[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Inferring Cost Equations for Recursive, Polymorphic and Higher-Order Functional Programs

  • Conference paper
Implementation of Functional Languages (IFL 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3145))

Included in the following conference series:

Abstract

This paper presents a type-based analysis for inferring size- and cost-equations for recursive, higher-order and polymorphic functional programs without requiring user annotations or unusual syntax. Our type reconstruction algorithm is capable of inferring first-order cost equations for a non-trivial subset of higher-order, recursive and polymorphic functions. We illustrate the approach with reference to some standard examples of recursive programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amtoft, T., Nielson, F., Nielson, H.R.: Type and Effect Systems: Behaviours for Concurrency. Imperial College Press, London (1999)

    Google Scholar 

  2. Benzinger, R.: Automated Complexity Analysis of Nuprl Extracted Programs. Journal of Functional Programming 11(1), 3–31 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chin, W.-N., Khoo, S.-C.: Calculating Sized Types. Higher-Order and Symbolic Computing 14(2,3) (2001)

    Google Scholar 

  4. Damas, L., Milner, A.J.R.G.: Principal Type-Schemes for Functional Programs. In: Proc. 1982 ACM Symp. on Principles of Prog. Langs. – POPL 1982, pp. 207–212 (1982)

    Google Scholar 

  5. Dornic, V., Jouvelot, P., Gifford, D.K.: Polymorphic Time Systems for Estimating Program Complexity. ACM Letters on Prog. Lang. and Systems 1(1), 33–45 (1992)

    Article  Google Scholar 

  6. Hughes, R.J.M., Pareto, L., Sabry, A.: Proving the Correctness of Reactive Systems using Sized Types. In: Proc 1996 ACM Symposium on Principles of Programming Languages – POPL 1996, St Petersburg, FL (January 1996)

    Google Scholar 

  7. Le Métayer, D.: ACE: An Automatic Complexity Evaluator. ACM Transactions on Programming Languages and Systems 10(2) (April 1988)

    Google Scholar 

  8. Levy, H., Lessman, F.: Finite Difference Equations. Macmillan, Basingstoke (1961)

    Google Scholar 

  9. Loidl, H.-W., Hammond, K.: A Sized Time System for a Parallel Functional Language. In: Glasgow Workshop on Functional Programming, Ullapool (July 1996)

    Google Scholar 

  10. Milner, A.J.R.G.: A Theory of Type Polymorphism in Programming. J. Computer System Sciences 17(3), 348–375 (1976)

    Article  MathSciNet  Google Scholar 

  11. Nielson, F., Nielson, H., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  12. Rebón Portillo, Á., Hammond, K., Loidl, H.-W., Vasconcelos, P.B.: Cost Analysis using Automatic Size and Time Inference. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670, Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Reistad, B., Gifford, D.K.: Static Dependent Costs for Estimating Execution Time. In: Proc. 1994 ACM Conference on Lisp and Functional Programming – LFP 1994, June 1994, pp. 65–78, Orlando, FL (1994)

    Google Scholar 

  14. Rosendahl, M.: Automatic Complexity Analysis. In: Proc. 1989 Intl. Conf. on Functional Prog. Langs. and Comp. Arch. – FPCA 1989, pp. 144–156 (1989)

    Google Scholar 

  15. Turner, D.A.: Elementary Strong Functional Programming. In: Hartel, P.H., Plasmeijer, R. (eds.) FPLE 1995. LNCS, vol. 1022, Springer, Heidelberg (1995)

    Google Scholar 

  16. Vasconcelos, P.B., Hammond, K.: A Type and Effect System for Costing Recursive, Higher-Order and Polymorphic Functional Programs (2004) (in preparation)

    Google Scholar 

  17. Wegbreit, B.: Mechanical Program Analysis. Comm. of the ACM 18(9) (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vasconcelos, P.B., Hammond, K. (2004). Inferring Cost Equations for Recursive, Polymorphic and Higher-Order Functional Programs. In: Trinder, P., Michaelson, G.J., Peña, R. (eds) Implementation of Functional Languages. IFL 2003. Lecture Notes in Computer Science, vol 3145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27861-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27861-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23727-3

  • Online ISBN: 978-3-540-27861-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics