[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Lower bounds in on-line geometric searching metric searching

  • Technical Contributions
  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1279))

Included in the following conference series:

Abstract

We present a technique to prove lower bounds for on-line geometric searching problems. It is assumed that a goal which has to be found by a searcher is hidden somewhere in a known environment. The search cost is proportional to the distance traveled by the searcher. We are interested in lower bounds on the competitive ratio, that is, the ratio of the distance traveled by the searcher to the length of the shortest possible path to reach the goal. The technique we present is applicable to a number of problems, such as biased searching on m rays, and searching in θ-streets. For each of these problems we prove lower bounds for large classes of search strategies. All our lower bounds match the best known upper bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Information and Computation, 106:234–252, 1993. 6:234-252, 1993.

    Article  Google Scholar 

  2. A. Beck. On the linear search problem. Israel Journal of Math., 2: 221–228, 1964.

    Google Scholar 

  3. A. Beck. More on the linear search problem. Israel Journal of Math., 3:61–70, 1965.

    Google Scholar 

  4. A. Beck and D. Newman. Yet more on the linear search problem. Israel Journal of Math., 8:419–429, 1970.

    Google Scholar 

  5. A. Beck and P. Warren. The return of the linear search problem. Israel Journal of Math., 10:169–183, 1972.

    Google Scholar 

  6. R. Bellman. An optimal search Problem. SIAM Review, 5(2):274, 1963.

    Article  Google Scholar 

  7. M. Betke, R. L. Rivest, and M. Singh. Piecemeal learning of an unknown environment. In Sixth ACM Conference on Computational Learning Theory (COLT 93), pages 277–286, July 1993.

    Google Scholar 

  8. K-F. Chan and T. W. Lam. An on-line algorithm for navigating in an unknown environment. International Journal of Computational Geometry & Applications, 3:227–244, 1993.

    Google Scholar 

  9. A. Datta, Ch. Hipke, and S. Schuierer. Competitive searching in polygons—beyond generalized streets. In Proc. Sixth Annual International Symposium on Algorithms and Computaion, pages 32–41. LNCS 1004, 1995.

    Google Scholar 

  10. A. Datta and Ch. Icking. Competitive searching in a generalized street. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 175–182, 1994.

    Google Scholar 

  11. S. Gal. A general search game. Israel Journal of Math., 12:32–45, 1972.

    Google Scholar 

  12. S. Gal. Minimax solutions for linear search problems. SIAM Journal of Applied Math., 27(1):17–30, 1974.

    Article  Google Scholar 

  13. S. Gal. Search Games. Academic Press, 1980.

    Google Scholar 

  14. S. Gal and D. Chazan. On the optimality of the exponential functions for some minimax problems. SIAM Journal of Applied Math., 30(2):324–348, 1976.

    Article  Google Scholar 

  15. Ch. Hipke. Online-Algorithmen zur kompetitiven Suche in einfachen Polygonen. Master's thesis, Universität Freiburg, 1994.

    Google Scholar 

  16. M.-Y. Kao, Y. Ma, M. Sipser, and Y. Yin. Optimal constructions of hybrid algorithms. In Proc. 5th ACM-SIAM Sympos. Discrete Algorithms, pages 372–381, 1994.

    Google Scholar 

  17. M.Y. Kao, J.H. Reif, and S. R. Tate. Searching in an unknown environment: An optimal randomized algorithm for the cow-path problem. in Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, Pages 441–447, 1993.

    Google Scholar 

  18. R. Klein. Walking an unknown street with bounded detour. Comput. Geom. Theory Appl., 1:325–351, 1992.

    Google Scholar 

  19. J. M. Kleinberg. On-line search in a simple polygon. In Proc. of 5th ACM-SIAM Syrnp. on Discrete Algorithms, pages 8–15, 1994.

    Google Scholar 

  20. A. López-Ortiz. On-line Searching on Bounded and Unbounded Domains. PhD thesis, Department of Computer Science, University of Waterloo, 1996.

    Google Scholar 

  21. A. López-Ortiz and S. Schuierer. Going home through an unknown street. In S. G. Akl, F. Dehne, and J. R. Sack, editors, Proc. 4th Workshop on Algorithms and Datastructures, pages 135–146. LNCS 955, 1995.

    Google Scholar 

  22. A. López-Ortiz and S. Schuierer.Generalized streets revisited.In to appear, editor, Proc. 4th European Symposium on Algorithms, 1996.

    Google Scholar 

  23. C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. In Proc. 16th Internat. Colloq. Automata Lang. Program., volume 372 of Lecture Notes in Computer Science, pages 610–620. Springer-Verlag, 1989.

    Google Scholar 

  24. D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Communications of the ACM, 28:202–208, 1985.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bogdan S. Chlebus Ludwik Czaja

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schuierer, S. (1997). Lower bounds in on-line geometric searching metric searching. In: Chlebus, B.S., Czaja, L. (eds) Fundamentals of Computation Theory. FCT 1997. Lecture Notes in Computer Science, vol 1279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036204

Download citation

  • DOI: https://doi.org/10.1007/BFb0036204

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63386-0

  • Online ISBN: 978-3-540-69529-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics