Abstract
This study proposes using a random forest model for short-term electricity load forecasting. This is an ensemble learning method that generates many regression trees (CART) and aggregates their results. The model operates on patterns of the time series seasonal cycles which simplifies the forecasting problem especially when a time series exhibits nonstationarity, heteroscedasticity, trend and multiple seasonal cycles. The main advantages of the model are its ability to generalization, built-in cross-validation and low sensitivity to parameter values. As an illustration, the proposed forecasting model is applied to historical load data in Poland and its performance is compared with some alternative models such as CART, ARIMA, exponential smoothing and neural networks. Application examples confirm good properties of the model and its high accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Taylor, J.W., Snyder, R.D.: Forecasting Intraday Data with Multiple Seasonal Cycles Using Parsimonious Seasonal Exponential Smoothing. Omega 40(6), 748–757 (2012)
Weron, R.: Modeling and Forecasting Electricity Loads and Prices. Wiley (2006)
Kodogiannis, V.S., Anagnostakis, E.M.: Soft Computing Based Techniques for Short-Term Load Forecasting. Fuzzy Sets and Systems 128, 413–426 (2002)
Cheng, Y.-Y., Chan, P.P.K., Qiu, Z.-W.: Random Forest Based Ensemble System for Short Term Load Forecasting. Proc. Machine Learning and Cybernetics (ICMLC) 1, 52–56 (2012)
Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman and Hall (1984)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer (2009)
Dudek, G.: Similarity-based Approaches to Short-Term Load Forecasting. In: Zhu, J.J., Fung, G.P.C. (eds.) Forecasting Models: Methods and Applications, pp. 161–178. Concept Press (2010)
Dudek, G.: Short-Term Load Forecasting Using Fuzzy Regression Trees. Przegląd Elektrotechniczny (Electrical Review) 90(4), 108–111 (2014) (in Polish)
Dudek, G.: Forecasting Time Series with Multiple Seasonal Cycles using Neural Networks with Local Learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 52–63. Springer, Heidelberg (2013)
Hyndman, R.J., Khandakar, Y.: Automatic Time Series Forecasting: The Forecast Package for R. Journal of Statistical Software 27(3), 1–22 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Dudek, G. (2015). Short-Term Load Forecasting Using Random Forests. In: Filev, D., et al. Intelligent Systems'2014. Advances in Intelligent Systems and Computing, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-319-11310-4_71
Download citation
DOI: https://doi.org/10.1007/978-3-319-11310-4_71
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11309-8
Online ISBN: 978-3-319-11310-4
eBook Packages: EngineeringEngineering (R0)