci, S. J. (2014). Breadth-based models of women’s underrepresentation in STEM fields: an integrative commentary on Schmidt (2011) and Nye et al. (2012). Perspectives on Psychological Science, 9, 219–224. doi:10.1177/1745691614522067.
Voyer, D. (2011). Time limits and gender differences on paper-and-pencil tests of mental rotation: a meta-analysis. Psychonomic Bulletin & Review, 18, 267–277. doi:10.3758/s13423-010-0042-0.
Voyer, D., & Voyer, S. D. (2014). Gender differences in scholastic achievement: a meta-analysis. Psychological Bulletin, 140, 1174–1204. doi:10.1037/a0036620.
Voyer, D., Postma, A., Brake, B., & Imperato-McGinley, J. (2007). Gender differences in object location memory: a meta-analysis. Psychonomic Bulletin & Review, 14, 23–38. doi:10.3758/BF03194024.
Wai, J., Lubinski, D., Benbow, C. P., & Steiger, J. H. (2010). Accomplishment in science, technology, engineering, and mathematics (STEM) and its relation to STEM educational dose: a 25-year longitudinal study. Journal of Educational Psychology, 102, 860–871. doi:10.1037/a0019454.
Wai, J., Putallaz, M., & Makel, M. C. (2012). Studying intellectual outliers: Are there sex differences, and are the smart getting smarter? Current Directions in Psychological Science, 21, 382–390. doi:10.1177/0963721412455052.
Wang, M. T. (2012). Educational and career interests in math: a longitudinal examination of the links between perceived classroom environment, motivational beliefs, and interests. Developmental Psychology, 48, 1643–1657. doi:10.1037/a0027247.
Wang, M. T., & Degol, J. L. (2014a). Motivational pathways to STEM career choices: using expectancy-value perspective to understand individual and gender differences in STEM fields. Developmental Review, 33, 304–340. doi:10.1016/j.dr.2013.08.001.
Wang, M. T., & Degol, J. L. (2014b). Staying engaged: knowledge and research needs in student engagement. Child Development Perspectives, 8, 137–143. doi:10.1111/cdep.12073.
Wang, M. T., & Degol, J. L. (2015). School climate: a review of the definition, measurement, and impact on student outcomes. Educational Psychology Review. doi:10.1007/s10648-015-9319-1.
Wang, M. T., Degol, J. L., & Ye, F. (2015). Math achievement is important, but task values are critical too: Examining the intellectual and motivational factors leading to gender disparities in STEM careers. Frontiers in Psychology, 6, 1–9. doi:10.3389/fpsyq.2015.00036.
Wang, M. T., Eccles, J. S., & Kenny, S. (2013). Not lack of ability but more choice: individual and gender differences in STEM career choice. Psychological Science, 24, 770–775. doi:10.1177/0956797612458937.
Weisgram, E. S., & Bigler, R. S. (2006). Girls and science careers: the role of altruistic values and attitudes about scientific tasks. Journal of Applied Developmental Psychology, 27, 326–348. doi:10.1016/j.appdev.2006.04.004.
Weisgram, E. S., & Bigler, R. S. (2007). Effects of learning about gender discrimination on adolescent girls’ attitudes toward and interest in science. Psychology of Women Quarterly, 31, 262–269. doi:10.1111/j.1471-6402.2007.00369.x.
Williams, W. M., & Ceci, S. J. (2012). When scientists choose motherhood: a single factor goes a long way in explaining the dearth of women in math-intensive fields. How can we address it? American Scientist, 100, 138–145. doi:10.1511/2012.95.138.
Wolters, C. A. (2004). Advancing achievement goal theory: using goal structures and goal orientations to predict students’ motivation, cognition, and achievement. Journal of Educational Psychology, 96, 236–250. doi:10.1037/0022-0663.96.2.236.
Wong, W. I., Pasterski, V., Hindmarsh, P. C., Geffner, M. E., & Hines, M. (2012). Are there parental socialization effects on the sex-typed behavior of individuals with congenital adrenal hyperplasia? Archives of Sexual Behavior, 42, 381–391. doi:10.1007/s10508-012-9997-4.
Wood, W., & Eagly, A. H. (2002). A cross-cultural analysis of the behavior of women and men: implications for the origins of sex differences. Psychological Bulletin, 128, 699–727. doi:10.1037//0033-2909.128.5.699.
Yeager, D. S., & Dweck, C. S. (2012). Mindsets that promote resilience: when students believe that personal characteristics can be developed. Educational Psychologist, 47, 302–314. doi:10.1080/00461520.2012.722805.
Acknowledgments
This project was supported by Grant DRL1315943 from the National Science Foundation and Grant HD HD074731-01 from the Eunice Kennedy Shriver National Institute of Child Health and Development (NICHD).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, MT., Degol, J.L. Gender Gap in Science, Technology, Engineering, and Mathematics (STEM): Current Knowledge, Implications for Practice, Policy, and Future Directions. Educ Psychol Rev 29, 119–140 (2017). https://doi.org/10.1007/s10648-015-9355-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10648-015-9355-x