
Continuous Software Engineering

ThiS is a FM Blank Page

Jan Bosch

Editor

Continuous
Software
Engineering

Editor
Jan Bosch
Chalmers University of Technology
Gothenburg, Sweden

ISBN 978-3-319-11282-4 ISBN 978-3-319-11283-1 (eBook)
DOI 10.1007/978-3-319-11283-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014956014

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

This book is dedicated to

Lars Pareto

who unexpectedly passed away in 2013.

We miss your passion,
your creativity and
your dedication to research,
but above all we miss you
as a friend and colleague.

ThiS is a FM Blank Page

Foreword

Engineering complex software systems is a true engineering challenge mostly

based on human-based approaches! Transferring leading-edge software engineer-

ing approaches into practice is a challenging task and requires close—laboratory-

style—collaboration between research and practice.

This thesis is based on frequent lessons learned in the past, where innovative

software engineering approaches were introduced in practice without close collab-

oration with research and did not produce sustainable improvements. What had

happened? New development approaches were introduced without measuring their

effects, adapting them to specific company needs, and without continuously

improving them. As a result, software developers were not convinced about the

benefits for their work and tended to fall back to previous practice. In that sense, the

investment into new development approaches did not show any return on

investment.

Best practice examples for appropriate technology transfer—based on close

collaboration, measurement of effects, and continuous improvement—are the Soft-

ware Engineering Laboratory (SEL) at NASA’s Goddard Space Flight Center in the
USA under the leadership of Victor Basili, Frank McGarry, and Jerry Page and the

Fraunhofer Institute for Experimental Software Engineering (IESE) in Germany

under the leadership of Dieter Rombach and Peter Liggesmeyer.

NASA’s SEL was a close collaboration between the University of Maryland

(research), NASA’s Goddard Space flight Center (owner of the satellite control

software systems), and Computer Science Corporation (software contractor to

NASA). In close collaboration, strengths and weaknesses of development practices

were analyzed quantitatively, and new development approaches were prepared by

research and introduced by means of a controlled technology transfer process

(accompanied by controlled experiments and case studies). As a result of this

approach, innovative approaches such as formal reviews, Cleanroom development,

and systematic reuse were introduced sustainably, and as a result the KPIs in terms

of quality, effort, and time were improved by orders of magnitude over a number of

years. The SEL can be considered the “mother” of all research and technology

vii

transfer organizations based on close research-practice collaboration. The SEL

received the first International Process Improvement award from IEEE and the

Software Engineering Institute at Carnegie Mellon University.

Fraunhofer’s IESE has established close collaborations with companies from all

sectors of industry in Germany, Europe, and beyond. Its competence is in software

and system engineering. It is considered a leader in applied research and technology

transfer related to scalable software engineering approaches, guaranteeing certain

qualities, and being applicable for all software-enabled innovations. Most of the its

customers are companies (large, medium, and small) from embedded system

domains (e.g., automotive, aerospace, medical devices), software and information

system domains (e.g., banking), or combinations of both (e.g., so-called smart

ecosystems in the areas of mobility, health, and energy management). Companies

receive sustained improvements of their software and system development capa-

bilities as well as ideas and concepts for new product ideas and business models.

Fraunhofer IESE is known foremost for its technologically sound and practically

applicable approaches for requirements engineering, architecture and software

product lines, automated testing, safety and security analysis and engineering,

and user experience generation.

The Software Center presented in this book is another remarkable organization

aimed at excellent applied research and technology transfer based on close collab-

oration between research and practice. The specific focus of the Software Center is

on continuous deployment of software.

The traditional process-based software development based on life cycle phases

with well-defined milestones has been challenged by so-called agile development

approaches aiming at development time reduction without sacrificing the resulting

product quality. We have learned as a community that agile development

approaches cannot replace process-based development approaches as a whole.

Instead we have learned that depending on application domain, criticality, size,

and qualification of people, either model may be the most appropriate. This has

been a revolution in that people began to understand that there is no silver bullet

process model, but the process model is a variable. Since then technology advances

such as Web 2.0 or SaaS have required a significant increase of releases in order to

optimize customer benefits. The Software Center explores the requirements and

processes most beneficial for such contexts. I am convinced, we have learned and

will continue to learn that—similar to the situation when agile complemented

process-based approaches—there will continue to be a justification for each

approach, depending on objectives and project context.

I expect the Software Center to continue to successfully complement other

existing research and technology transfer centers such as Fraunhofer IESE with a

specific focus on software development in the context of Web 2.0 and SaaS. This

book is an excellent introduction into the principles and works of the Software

Center. I wish the organizers of the center continued success not only for their own

sake but also for the sake of the European software development industry.

Kaiserslautern, Germany Dieter Rombach

July 2014

viii Foreword

Preface

As the rate of change and risk of disruption increase relentlessly, companies are

constantly battling to proactively adopt new innovations, be it business, technology,

or process innovations. No field is more intensely subject to this than the software-

intensive systems industry. Ranging from automotive, defense, and telecommuni-

cations systems to large, complex installed software solutions, the companies in this

industry have been subject to business model innovations, e.g., the transition from

products to services; to technology innovations, such as cloud computing and real-

time connectivity; and to process innovations, such as agile development practices,

continuous integration, and continuous deployment. The challenge for software-

intensive systems companies is how to maintain or even improve their competitive

position while responding to these disruptions to the normal way of doing things.

Similarly, software engineering research is experiencing its own set of forces in

that during the last decades, very few major, industry-changing new innovations

have originated in academia. Instead, industry has taken over the role of introducing

and driving large-scale adoption of new innovations. For instance, a business model

innovation such as open-source software originated in industry. Similarly, technol-

ogy innovations such as programming languages, ranging from Java to Scala, as

well as integrated development environments, such as Eclipse, find their roots in

industry. And finally, process innovations such as agile development and continu-

ous integration originate in industry, rather than in academia.

Universities are the homes of numerous highly intelligent, well-trained, and well-

intended individuals that are committed to making an impact, and software engi-

neering research groups and departments are no exception. What can then be the

reason for the lack of major innovations originating from academia? There are, I

believe, three main reasons: First, for a variety of reasons, discussed below, software

engineering researchers often have difficulty to gain access to their research envi-

ronment, which are the large-scale software R&D organizations where software

engineering happens. As a consequence, researchers instead focus on small-scale

problems that can be studied in a university context, such as studying student

projects or otherwise studying simulated, rather than real, environments. Second,

ix

especially over the last decade, the software engineering research community has

increasingly demanded empirical data to back up any research claims. This had the

intention of reducing the amount of “advocacy research,” i.e., researchers presenting

claims and providing logically sounding arguments why these claims could be

assumed to be true but without any real evidence that the intended outcomes

would be seen in reality as well. Although the demand for data accomplished the

intended effect, there was an additional effect: software engineering researchers

increasingly studied and reported on the current state at software companies as this

was the only way to collect relevant data. However, they were no longer innovating

on how to improve the current state of practice as the results would not be publish-

able anyway. Instead, this task increasingly fell to industry. Third, and perhaps most

important, academic researchers are not exposed to the market forces experienced

by software-intensive systems industries and consequently focus their efforts pre-

dominantly on addingmore detail, more steps, more activities, more documentation,

more intermediate artifacts, more specialization of roles, etc. This focus runs counter

on the pressures experienced by industry where the focus is on translating identified

customer needs to solutions in the hands of customers as rapidly as possible with as

little detail, as few steps and activities, as little or no documentation, and as few

artifacts except code as possible, preferably accomplished by anyone who is avail-

able for the task at hand. This easily causes a certain level of arrogance among

software engineering researchers and a belittling of the accomplishments of numer-

ous outstanding engineers in industry as the goals that these engineers are, con-

sciously or unconsciously, working towards are not properly understood by

researchers who project their own goals on industrial practice.

As one may understand from the above, it has proven to be notoriously difficult

to build effective, scalable, and long-term software engineering research collabo-

rations between industry and academia. Of course, there are many examples of

individual researchers or small groups collaborating for years with a company. And

there are examples of companies that have gone out of their way to build relation-

ships with researchers that have lasted for extended periods of time. However,

examples of collaborations between sizable groups of relatively diverse software

engineering researchers and groups of companies with similar challenges are few

and far between. In fact, one of the few long-standing examples of a collaboration

of this type is the Fraunhofer Institute for Experimental Software Engineering, and

consequently, I am grateful that Professor Dieter Rombach has graciously agreed to

provide a foreword for this book.

It was with this understanding of the challenges of collaboration between industry

and academia in the area of software engineering that we started the Software Center

in 2011. Initially the collaboration started with four founding companies, i.e., Erics-

son, AB Volvo, Volvo Car Corporation, and Saab Electronic Defense Systems, and

the combined software engineering division between Chalmers University of Tech-

nology and Gothenburg University, with three projects and a handful of researchers.

Three years later, at the time of writing, we have eight companies and three univer-

sities, 15 research projects, and dozens of researchers involved in the Software Center.

Based on the above, it’s clear we are on to something. So, what are the

mechanisms that have made Software Center successful? There are at least three

x Preface

basic principles that are worth sharing here: First, all research takes place in

6-month sprints. A sprint starts in January or July and runs for 6 months. During

a sprint, the project goes through a full cycle of defining the research problem,

designing the research, collecting data or conducting the experiment or trial,

analyzing the results and presenting the results to the companies involved, as well

as publishing the research outcomes. Each project has a long-term goal and runs for

multiple or many sprints, but every sprint results relevant to the companies have to

be presented. Second, the technical experts at the companies decide what research

is conducted. At the end of every sprint, each ongoing project, as well as each newly

proposed project, presents a plan for what to study next. A task force consisting of

technical experts at the Software Center companies decides on a ranking of research

projects and potentially “kills” projects that are not delivering results relevant to the

member companies. This puts an equal balance on academic excellence and

industrial relevance. Finally, the longitudinal nature of projects allows researchers

to study current state at the member companies, but subsequently to propose

improvements. If the improvements are sufficiently appealing, some or all of the

software center companies will experiment with the improvement and, if success-

ful, deploy it broadly in the respective companies. This allows software engineering

researchers to be involved in and report on improvements in the way software

engineering is conducted in world-class companies. The advantage to researchers,

obviously, is that it is possible to study more than “current state” as well as the

ability to validate innovations at multiple companies, increasing the validity as well

as the ease of publication of research conducted in the scope of the Software Center.

Concluding, Software Center is an experiment to establish an effective, scalable,

and long-term software engineering research collaboration between academia and

industry. The book that you’re holding presents the results from the first 3 years. The

experiment, so far, is successful in that more companies, universities, and

researchers are joining the initiative. Also, many of the results, including the

Stairway to Heaven model, the CAFFEA model, the CIViT model, the HYPEX

model, as well as many other results, have been adopted or are in the process of being

adopted by the partner companies. Finally, over the last 3 years, the partner compa-

nies have progressed from experimenting with agile work practices to broad deploy-

ment of continuous integration in an agile teams context and the experimentation

with continuous deployment of software with selected customers for some compa-

nies. As Software Center, our goal is to help companies change faster than without

our involvement, and the evidence to date is that we’re delivering on that goal.

This book presents the results of the first phase of the Software Center, but it also

celebrates the great progress accomplished at the partner companies due to the

tireless efforts of the researchers in the Software Center and the champions at

partner companies. As director, I am humbled and grateful to everyone involved.

All have stepped up to the challenge and actively collaborated to create something

that is so much more than the sum of its parts.

Gothenburg, Sweden Jan Bosch

June 2014

Preface xi

ThiS is a FM Blank Page

Contents

Part I Introduction

1 Continuous Software Engineering: An Introduction 3

Jan Bosch

2 Climbing the “Stairway to Heaven”: Evolving From Agile

Development to Continuous Deployment of Software 15

Helena Holmström Olsson and Jan Bosch

3 Academia–Industry Collaboration: Getting Closer is the Key! 29

Anna Sandberg

Part II Agile Practices

4 Role of Architects in Agile Organizations . 39

Antonio Martini, Lars Pareto, and Jan Bosch

5 Teams Interactions Hindering Short-Term and Long-Term

Business Goals . 51

Antonio Martini, Lars Pareto, and Jan Bosch

6 A Framework for Speeding Up Interactions Between Agile Teams

and Other Parts of the Organization . 67

Antonio Martini, Lars Pareto, and Jan Bosch

7 Customer-Specific Teams for Agile Evolution of Large-Scale

Embedded Systems . 83

Helena Holmström Olsson, Anna B. Sandberg, and Jan Bosch

xiii

Part III Continuous Integration

8 The CIViT Model in a Nutshell: Visualizing Testing Activities

to Support Continuous Integration . 97

Agneta Nilsson, Jan Bosch, and Christian Berger

9 Continuous Integration Flows . 107

Daniel Ståhl and Jan Bosch

10 Towards Continuous Integration for Cyber-Physical Systems

on the Example of Self-Driving Miniature Cars 117

Christian Berger

11 Industrial Application of Visual GUI Testing: Lessons Learned . . . 127

Emil Alégroth and Robert Feldt

Part IV R&D as an Innovation System

12 Post-deployment Data Collection in Software-Intensive

Embedded Products . 143

Helena Holmström Olsson and Jan Bosch

13 The HYPEX Model: From Opinions to Data-Driven Software

Development . 155

Helena Holmström Olsson and Jan Bosch

Part V Organizational Performance Metrics

14 Profiling Prerelease Software Product and Organizational

Performance . 167

Vard Antinyan, Miroslaw Staron, and Wilhelm Meding

15 Industrial Self-Healing Measurement Systems 183

Miroslaw Staron and Wilhelm Meding

Part VI Industry Best Practices and Case Studies

16 Experiences from Implementing Agile Ways of Working

in Large-Scale System Development . 203

Jonas Wigander

17 Scaling Agile Mechatronics: An Industrial Case Study 211

Jonn Lantz and Ulf Eliasson

Index . 223

xiv Contents

	Foreword
	Preface
	Contents

