
Appendix 

A.1 Basic Notions and Notations 

Domains 

IN={O,I,2, ... } 
;z,<Q,lR,<C 
lK 
IK 
lKn 

lKnxm 

R 
R[x] 
lK(x) 
R[[xll 
lK((x)) 
RN 

Logic 
, 

A~B 

A;'B 

Asymptotics 

an rv bn (n ----+ 00) 

natural numbers including zero 
integers, rational, real, and complex numbers 
an arbitrary field of characteristic zero 
the algebraic closure of lK 
vector space over lK of dimension n 
vector space of n x m matrices over lK 
an arbitrary commutative ring containing <Q as subring 
polynomials in x with coefficients in R (p. 44) 
rational functions in x with coefficients in lK (p. 44) 
formal power series in x with coefficients in R (p. 18) 
formal Laurent series in x with coefficients in lK (p. 23) 
ring of sequences over R 

desired equality: A shall be (made) equal to B 

questioned equality: Are A and B equal? 

limit of a convergent sequence: \j E > 0 ::J no \j n ::;:, no : 
lan-cl < E 

asymptotic equivalence of sequences: Iimn---+= 'f:;, = I 
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a(z) rv b(z) (z ----* 0 
an = O(bn) (n ----* 00) 
an = o(bn) (n ----* 00) 

Sequences 
(an);;'=o 
(an,k )';"=0 
Lian 

Lk=u ak 

Linear Algebra 
(ai)i'c l 

( (ai,j ) )1,j= I 
detA 
dimV 
VEBW 

Appendix 

limit of functions: \j £ > 0 ::J 0 > 0 \j Z : Iz - S'I < 0 =? 

la(z) - cl < £ 

asymptotic equivalence of functions: limZ--4( ~i~l = I 

O-notation: ::J c E lR::J no \j n::;:, no: I all I .-::: cbll 
t t · l' an 0 o-no a Ion: Imll--4= b,', = 

the sequence ao, al, a2, . .. ; formally a: N ----* IK, n f---+ an 
notation for a bivariate sequence 
forward difference: an+ I - all 
the sum au + au+l + ... + avo If v < u, the sum is defined 
as O. 
the product auau+l ... avo If v < u, the product is defined 
as l. 
action of the polynomial p(x) E IK[x] on the sequence 
(all);;'=o (p. 68) 

the vector (aI, a2, ... , all) E IK" 
the n x n matrix with entry ai,j in row i and column j. 
determinant of the matrix A E IKnxn 
dimension of the vector space V 
direct sum of the vector spaces V and W 

Polynomials and formal power series 
[xn]a(x) coefficient of the monomial x' in a(x) 
degxp(x), degp(x) degree of the polynomial p(x): max{n EN: [x']p(x) -=I- O} 
lex p(x), Ie p(x) leading coefficient of the polynomial p(x): 

resx(p(x),q(x)) 
gcd(p(x), q(x)) 

orda(x) 
a(x) 8b(x) 
Dxa(x) 
fxa(x) 

1imk--4= a" (x) 
a(b(x)) 
Lk=Oak(x), I1k=Oak(x) 

lep(x) = [xdegp(x)]p(x) 
resultant of the polynomials p(x) and q(x) (p. 124) 
greatest common divisor of the polynomials p(x) and q(x) 
(p. 168) 
order of the series a(x) (p. 23) 
Hadamard product of a(x) and b(x) (p. 18) 
(formal) derivative of a(x) (p. 20) 
(formal) integral of a(x) (p. 20) 

limit of a sequence of power series (p. 24) 
composition of a(x) with b(x) (p. 25) 
infinite sum and product of a sequence of power series 
(p.28) 
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Common particular functions and sequences 
l x J floor of x: greatest n E ;Z with n :::; x 
IX l ceiling of x: smallest n E ;Z with n :;0. x 
.0 rising factorial: x' = x(x + 1) ... (x + n - 1) 
x'l falling factorial: x'l = x(x - I) ... (x - n + I) 
n! factorial: n! = n'l = In = I ·2·3···n m binomial coefficient (p. 88) 
Sl(n,k), S2(n,k) Stirling numbers of the first and second kind, respectively 

(p.45) 
En 
Bn 
en 
Pn 
F" 
Hn 
H (rl, ... ,rm) 

n 

r(z) 
Tn(x), Pn(x), Hn(x) 

In(x) 

Bernoulli numbers (p. 23) 
Bell numbers (p. 26) 
Catalan numbers (p. 113) 
partition numbers (p. 27) 
Fibonacci numbers (p. 63) 
harmonic numbers (p. 8) 

generalized harmonic numbers (p. 138) 
gamma function (p. 91) 
Chebyshev polynomials of the first kind (p. 54), Legendre 
polynomials (p. 132), Hermite polynomials (p. 161) 
Bessel functions (p. 159) 

A.2 Basic Facts from Computer Algebra 

Classical computer algebra focusses on algorithms for computing with polynomials. 
We list here only those very basic results from computer algebra which are used in 
some part of this book. In particular, we only state here what can be computed 
and not how to carry out these computations. For further background and many 
additional algorithmic results about polynomials, we refer to the standard text books 
on computer algebra [22, 63, 58]. 

In order to do computations in IK [x], some technical conditions have to be imposed 
on the field IK. For example, there is no way to do exact computations in IR or <C, 
because the elements of these fields are inherently infinite objects and cannot be 
faithfully represented in a (finite) computer. But computations in the field <Q of 
rational numbers, in algebraic number fields such as <Q( V2), in rational function 
fields <Q(x), or in finite fields ;Zp can be carried out exactly. Such fields are called 
admissible. 

Let IK be an admissible field. Then there are algorithms 

• to compute for given a(x),b(x) E IK[x] the coefficients of a(x) + b(x), a(x)b(x), 
a(b(x)), etc.; 

• to compute for given a(x),b(x) E IK[x] the unique polynomials q(x),r(x) E IK[x] 
with r(x) = 0 or degr(x) < degb(x) such that a(x) = q(x)b(x) + r(x) (division 
with remainder); 
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• to compute for given a(x),b(x) E lK[x] the unique monic polynomial g(x) := 
gcdAa(x),b(x)) := gcd(a(x),b(x)) E lK[x] of maximal degree with g(x) I a(x) 
and g(x) I b(x) (greatest common divisor); 

• to compute for given a(x),b(x) E lK[x] the unique polynomials u(x), v(x) E lK[x] 
with g(x) := gcd(a(x),b(x)) = u(x)a(x) + v(x)b(x) and degu(x) < degb(x) -
degg(x) and deg v(x) < dega(x) - degg(x) (Bezout coefficients); 

• to compute for a given set {(xo,Yo), ... , (xn,Yn)} c;: lK2 with Xi -I- Xi (i -I- j) the 
unique polynomial p(x) E lK[x] of degree at most n such that p(Xi) = Yi (i = 

0, ... ,n) (polynomial interpolation); 

• to compute for a given a(x) E lK[x] a polynomial a(x) E lK[x] which has the same 
roots as a(x) in IK but not repeated factors (square free part); 

• to compute for a given a(x) E lK[x] a representation a(x) = al (x)a2 (x?·· . am (x)m 
where al (x), ... , am(x) have no repeated factors and mutually disjoint sets of 
roots (square free decomposition). 

Under slightly more restrictive assumptions on lK (which are still satisfied for all 
fields appearing in this book), there are also algorithms 

• to determine for a given polynomial a(x) E lK[x] the set of all n E :;z such that 
a(n) = 0; (integer roots), 

• to decide for a given polynomial a(x) E lK[x] whether there exists b(x) E lK[x] 
with 1 < degb(x) < dega(x) and b(x) I a(x) (irreducibility); 

• to compute for a given polynomial a(x) E lK[x] the unique factorization a(x) = 

CPI (x)e 1 ••• Pm (x)em into monic irreducible polynomials (factorization). 

All these operations can be performed efficiently, which in theory means the algo
rithms performing the listed operations have a runtime complexity which depends 
polynomially on the size of the input. In practice, using the most careful implemen
tations of the most advanced algorithms on the most recent hardware, the manipu
lation of polynomials with some ten thousand terms may well be feasible. 

Some of the items in the list above generalize from univariate polynomials to poly
nomials in several variables. In particular it is possible to compute the greatest com
mon divisor of multivariate polynomials. However, for multivariate polynomials 
there is in general no Bezout representation of the greatest common divisor, because 
lK [Xl, ... ,xn ] is not a Euclidean domain. It is a unique factorization domain, though, 
and for many types of fields lK there are algorithms that split a given multivariate 
polynomial into irreducible factors. 

A.3 A Collection of Formal Power Series Identities 

We list here the most frequently needed identities related to quantities appearing in 
the text. Additional series expansions can be found in the book of Wilf [62]. Fur
ther identities for special functions can be found in tables like the classical volume 



A.4 Closure Properties at One Glance 169 

of Abramowitz and Stegun [5] or its recent successor project [19]. A version of 
the latter is also available electronically at http://dlmf.nist.gov (Digital Library of 
Mathematical Functions) 

= 1 
10g(l-x) = L -X' 

Il=l n 
= 1 

exp(x) = L -x' 
n' Il=O . 

= ( 1)1l 
arctan(x) = L _-__ x21l+1 

Il=O 2n + I 
= (-1)1l 

sin(x) = L x21l+1 

Il=O (2n + I)! 
= ( It 

cos(x) = L _-__ x21l 
Il=O (2n)! 

(1 +X)A = ,~ (~)Xll 
" Xll = L S2(n,k)xis. 

k=O 

x ~ BIl 
( ) = L. -X' (Bernoulli numbers) 

exp x - I Il=O n! 

exp( eX - 1) = f BIl X' (Bell numbers) 
Il=O n! 

P,,(x) = i (~!)k G) Cn~2k)X1-2k 
J(x)-~ (-I)k (~)1l+2k 
" -k~k!(n+k)! 2 

A.4 Closure Properties at One Glance 

fX,=_I
Il=O I -x 

= k' k! 
Il~ n X = (I -x)k+! 

= 1 1 
LHIlX' = -log-

Il=O I -x I -x 

~ (n)X' k 1 
L. k Y = I -X-X}' 

",k=O 

Il~ G)X1 = (l_x~)k+l 
~ _J1 _ 1 - Jl - 4x 
L.C,A -----

Il=O 2x 
Il 
LSl(n,k)~ =x:l 

f F" X' = I x 2 
Il=O -x-x 

= Il l-xy 
LTIl(x)y =1 2 + 2 

Il=O - xy Y 

~ () Il I L. P" x Y = ----;======:0 
Il=O vi I - 2xy + y2 

~ HIl(x) ( 2) L. --y" = exp 2xy - y 
Il=O n! 

We summarize the closure properties of the classes of formal power series discussed 
in this book. Not all of the facts stated in the tables below are explicitly mentioned 
in the text. The following abbreviations are used: 
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F polynomial generating function / finite sequence 
P generating function of the form p(x) / (I - x)d / 

sequences which from some index on agree with 
a polynomial sequence 

C rational generating function / C-finite sequence 
Hg hypergeometric series 
A algebraic series 
H holonomic series 
S formal power series 

Unary operations 

For l/a(x) it is assumed that a(O) # o. 

a(x) 1 a(x)-a(O) 
l~xa(x) ax x 

F C F P 
P C P P 
C C C C 

Hg S Hg H 
A A A A 
H S H H 
S S S S 

Binary operations 

For a(b(x)) it is assumed that b(O) = o. 

Dxa(x) 
F 
P 
C 

Hg 
A 
H 
S 

a(x) b(x) a(x) +b(x) a(x)b(x) a(x) 8b(x) 
F F F F F 
F P P P F 
P F P P F 
P P P P P 
C C C C C 

Hg Hg H H Hg 
A A A A H 
H F H H F 
H A H H H 
H H H H H 
S S S S S 

Appendix 

J~a(x) 

F 
H 
H 
H 
H 
H 
S 

a(b(x)) 
F 
P 
C 
C 
C 
S 
A 
H 
H 
S 
S 
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A.S Software 

The algorithms described in this book as well as many other algorithms which are 
useful for solving problems related to the Concrete Tetrahedron have been imple
mented and are available in computer algebra systems. We give here a brief overview 
of some of the most basic maneuvers in Maple and Mathematica. Details can be 
found in the documentation of the respective pieces of software. 

Maple 

Gosper's and Zeilberger's algorithm are part of the built-in sum command: 
sum(kk!,k = 0 .. 17); 

(n+1)!-1 

sum(binomial(n,k),k = 0 .. 17); 
211 

(1) 

(2) 

For definite sums, the sum command applies first Zeilberger's algorithm to find a re
currence for the sum and then uses Petkovsek's algorithm to solve this recurrence. 
If no closed form exists, some standardized format of the sum is returned: 

sum(binomial(n,k)2binomial(n + k,k)2,k = 0 .. 17); 

hypergeom([-n, -17,17+ 1,17+ 1], [1, 1, 1], 1) (3) 

For getting the recurrence of a sum, there is the command Zeilberger in the Hyper
geometric section of the package SumTools: 

Sum Tools [Hypergeometric 1 [Zeilberger 1 (binomial (17, k) 2 binomial (17 + k, k) 2,17, k, N) ; 

[(6n2 + 1217+ 8 +n3)N2 + (-3417 3 - 153172 - 231 n - 117)N + 317+ 1 +173 + 3172, (4) 

(-4 - 2172 - 617 - ~ k + k2) k4 binomial(n,k)2binomial(n + k,k)2 (1617 + 24)] 
( -17 - 1 + k)2 ( -17 - 2 + k)2 

Hypergeometric solutions of holonomic recurrence equations can be found via the 
built-in rsolve command. 

rsolve( {2 (n2 + 217+2) a(n) - (17 3 +5172 +4n+4) a(n+ I) + (n2 + I) (17+2) a(n+2) = 0, a(O) = 
l,a(l) = I},a(n)); 

211 
-n+--

r(n+ I) 
(5) 

A description of Maple's procedures for hypergeometric summation is given in [3]. 

Functions for executing closure properties for holonomic sequences and power se
ries are available in the package gfun by Salvy and Zimmermann [49]. This package 
allows, for example, to compute a recurrence for (an + bll)';;=o or (allbll);=o given 
recurrences for (an);=o and (bn);=o' Note that both input recurrences must be rep
resented with the same function symbol, and that this symbol is also used in the 
output recurrence: 
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gfun['rec+rec']({f(n+2) =f(n+ I) +f(n),/(O) = 0,/(1) = l}, 

{f(n + I) = ~ f(n),/(O) = I },/(n)) 

Appendix 

{(n3 +9n2 +22n+ 14)f(n) + (_n2 - 9n-14)f(n+ 1) + (-19n2 - 53n (6) 

-42-2n3)f(n+2)+(n3 + lOn2+31n+28)f(n+3),/(0) = 1,/(1) = ~'/(2) = ~} 
gfun['recHec']({f(n+2) = f(n+ I)+f(n),/(O) =0,/(1) = I}, 

{f(n + I) = ~ f(n),/(O) = I },/(n)) 

I 
{(-n-l)f(n)+(-n-2)f(n+ 1)+(n+3)f(n+2),/(0) =0,/(1) = 2:} (7) 

The package also provides guessing facilities: 
gfun[listtorec]([I, 1,2,5, 14,42, 132,429, 1430,4862, 16796J,/(n)); 

[{(-4n-2)f(n)+(n+2)f(n+ 1),/(0) = l},ogfJ (8) 

gfun[listtoalgeq]([I, 1,2,5, 14,42, 132,429, 1430,4862, 16796J,/(x)); 

[-1+f(x)-xf(x)2,ogfJ (9) 

Conversely, the series command determines the first terms of a series 
series((I-sqrt(I-4x))/(2x),x = 0,10); 

I +x+ 2x2 +5x3 + 14x4 + 42x' + I 32x6 + 429x7 + I 430x8 +O(x9 ) (10) 

Also Puiseux expansions can be computed with this command, for instance the ex
pansion of the generating function for Catalan numbers at its singularity x = 1/4: 

series((I-sqrt(I-4x))/(2x),x = 1/4,3); 

4 - 4i(x - ~ )1/2 - 8x+ 16i(x - V/2 + 32(x - V - 64i(x - ~ )5/2 + O((x - ~ )3) (11) 

Mathematica 

Like its cousin in Maple, the Sum command in Mathematica resorts to the algo
rithms of Gosper and Zeilberger for simplifying hypergeometric sums. As an al
ternative to this built-in command, there are also special purpose add-on packages 
which provide functionality for doing summation and related calculations. Some 
packages are available at 

http://www.risc.jku.at/research/ com binatl software/ 

There is a package of Paule and Schorn [42] for hypergeometric summation, a pack
age by Mallinger [39] for holonomic closure properties and guessing, and several 
other useful packages with sophisticated algorithms which are not discussed in this 
book, such as Schneider's package Sigma for simplification of nested sums [50], 
Kauers's multivariate guessing library [31], Wegschaider's package for multivari
ate hypergeometric summation [61], or Koutschan's package for multivariate holo
nomic series [36]. Of these, we give here just some examples for the Paule-Schorn 
package and the Mallinger package: 
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In[1[,= « zb.m 
Fast Zeilberger Package by Peter Paule and Markus Schorn (enhanced by Axel Riese -
© RISC Linz - V 3.54 (02/23/05) 

In[2[= Gosper[k k!, k] 

OUI[2[= {kk' = .1kk'} 

In[3[= Gosper[k k!, {k, 0, Il}] 
If'n' is a natural number, then: 

n 

OUI[3]= {I, kk! == -I + (17+ I )n!} 
k~O 

In[4] = Zb [Binomial [Il , k]2 Binomial[1l + k,k]2 ,k, Il] 
If 'n' is a natural number, then: 

OUI[4]= {(I + 17)2 F[k,n]- (3 + 217)(39 + 5117 + 17n2)F[k,n + 1] + (2 + n)3F[k,n + 2] 
== .1k F[k,n]R[k,n]} 

In[5]= Show[F] 

( 17)2 (k+n)2 
Oul[5]= k n 

In[6] = Show[R] 

k4( -12k(3 + 2n) + 8k2 (3 + 2n) - 16(3 + 2n)(2 + 3n + n2)) 
OUI[6]= (1- k+ n)2(2 - k + n)2 

In[7] = Zb[Binomial[ll,k]2 Binomial[1l + k,k]2, {k, 0, Il}, Il] 
If'n' is a natural number, then: 

OUI[7]= {(I +n)2SUM [n]- (3 +217)(39 +5117 + 17n2)SUM[n+ I] + (2+n)3S UM [n + 2] == O} 

In[8],= « GeneratingFunctions.m 
GeneratingFunctions Package by Christian Mallinger - © RISC Linz - V 0.68 (07117/03) 

In[9] = REPlus[{f[1l + 2] == f[ll] + f[1l + 1], frO] == O,f[l] == I}, {f[1l + 1] == : :U[Il], frO] == 
1},f[ll]] 

OUI[9]= {(1 +n)(14+ 8n+n2)f[n]- (2+n)(7 +n)f[l +n]- (3 +n)(14+ 13n+ 2n2)f[2+n] + (4+ 

2 3 4} 17)(7 +617 +17 )f[3 +17] == 0,/[0] == 1,/[1] == 2,/[2] == 3' 

In[10]= REHadamard[{f[1l + 2] == f[ll] + f[1l + 1],f[O] == O,f[l] == 1},{f[1l + 1] == ::if[Il], 
frO] == 1},f[ll]] 

I 
Oul[10]= {( -I -n)f[n] + (-2-n)f[1 +17] + (3 +n)f[2+n] == 0,/[0] == 0,/[1] == 2} 

In[11] = GuessRE[{I, 1,2, S, 14,42,132,429,1430,4862, 16796}, f[ll]] 

Oul[11]= {{ - 2( 1 + 2n )f[n] + (2 + n )f[l + n] == 0,/[0] == 1), ogf} 

Mathematica's built-in Series command is useful for going the other direction: 
In[12]= Series[(I- Sqrt[l- 4x])/(2x), {x, 0, S}] 

OUI[12]= I + x + 2x2 + 5x3 + 14x4 + 42x' + O[x]6 

In[13]= Series[(I- Sqrt[l- 4x])/(2x), {x, 114, 3}] 

OUI[13]= 2 - (4i)V -i +x - 8( - i +x) + (16i)( - i +x)3/2 + 32( - i +x)2 - (64i) ( - i +x)5/2 -

128( -i +x)3 +O[-:t +xr/2 
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A Mathematica implementation of Petkovsek's algorithm by Petkovsek himself is 
available at 

http://www.fmf.uni-Ij.sirpetkovsek/software.htm I 

This implementation returns the shift quotients of hypergeometric solutions as out
put: 
In[141'= «Hyper.m 
In[151= Hyper[2(n2 + 2n + 2)a[nj- (n3+5n2+ 4n + 4)a[n + Ij + (n2+ 1)(n + 2)a[n + 2j,a[nj, 

Solutions ---; All] 

2 1 +n 
Oul[151= {--, --} 

n+ 1 n 

A.6 Solutions to Selected Problems 

Problem 1.1 

Problem 1.2 

Induction on n. 

,,+1 
""In' Problem 1.3 

Problem 1.4 From the definition of the Riemann integral we obtain 

In I n-I 1 n-I 1 
log(n) = -dx~ L 1 X max - = L - ~Hn, 

. I X k=1 xE[k,k+I] X k=1 k 

so H" -Iog(n) ~ 0 (n ~ I). Secondly, from 

( 
1 ),,+1 

1+- >e n - (n ~ 1) 

we obtain 

(n+l)(log(n+l)-log(n)) ~ 1 (n ~ 1) 

by taking logarithm on both sides. Dividing both sides by n + 1 and using H n+ I -
H I, 

n = n+1 gIves 

Hn -log(n) ~ Hn+1 -log(n + 1) (n~I), 

so Hn -log(n) is decreasing. The claim follows. 

Problem 1.5 1. (l_x")2; 2 _x(x+I). 3. _-xIlog(l-x). , . (l-x)3' 

Problem 1.6 a(2x). 

Problem 1.7 Use the relation log( -z) = in + log(z). 
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Problem 2.2 Use the order as degree function. Then the greatest common divisor 
of two power series a(x),b(x) E lK[[xll is the series of lower order, for whenever 
orda(x) < ordb(x), then a(x) I b(x). 

Problem 2.3 Using the definition, the Cauchy product formula, and the binomial 
theorem, we can calculate 

( = X') (= xn ) = (n (n) ) xn exp(ax) exp(bx) = n~ an n! I~ bn n! = I~ 6 k akb',-k n! 

= n 

= ~ (a+b)"~ = exp((a+b)x). 
L; n' n=O . 

Problem 2.4 Hopefully none. 

Problem 2.7 If D(a) = 0 and D(b) = 0, then D(a+b) = D(a) +D(b) = 0 and 
D(ab) = D(a)b + aD(b) = O. 

Problem2.8 1. (n+l)2n; 2. ~(n+l)(n+2); 3. 2}n!' 

Problem 2.9 "=}" If (an (x));=o is a Cauchy sequence then for every fixed n E lN 
there is some ko such that for k,l ~ ko the first n terms of ak(x) and at(x) agree. 
Hence if we set an := [X']a,,(x) for some k ~ ko then this definition will not depend 
on the choice of k. Now set a(x) := 2:;=0 anX' with an defined in this way. Then we 
have ord(a(x) - ak(x)) > n for all k > ko, hence (an (x) );=0 converges to a(x). 
"<¢=" Suppose that (an (x) );=0 converges to a(x). Let n E lN and ko E lN be such that 
for all k ~ ko we have ord(a(x) - ak(x)) > n. Then for k, I ~ ko we have ord(a(x) -
ak(x)) > nand ord(a(x) -at (x) ) > n. Now ord(ak(x) -az(x)) = ord( (a(x) -az(x))
(a(x) - ak(x))) ~ max( ord(a(x) - az(x)), ord(a(x) - ak(x))) > n, as desired. 

Problem 2.10 Let (Kn);=o be the sequence in question. We show by induction 
that ord(Kn+1 - Kn) > n for all n E IN. The claim then follows. 

For n = 0 the claim is true because ord( l:x -x) = 2. Assume now that it is true for 
some n E IN. Then 

==} ord ( 1 __ 1_) > n ==} ord ( x __ x_) > n + 1 
l-Kn+1 l-Kn l-Kn+1 l- Kn 

==} ord(Kn+2 - Kn+d > n + 1, 

as desired. 

Problem 2.12 Consider B(x) := exp(~)-l = 2:;=0 ~xn. We clearly have 

[xn] (exp(x) - 1 )B(x) = [xn]x = 0 (n ~ 2). 

Now observe that 

( = 1 ) (= B ) = (n-I 1 ) 
(exp(x)-I)B(x)= I~n!xn I~n/~xn =/~ l~k!(n-k)!Bk x'. 
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Taking the coefficient of n and multiplying by n! gives 

[xn] (exp(x) - I )B(x) = :~ G) Bk (n 2 0). 

The claim follows. 

Problem 2.14 From Dx exp( eX - 1) = eX exp( eX - 1) we obtain 

Comparing coefficients of xn and multiplying by n! on both sides gives the claim. 

Problem 2.15 Writing a(x) = Ik=Oakxk, we have 

Now use that G) = 0 for k > n. 

Problem 2.16 The product rule implies Dxb(x)n = nb(x)n-1b'(x) for all n 2 O. 
Therefore, if a(x) = I;=oanx" then 

= = 
Dxa(b(x)) = L anDxb(x)n = L annb(x)n-1b'(x) = a'(b(x))b'(x), 

n=O n=O 

the first step being justified by reference to the hint. 

Problem 2.17 1 + l.x2 _l.x4 + l..x6 - ~x8 + ...Lx lO + ... 2 8 16 128 256 

Problem 2.19 First set q~!) := 2q2n - qn to get rid of the term ad n. Next, because 

of q~1) = f3 I n2 + ... we have q~~ = f3 14n2 + ... , so the quadratic term can be elim

inated by taking 4q~:: - q~I). Since this converges to three times the original limit, 
we set 

(2) ._ 1 ((1) (1)) _ 1 
qn .- 3" 4q2n -qn - 3"(8q4n- 6q2n+qn). 

For qn = C,,+1 len and n = 7 this yields the estimate n~ ~ 3.99444 for the limit. 

The general formula for eliminating the first k terms in the asymptotic expansion is 
q~k) := (2kq~~,-I) _ q~k-1))/(2k _ I). 

Problem 2.20 1. (1 - x - x2)f(x) = x; 2. f(x)2 = 1 - x - x2; 3. (1 - x)2 f' (x) -
(2x2 -4x+ I)f(x) = O. 

Problem 3.1 Yes. The high order coefficients of a truncated power series are con
sidered unknown whereas the high order coefficients of a polynomial are zero. For 
example, if a(x) = I +x +x2 + O(x3) is a truncated power series then a(x)2 = 1+ 
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2x + 3x2 + O(x3 ) and we know nothing about the coefficient of x3 in a(x)2. On the 
other hand, if a(x) = I +x+x2 is a polynomial, then a(x? = 1+ 2x+ 3x2 + 2x3 +x4. 

Problem 3.2 Yes. The object L;;'=o(l + xn)y" belongs to lK[xHlYll but not to 
lK[[y]][x]. 

Problem 3.3 Since we assume throughout the book that lK is a field of character
istic zero, lK [x] and Pol(lK) are isomorphic. For fields of positive characteristic, this 
is not the case. 

Problem 3.5 x' = Lk=O ( -I ),,+k S 1 (n, k )xk; x" = Lk=O ( -I ),,+k S2 (n, k )xk. 

Problem 3.6 I. x2+5x:f.+5x1+ 1; 2. 2X2+ Ilx:f.+3x1 +2; 3. 5x2+ 17x:f.+ 7x1 +3. 

3 8 L () ,,= S&"k)x' HT . h Problem. et ak x := L...,,=k -",- . vve start wIt 

(n,k'20). 

Multiplying both sides by x' In! and summing from k to 00 gives 

(k '2 0). 

For k = 0 we have S2(n,k) = 8",0, so ao(x) = I. Furthermore, we have ak(O) = 0 for 
all k > O. Together with this initial conditions, the differential equation determines 
each ak (x) uniquely. For k = 1,2,3, ... we find 

al(x)=ex-I, a2(x)=~(eX-I)2, a3(x)=t;(eX -I)3, ... 

and the general form ak(x) = ~ (e - l)k is easily confirmed by induction on k. 

For the result about the Bell numbers, observe that 

~ B" x' = ee'-I = ~ ~(eX _ 1)" = ~ ~ S2(n,k) x" = ~ ~ S2(n,k) x", 
L; n' L; k' L; L; n' L; L; n' ,,=0 . k=O . k=O ,,=k' ,,=0 k=O . 

where in the last step we exploited that S2(n,k) = 0 for k < 0 or k > n. The desired 
identity now follows by comparing coefficients and multiplying by n!. 

d 
Problem 3.9 1. The first identity is clear by exp(kx) = Ld=okd~. Next, we have 

" " exp(y),,+l - I L exp(ky) = L exp(y/ = ( ) . 
k=O k=O exp y - I 

Multiplying by y I (d + I)! and taking the coefficient of yd+ 1 on both sides leads to 
the desired identity. 

2. The first identity is obtained from 

~ B,,(x) ,,_ yexp(xy) _ y ~ x" k _ (~ B" ") (~ x' k) L; --y - - L; -y - L; -y L; -y 
,,=0 n! exp(y) - 1 exp(y) - 1 ,,=0 n! ,,=0 n! ,,=0 n! 

=L L k l = (" B X,-k ) 

,,=0 k=O k! (n - k) ! 
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by comparing coefficients of l and multiplying by n!. As a consequence, we get 

Problem 3.10 If (Hn)';;=o were a polynomial sequence, then also i1(Hn)';;=o = 

(n!l );;'=0' 

Problem 3.11 In Mathematica: 

genfun[poly-,x-l := Module[{ c,n,k}, 
c = Table[( -1 )n+k StirlingS2[n,k], {k, O,Length[c]- I}, {n, O,Length[c]- I}]; 
c = c. CoefficientList[poly l x ----+ x - I ,x]; 
Together[Sum[c[[k]](k-I)!/(I-x)k,{k,I,Length[c]}]]] 

Problem 3.13 I. 2x4 + IOx3 + 16x2 + llx + 6; 2. no solution; 3. x - I. 

Problem 3.14 A similar reasoning as for the recurrence case gives the following 
case distinction: If degq(x) + I -I- degr(x) then 

dega(x) = degp(x) -max(degq(x),degr(x)). 

Otherwise, if lcr(x)/Ieq(x) is not an integer then dega(x) = degp(x) - degr(x). 
Otherwise dega(x) :::; max( deg p(x) - degr(x) , Ie r(x) / Ieq(x)). 

Problem 3.15 A general bound is given in Sect. 7.4. 

Problem 3.16 The chromatic polynomial is the same as for the graph in Fig. 3.3: 
k4 - 5k3 + 8k2 - 4k. Setting k = 1000 yields 995007996000 colorings. 

Problem 4.1 Use repeated squaring to compute ¢2101JO with a decent approxima
tion of ¢ (a few hundred digits, say). Depending on the computer algebra system, it 
might be necessary to divide by some power of 10 from time to time. The result is 
F2 1IJOIJ = 419087604 .... 

Problem 4.2 Use the logarithmic computation scheme for Fibonacci numbers and 
keep intermediate results reduced modulo 1010, i.e., do the computations in the 
residue class ring :;z I 010. The result is F2 1000 = ... 48059253307. 

Problem 4.3 F2n + F2n+1 - Fn+1. More generally, Lk=oFm+k = Fn+m + F;z+m+1 -
Fm+1 for every mEN. 

Problem 4.6 The finite continued fraction equals F;z+2/ Fn+ 1. The infinite one is 
therefore ¢. 

Problem 4.8 If p(x) is the characteristic polynomial of a C-finite recurrence sat
isfied by (an);;'=o, then letting this polynomial act as an operator on both sides of the 
inhomogeneous equation shows that (un);;'=o satisfies the C-finite recurrence whose 
characteristic polynomial is p(x) (x r + Cr_1Xr-1 + ... + C1X + co). 
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Problem 4.9 If (Hn);=o is C-finite, then by Theorem 4.2 also (Hn+l - Hn);=o is 
C-finite, so it suffices to show that (1/ (n + 1) );=0 is not C-finite. Assume it were. 
Then 

I I I 
CO-+CI--+"'+cr-- =0 

n n+l n+r 
(n 21) 

for some constants Co, ... , Cr with Cr # O. Multiply by n(n + 1)··· (n + r) to ob
tain a polynomial relation of degree at most r - I. This relation, being valid for all 
integers n 2 1, actually holds for all n E CC. Setting n = -r implies Cr = 0, a contra
diction. 

Problem 4.10 Induction on k. For k = 1 we have S2(n, 1) = 1 (n 2 0), which is 
clearly C-finite. If (S2 (n, k) );=0 is C-finite for some k, then the recurrence 

(n,k2 0), 

in combination with the result of Problem 4.8, implies that (S2(n, k + 1) );=0 is C
finite. 

Problem 4.11 1. The identities are immediate consequences of Cassini's identity. 
It follows that u(F",Fn+l? - I = 0 for all n E N, and consequently 

a(F", Fn+1 )(u(Fn,Fn+l? -1) = 0 (n E N) 

for any a(x,y) E CQ[x,yj. 

2. Write p(x,y) = po(x) + PI (x)y + ... + Pd(X)yd for p;(x) E CQ[x]. Proceed by in
duction on d. For d < 2 there is nothing to show. For d 2 2 consider 

p(x,y) = p(x,y) - Pd(X)/-2(u(x,y) -I). 

We have deg y p(x,y) < 2, and by the induction hypothesis there is some a(x,y) 
with p(x,y) ~ q(x,y) +a(x,y)(u(x,y) -1) and q(x,y) at most linear in y. Setting 
a(x,y) = a(x,y) - Pd(X)yd-2 completes the induction step. The conclusion follows 
because U(F2n,F2n+J) - I = 0 for all n E N. 

3. If at least one of qo(x) and ql (x) is nonzero then d := max(degqo(x) , 1 + 
degql (x)) is a nonnegative integer. In this case, we have 

so we cannot have qO(F2n) + ql (F2n)F2n+l = 0 for all n E N then. The conclusion 
follows by combining this result with the previous step. 

4. The argument for (F2n+l , F2n) in place of (F2n,F2n+l) is fully analogous. (In the 
asymptotics argument, divide by F~'+l and find 1/ cP instead of cP in the limit ex
pression.) To get the final conclusion, observe that if p(Fn,F,,+J) = 0 for all n E N 
then in particular for all even n, implying that p(x,y) is a multiple of u(x,y) -1, as 
well as for all odd n, implying that p(x,y) is a multiple of u(x,y) + 1. Putting things 
together, p(x,y) must be a multiple of u(x,y? - 1, as claimed. 
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In general, if (a~I));=o, ... ,(a~m));=o are some sequences in a field lK, the set of 

all polynomials P E lK[XI"" ,xmJ with p(a~l), ... ,a/~m)) = 0 for all n E N forms an 

ideal in the ring lK [Xl, ... ,XmJ. If the (a~i) );=0 are C-finite in <Q, then a basis of this 
ideal can be computed by an algorithm [32]. 

Problem 4.12 No. For example, the solution of the recurrence an+2 = all is not 
uniquely determined by requesting that ao = a2 = I, because these conditions are 
satisfied by the two distinct solutions (I );=0 and (( -I )n );=0' 

Problem 4.13 Because of D~a(x) = I.;=o an+k~ for every k, there is a one-to-one 
correspondence between differential equations with constant coefficients for a(x) 
and recurrence equations with constant coefficients for (all);=o' 

Problem 4.14 The characteristic polynomial of the recurrence is also the charac
teristic polynomial of the matrix M. Its roots UI , ... ,Ur are therefore the eigenvalues 
of M. As they are distinct, it follows that M is equivalent to a diagonal matrix with 
UI, ... ,Ur on the diagonal. A direct calculation confirms that (I, Ui, ... ,ur- I) is an 
eigenvector for Ui, and hence the representation M = T DT- I is established. 

If (all);=o is a solution ofthe recurrence, then 

(all,an+I,'" ,an+r-I) = M"(ao,al,'" ,ar-I) (n EN). 

Because of Mil = (TDT-I)" = TD"T-I, this implies that (all);=o can be writ
ten as a linear combination of (ui);=o (i = 1, ... , r). Conversely, every vector 
(ao, al, . .. ,ar-l) of initial values gives rise to a solution (an);=o' This implies The
orem 4.1 for the present situation. 

Problem 5.1 For instance via 1 =} 4 =} 3 =} 2 =} 1. 

Problem 5.2 Write p(x,y) = po(x) + PI (x)y+ P2(X)Y+'" + Pd(X)yd for Pi(X) E 

lK[x]. Suppose one of the Pi(X) is not the zero polynomial. Then there would be 
some no with Pi(no) i=- O. Then the univariate polynomial p(no,y) E lK[y] would not 
be the zero polynomial, although p(no,m) = 0 for all mEN. Contradiction. 

Problem 5.3 

Problem 5.4 

(p(n)a");=o where p(x) E lK[x] and a E lK \ {O}. 

_6_· n-2251l36IlS-51l 
y5n: - . 

Problem 5.5 Substitute f(x) = I. a~b" x' f' (x) = I. (a+l)"(b+l)" x' and f" (x) = 
n=OCnll!' 1l=0 (c+I)"Il! ' 

1l~0 (a~L21~~~:~)" X" into the left hand side of the differential equation, and check that 

the coefficient of x' simplifies to zero for every n E N. 

Problem 5.6 1. After multiplying the equation by (1 - x)a, compare coefficients 
on both sides. The coefficient of xO is 1 on both sides. For n > 0, the coefficient of 
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xn on the left is 

[x"](I-x)a2FI (a,bl x ) = [x"] I. (a) (_I)k}: I. a~bkxk 
c k=O k k=O ckk! 

= ± ( a ) (_I)"_ka~bk 
k=O n - k ckk! 

and on the right hand side we have 

[xnhFl (a,c-bl_x_) = ± ak(c-bl [xn] }: . 
c x-I k=O ckk! (x-I)" 

It is therefore enough to prove the summation identity 

'---v--' 
=(-I)k(Z::D 

±(_I)"_ka:bk( a ) = ±(_I)kak(C-b)k(n-l) 
k=O ckk! n - k k=O ckk! k - 1 

(n?I). 

lSI 

This can be done with Zeilberger's algorithm. It will find that both sides satisfy the 
recurrence equation 

(a - b - n)nSn + (a(b - c - n -1) + (n + 1)(b+c+ 2n + 1))Sn+1 

-(n+2)(c+n+l)Sn+2=O (n?I). 

After checking the identity for n = 1,2, it follows for all n ? 0 by induction. 

( a,bl ) a (a,c-bl x ) a (c-b,al x ) 2.2F1 C X = (I -x)- 2F1 c x-I = (I -x)- 2F1 c x-I 

= (I _x)-a(l_ x::1 r(C-h) 2F1 C -b~C - al x) = (l-xy-a-b2F1 C -b~C - al x). 

3. Multiply the Euler transform by (I - x)a+b-c and compare coefficients of ;;'. 

Then on the right hand side there is just (c-a):(L;-h)" while on the left hand side we 
c 11. 

get 

=L 
n=O 

The identity follows. 

± a:bk (a+b-c)(_I)n-k ;;'. 
k=O ckk! n-k 

'- J 

_ (c-a-b)"(-nJ" 

n~( I +a+b-c-n)k 
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Problem 5.7 Compare coefficients of xn on both sides. 

Problem 5.8 1. For every i with gcd( UI (x), U2 (x + i)) # 0 there must exist a point 
(s,o E JiZ2 where S is a root of UI (x) and S is a root of U2(X) and S = S - i. Since 
UI (x), U2(X) each have only finitely many roots, there can be only finitely many pairs 
(S, 0· Therefore, there can also be only finitely many such i. 

2. First, we have 

p(x+ I) UI(X) 
p(x) U2(X) 

g(x)g(x - 1)··· g(x - i + 1) UI (x) 
g(x-1)g(x-2)···g(x-i) U2(X) 

g(X)UI (x) 
g(X-i)U2(X) 

Secondly, the choice of g(x) implies gcd( UI (x), U2 (x + i)) = 1. Finally, it is clear 
that the set of all j with gcd(UI(X),U2(X+ j)) # I is contained in the set of all j with 
gcd(UI(X),U2(X+ j)) # I because UI(X) I UI(X) and U2(X) I U2(X). 

3. The desired i E N are precisely the positive integer roots of the univariate poly
nomial resx(p(x),q(x+t)) E IK[t]. 

4./5. In Maple: 

gosperForm := proc(u,x) 
local p, q, r, i, j, k,g; 
p:= l;q:= numer(u);r:= denom(u); 
j := max(select(is, {solve(resultant(q, subs(x = x + i, r) ,x), in, integer)); 
while j >= 0 do 

g:= gcd(q,subs(x =X+ j,r)); 
q:=q/g; r:=r/subs(x=x-j,g); 
p:= p*product(subs(x =x-k,g),k = l..j); 
j := max( select(is, {solve(resultant(q, subs(x = x + i, r),x), in, integer)); 

od; 
return ( [p, q, subs(x = x - 1, r)]); 

end; 

Problem 5.9 For p(x),q(x),r(x) E IK[x] with gcd(q(x),r(x+i)) = 1 for all i E 

N \ {O} consider the equation 

p(x) = q(x)y(x+ 1) - r(x)y(x). 

If there are two different solutions YI (X),Y2 (x) E IK[x], then their difference Yh (x) := 
YI (x) - Y2(X) satisfies q(X)Yh(X+ 1) = r(x)Yh(X). In this case we have 

p(x+l) q(x) 
p(x) r(x+ 1) 

p(x+ l)/(Yh(x+ l)r(x+ 1)) 

p(x) / (Yh(x)r(x)) 

h d ( )=. .. . II - p(n) so t e summan sequence an n=O In questIOn IS essentIa y an - y,,(n)r(n)' 

Writing the general solution of the Gosper equation as y(x) = YI (x) + CYh(X) with 

c a constant, Gosper's algorithm returns w(n)an = ;l~ (YI (n) + CYh(n))Vh~S~(n) = 

~~i::l + c. The choice of a solution of the Gosper equation therefore corresponds to 
a choice of the additive constant in the solution of the telescoping equation. 
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When (an);;'=o is hypergeometric but not rational, then there is no such choice be
cause then (an);;'=o and the constant sequence (I );;'=0 are not similar. 

Problem 5.10 Let Un = I1~:6 (- ~~iZl). Then (un);;'=o is hypergeometric and Un # 0 
for all n E IN. Substituting Sn = unsn into the equation and dividing on both sides by 
-co(n)un yields the new equation 

_ _ an 
Sn+l-Sn = --(-)-. 

Co n Un 

This is now a telescoping equation with a hypergeometric sequence on the right hand 
side, so Gosper's algorithm can be used for finding its hypergeometric solutions. 
Every solution (sn);;'=o gives rise to a solution (unsn);;'=o of the original equation. 

Problem 5.11 l. xt!tn(n~x); 2. (2n+l)4-n(~'); 3. (n+l)(m(m2-7m+ 

3)y5 - (3m3 -7m2 + 19m - 6)) /6(2m3y5 + (m4 + 5m2 - 1)); 4.2- (2:~1)'; 5. 

~+4(n-l)4n. 6 16-n(2n)2 
3 3(n+2) ,. n' 

Problem 5.12 Applying Gosper's algorithm to ak = t leads to the Gosper equa
tion 1 = xy(x + I) - xy(x) which has obviously no polynomial solution y(x). 

Problem 5.13 Like in Zeilberger's algorithm, apply Gosper's algorithm to (co + 
c1k+··· +cdkd)/k! for a priori undetermined Co, ... ,Cd and find suitable values for 
the Ci during the computation. The smallest d where a nontrivial solution can be 
found is d = l. Here we get Co = 1, C I = -1, thus p (x) = x - l. 

Problem 5.14 l. (2n-l)4n- 1 (n:;o. 1); 2. (2n+ 1)(-I)n (n:;o. 0); 3. Tn(~;') 
(n:;o. 0); 4. 2n (n:;o. 0); 5. 4-n(~) (n:;o. 0); 6.0 (n:;o. I). 

Problem 5.15 (n+2?Sn+2 - (2n+3)(17n2+51n+39)sn+1 + (n+ l?sn = 0 (n:;o. 
0). 

Problem 5.16 With co(t) = 2t + 1 and CI (t) = - 2(t + 1) we have 

.I (co(n) cos( cp fn + CI (n) cos( cp fn+2)dcp = - sin( cp) cos( cp fn+l. 

For the specific boundaries 0 and 7[/2 the right hand side becomes zero. Therefore 
the definite integral I (n) on the right hand side of Wallis identity satisfies the re
currence equation co(n )I(n) + CI (n )I(n + 1) = 0 (n :;0. 0). Since the right hand side 
satisfies the same recurrence and both sides trivially agree for n = 0, the identity 
follows by induction. 

Problem 6.1 

Problem 6.2 

1 +yT=4X = 1. _ 1 - x - 2x2 + ... is not a power series. 
2x x 

(4x2 -x)al/(x) + (lOx-2)a'(x) +2a(x) = O. 

Problem 6.3 The recursive structure of the continued fraction implies that K(x) = 
x/(1 - K(x)). Clearing denominators gives the algebraic equation K(xf - K(x) + 
x = O. This equation has a unique formal power series solution whose constant term 
is zero. Since xC(x) satisfies the same equation, we must have K(x) = xC(x). 
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Problem 6.4 The vector space V = lK(x) EBa(x)lK(x) EB ... EBa(x)d-llK(x) con
tains I and a(x), a' (x), a" (x), .... Because of dim V = d, any d elements are linearly 
dependent over lK(x). In particular, I, a(x), a' (x), . .. ,a(d-I) (x) are linearly depen
dent. The dependence gives the desired equation. 

Problem 6.5 1 + :!.x+ ...2..x2 + ..,M...x3 + .... _1. _4V'3xl/2 - ~x+ _2_x3/2 + .... 
9 243 6561 ' 2 . 9 27 V3 ' 

- ~ + 4V'3xl/2 - ~x - 27~x3/2 + .... 

Problem 6.6 Observe that L;;'=oCIlXn = a(x2) +xb(x2) and resort to Theorem 6.l. 

Problem6.7 (x2 +x-I )2xl + (x2 -x+ I )(x2 +x-I )y+ (x4 +2x3 - 2x2 -x+ I). 

Problem 6.8 !v5/6n(4/5)nn-3/2. 

Problem 6.9 4y3 - (24x + 3)y + 8x2 + 20x - I can be discovered by automated 
guessing as explained in Sect. 2.6. To prove that this "guessed" equation is correct, 
plug the series into the polynomial and simplify to zero (using summation algo
rithms whenever appropriate). Alternatively, convert the minimal polynomial into 
a differential equation (via Theorem 6.1), check compatibility of the series with this 
equation, and compare a suitable number of initial terms. 

L;;'=o (I (,2) 2 x" is hypergeometric but not algebraic. 1 1(1 - x - x2) is algebraic but 
not hypergeometric. 

Problem 6.10 1. all,k = Lj ( - 2 )n- j (k~ j) (Il~J (n, k ~ 0). 

2. The recurrence is all+2,n+2 = -4 ;:!i all (n ~ 0). Together with the initial values 

ao,o = 1 and aLI = 0 implies a2n,21l = ( -1)" (~;') and a21l+ L21l+ I = 0 (n ~ 0). 

3. (4x2 + 1)y2 - 1 = O. 

4. Plug L;;'=o e) (_x2)1l into the left hand side of the equation and simplify the 
resulting expression to zero. 

A proof for the general statement can be found in [54, Theorem 6.3.3]. 

Problem 6.12 Suppose m(x,y) E lK[x,y] is such that m(x,a(x)) = o. Substituting 
x f--+ b(x) gives m(b(x),a(b(x))) = 0, so m(b(x),x) = O. The claim follows. 

1 
Problem 6.13 1. We have lin! rv cn-n+ 2: e" for some constant c, whereas the coef-
ficient sequences of algebraic power series grow like ncxd" for some constants (X,d. 

2. Suppose p(x,y) = po(x) + PI (x)y + ... + Pd(x)l is an annihilating polynomial 
of exp(x). We may assume that d is minimal and that among all annihilating poly
nomials of degree d, the choice is made such that degxPd(x) is as small as can be. 
Then d ~ 1 and Po (x) is not the zero polynomial. Differentiating p(x,exp(x)) = 0 
with respect to x implies that 

is another annihilating polynomialfor exp(x). Now consider q(x,y) - dp(x,y). This 
cannot be the zero polynomial because d # 0 and degxp~(x) < degxpo(x) im
plies that [i](q(x,y) - dp(x,y)) = p~(x) - dpo(x) is not the zero polynomial. But 
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[ydl (q(x, y) - d p(x,y)) = P;z (x). This is in contradiction to the minimality assump
tions because either p~(x) = 0, then d was not minimal, or otherwise degxp;z(x) < 
degxPd(x) and the degree of Pd(X) was not minimal. 

3. Suppose p(x,y) = po(x) + PI (x)y + ... + Pd(x)i is an annihilating polyno
mial of exp(x). We may assume that Pd(X) is not the zero polynomial. Set u = 

- degx Pd(X) and v = -d. Then limz---+= p(z, eZ)z"e"z = Ie Pd(X) of. 0 while p(z, eZ ) = 0 
for all z E JR. Contradiction. 

4. If exp(x) is algebraic then so are exp(ix) and exp( -ix). Hence, also sin (x) = 

t (exp(ix) - exp( -ix)), and hence xl sin(x). But the latter power series, regarded as 
an analytic function, has a pole at kn for every k E ~ \ {O}. These are infinitely many. 
But the singularities of an algebraic function are roots of a univariate polynomial 
and therefore there are at most finitely many of them. Therefore, xl sin (x) cannot be 
algebraic, and therefore exp(x) cannot be algebraic either. 

5. Suppose there is a nontrivial relation of the proposed form. Then po(x) can
not be the zero polynomial, for otherwise multiplying by n! on both sides would 
yield a contradiction to the linear independence statement of Theorem 4.1. Assume 
again that d is minimal and derive a smaller relation subtracting dpd(n + 1) times 
the original relation from (n + l)pd(n) times the relation obtained from the orig
inal relation by shifting n f---+ n + I. The first term in the resulting relation is the 
dpo(n)pd(n + I) - (n + 1 )po(n + 1 )pd(n) which cannot be identically zero because 
the po(x) is not the zero polynomial and the two terms have different degree in n. 
This is the desired contradiction. To see that exp(x) is not algebraic, observe that 
comparing coefficients of X" in a relation p(x, exp(x)) = 0 would give rise to a non
trivial relation of the form we just proved to be impossible. 

Problem 6.14 If log( 1 + x) was algebraic, then, since exp(log( 1 + x)) = 1 + x, also 
exp(x) would be algebraic by Problem 6.12. This is not the case by Problem 6.13, so 

10g(1 +x) is not algebraic either. Now I';;=oHl1x' = _logl(~~x) cannot be algebraic 
either, for if it was, then multiplying by x-I and substituting x f---+ -x would yield 
again an algebraic series, while log( 1 + x) was shown to be not algebraic. 

Problem 6.15 1. Counterexample: I';;=02I1x' = 1/(1 - 2x) is algebraic as series, 
but 211 grows too quickly to be algebraic as a sequence. 

2. Counterexample: all = 1 I (n + 1) is algebraic as a sequence, because (n + 1 ) all -
1 = 0 (n ::;:, 0), but I';;=o allx" = log( 1 - x) is not algebraic as a series. 

Problem 6.16 ell' 

Problem 6.17 1-yT=4x -I +3 + 10 2 +35 3+ 2xv I -4x - -X X - X .... 

Problem 7.2 1. ~n((1 -n) +2(n+ I)HI1); 2. 2n - (2n+ I)HI1 + (n+ I)H~; 
( ) (2) 3. n+ 1 HI1 -HI1 . 

Problem7.3 I.n; 2.211; 3.211+311 ; 4.n!; 5. e~'); 6. 211+ e:'); 7.n!; 
8. n! + (2n) !; 9. 1 I (n! + (2n) !). 
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Problem 7.4 Let Cn = bn - an. Then Cn -I=- 0 for finitely many n E N only. Therefore 
c(x) := L;;'=o cnx' is a polynomial, and thus holonomic. (It satisfies, for instance, the 
differential equation c' (x)a(x) - c(x)a' (x) = 0.) Since (an);;'=o is holonomic and also 
(cll);;'=o and bll = all + CIl (n EN), it follows that (bll);;'=o is holonomic. 

The corresponding statement is true for C-finite sequences and for coefficient se
quences of algebraic power series, but not for hypergeometric sequences. 

Problem 7.7 All. 

Problem 7.8 Let a(x) be the series in question. Then for every kEN there is 
some polynomial qk(X) E <Q[x] of degree k such that D~a(x) = qk(exp(x) )a(x). This 
follows directly from a repeated application of the chain rule. Now if there was an 
equation 

po(x)a(x) + PI (x)a' (x) + ... + Pr(x)D~a(x) = 0 

then this would imply 

(po (x) + PI (x)ql (exp(x)) + ... + Pr(x)qr(exp(x)))a(x) = O. 

Dividing by a(x) gives a polynomial equation for exp(x) which is nontrivial be
cause degq,,(x) = k for every k. We have reached a contradiction to the result of 
Problem 6.13 and therefore a holonomic differential equation for a(x) cannot exist. 

Problem 7.9 a,,:= (~)"ekk) is clearly holonomic as a sequence. Hence a(x) := 

Lk=Oa"x" is holonomic as a power series. Hence l~xaC::I) is holonomic as a power 

series. Hence [x/]I~xaC::I) is holonomic as a sequence. By the Euler transform, the 
latter is equal to SIl' 

Problem 7.10 Starting from the obvious equations satisfied by 1/ VI - 4t2, exp(t), 
and 4t(xy - t(x2 + i)) / (I - 4t2), construct a differential equation for the right hand 
side. This gives 

This differential equation translates into the recurrence equation 

valid for n ::;:, O. Now verify that HIl (x )HIl (y) / n! satisfies this recurrence as well and 
compare four initial values. 

Problem 7.11 Start with the differential equation from Problem 5.5 and the obvi
ous equations satisfied by 4x/(1 +x?, (I +x)2a and x2, and construct differential 
equations for the series on the left hand side and the right hand side of the equation. 
It turns out that both sides satisfy 

4ab(x - I )f(x) + 2(x+ 1)( -2ax+ bx2 + b _x2)!, (x) - (x - I )x(x+ I )2f" (x) = O. 

Finally, compare a suitable number of initial values. 
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Problem 7.12 The recurrence corresponding to the differential equation is 

52an+(2705-104n)an+l +2(26n2 -1353n - 54)an+2+53(n - 50)(n + 3)an+3 = O. 

It has a singularity at n = 50, so fixing ao, aI, a2 does not determine the value aS3. 

Problem 7.13 See Sect. 8.3 of [44]. 

Problem 7.15 hn = n!. To obtain the other solution, plug the proposed form of Un 
into the equation. Using that hn is a solution, the equation can be simplified to a first 
order equation for hn. Its solution is hn = (_I)n In!. 

More generally, whenever (hn)';=o is some solution to a recurrence of order r, there 
is a second solution (un)';=o with Un = hn '£;::6 hk where (hn),;=o satisfies a recur
rence of order r - I. 

Problem 7.16 .; = 1 or'; = -I. 

Problem 7.17 I. If (hn)';=o is such that u(n)hn+l + v(n)hn (n ~ 0) for some poly
nomials u(x), v(x) E IK[x], then every solution (an)';=o of the given inhomogeneous 
equation will also satisfy the homogeneous equation 

v(n)po(n)an + (u(n)po(n+ 1) +v(n)PI(n))an+1 + ... 
+ (u(n)Pr-l(n+ I) + v(n)Pr(n))an+r+ u(n)Pr(n + I)an+r+l = 0 (n ~ 0). 

Use Petkovsek's algorithm to determine the hypergeometric solutions of this equa
tion, and then check which of these also satisfies the original equation. Return those 
as answer and discard the others. 

2. Petkovsek's algorithm returns the shift quotients w(x) E IK(x) of all the hyper
geometric solutions. We need to detect for a given w(x) E IK(x) whether it is actu
ally the shift quotient of a rational function, i.e., whether there exists u(x) E IK(x) 
such that u(x+ I)/u(x) = w(x). This can be done by computing a Gosper form 
ofw(x): Ifw(x) = p(x+ l)q(x)/p(x)/r(x+ 1) is a Gosper form ofw(x), then w(x) 
is the shift quotient of a rational function if and only if q(x) = r(x). In this case 
u(x) = p(x)/q(x). 

It should be remarked that this is a rather brutal way of finding rational solutions of 
holonomic recurrence equations. Better algorithms can be found in the literature [2]. 

Problem 7.18 Induction on k. For k = 0 we have SI (n, 0) = 0 (n ~ I), which is 
clearly holonomic. If (51 (n,k))';=o is holonomic for some k ~ 0, then the general 
recurrence 

for Stirling numbers of the first kind (Ex. 3.7) implies 

n-I S (" k) 
SI(n,k+l)=(-I)n(n-l)!I, (~l)'i" 

i=O 1 l. 

so (SI (n, k + I) )';=0 is holonomic as well. 

(n,k > 0) 

(n > 0), 
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The claimed harmonic number representations can be checked by explicitly com
puting recurrence equations for the (Sl(n,k));;'=o (k = 1,2,3,4), checking that the 
claimed expressions satisfy these recurrence equations, and comparing a suitable 
number of initial values. 

Problem 7.19 I. The worst case situation is exactly the same as for Quicksort. 

2. cn'; = (n -1) + k (L~~11 Cn-k';-k + Lk=i+l Ck-l.i) and Cn,1 = cn.n = n - 1. 
Elimination of the summation signs leads to the recurrence 

2 
C",i - Cn+1,i - Cn+1,i+1 + Cn+2,i+1 = n + 2 (n'21,1 <i<n). 

3 Th f 1 2 "'0 dOl 8 53 197 87 467 1133 1013 23447 49249 
- . e terms or n = , , ... , -~ rea "3' 12' 30' 10' 42' 84' 63' 1260' 2310 ' 
664327 4822549 118115 1166365 1810561 58338047 27874461 511162633 5449841867 
27720' 180180' 4004' 36036' 51480' 1531530' 680680' 11639628' 116396280' 
161087299 6141864151 74689129967 10489933451 29559627277 867902775947 1363691268007 
3233230 ' 116396280' 1338557220' 178474296' 478056150 ' 13385572200' 20078358300' 

5698145622329 5748829529089 89786686813897 
80313433200 ' 77636318760 ' 1164544781400 . 

4. We found the equation 

x(x+ 1)(x - 1)3(2x6 + 2x5 - 18x4 - 17x3 - 9x2 - 30x - 30)a(3)(x) 

+ 2(x - 1)2(9x8 + 15x7 - 94x6 - 148x5 - 83x4 - 207x3 - 282x2 + 90)al/(x) 

+2(x-I)(15x8+24x7 -175x6-274x5-320x4 -582x3 

- 528x2 + 480x+ 360)a'(x) 

+ 4(3x7 + IIx6 - 40x5 - 227x4 - 1 95x3 - 42x2 + 300x + 90)a(x) = O. 

5. We found C1 (x) = (x~l)ix4' C2(X) = (x~!)2' and 

( ) _ x6 -18+2(x2 -3)log(x+ 1)+2(2x4 +x2 -3)log(l-x) 
C3 x - (x-l)2x4 

6. For the above choice of C1 (x), C2(X), C3 (x) we get a1 = 3, a2 = -~, a3 = -~. 
7. On U := {z E <C : Izl < I} we can define the analytic function 

c: U ----+ <C, c(z) = alCl (z) + a2Cl (z) + a3C3 (z). 

It has singularities at z = ± 1 and there we have 

C(z) rv ~(1 +log(1 +z)) 

() 2(1 + log(2)) 
C z rv (1 _ Z)2 

(z ----+ -1) 

(z ----+ I). 

The growth implied by the second estimate dominates the growth implied by the 
first. Therefore 

[xn]C(x) rv2(1 +log(2))n (n----+ oo ). 

8 2n5+28n4+ 123n3+ 166n2-81n-210 + n4 +15n3+85,,2+209,,+198 (-1)" _ 2(n+6) i (_l)k _ 
. (n+l)(n+2)(n+3)(n+4) (n+l)(n+2)(n+3)(n+4) k=l k 

10H". 
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A.7 Bibliographic Remarks 

Chapter 1 

Hoare's original paper on Quicksort is [29]; the complexity analysis given here al
ready appears there and is used as an example for the analysis of algorithms in many 
introductory textbooks. Further examples for analysis of algorithms can be found in 
the seminal volumes of Knuth [34, 33]. The book Concrete Mathematics [24] arose 
as an offspring of Knuth's ground breaking work in this area. 

Havil [27] gives a fine and very readable account on the mysteries surrounding Eu
ler's magic constant y. 

Chapter 2 

Wilf's introduction to generating functions [62] contains further information and 
additional examples for the usage of formal power series in combinatorics and other 
branches of mathematics. Ongoing research on formal power series is presented at 
the annual meetings of the international conference series FPSAC ("Formal Power 
Series and Algebraic Combinatorics"). 

Sokal [52] gives a "ridiculously simple" version ofthe implicit function theorem for 
analytic functions as well as for formal power series. 

Sloane's collection of integer sequences has originally appeared as a book [51]. One 
of the first uses of computers for detecting possible equations among sequences 
or power series was by Pivar and Finkelstein [45], the idea has subsequently been 
adapted to various different types of equations [49, 39, 37, 31, 28]. 

Richardson's convergence acceleration technique dates back to 1910 [47], a survey 
of more recent developments can be found in [13]. 

Chapter 3 

Most of the material in this chapter is part of the mathematical folklore. 

We follow Concrete Mathematics for the notation of rising and falling factorials; 
many other notations are used in the literature. In particular, the symbol (x)n may 
refer to x' as well as to x.l. 
For a collection of additional facts on Stirling numbers, see Sect. 6.1 of Concrete 
Mathematics. Also Stirling numbers appear in a variety of different notations. 

The algorithm for solving first order inhomogeneous linear recurrence equations 
with polynomial coefficients appears in Gosper's paper [23]. 
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The theory behind the examples for partition analysis was developed in the late 19th 
century by MacMahon [38] and revived and brought to the computer by Andrews, 
Paule and Riese in a series of articles. The examples given here are taken from [9]. 
For more recent work, see [8] and the references given there. 

Chapter 4 

The term C-finite was coined by Zeilberger in [65], he also calls holonomic recur
rences P-finite because they have Qolynomial coefficients where C-finite recurrences 
have fonstant coefficients. 

Stanley discusses rational generating functions in Chap. 4 of [53]. Combinatorial 
examples as well as pointers to the literature can be found there. For number theo
retic aspects of C-finite sequences we refer to the comprehensive text [20]. 

A general summation algorithm for sums over C-finite sequences is due to Greene 
and Wilf [25]. Their algorithm includes as a special case the one we describe. 

For general aspects of the theory of orthogonal polynomials, see Chap. 6 in the book 
of Temme [55] and the relevant chapters of [7]. 

ChapterS 

Andrews, Askey and Roy [7] is excellent reference for classical aspects of the theory 
of hypergeometric series. 

Gosper's algorithm originally appeared in [23], Paule [41] provides an algebraic 
explanation of it. The original article of Zeilberger's algorithm is [64]. There are 
also textbooks solely devoted to hypergeometric summation [44, 35], and further 
references to the literature are given there. 

The elliptic arc length example is taken from [6]. 

Monthly problems which can be solved with the help of summation algorithms are 
collected in [40]. Also the examples we have given are taken from there. 

Chapter 6 

The kernel method first appeared as a solution to Exercise 2.2.1-4 in [33], see [10, 
12] and the references given there for generalizations. 

The solution of algebraic equations in terms of Puiseux series was already proposed 
almost two centuries before Puiseux by Isaac Newton. 
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Buchberger's theory of Gr()bner bases [17] provides a computational alternative to 
resultant computations. 

More on the connection of context free languages to algebraic power series can be 
found in [21]. Also detailed background information on asymptotic techniques can 
be found there. 

Facts about Legendre polynomials are collected in [18]. 

Chapter 7 

Concrete Mathematics [24] discusses harmonic numbers and their summation in 
Sects. 6.3 and 6.4. For algebraic relations among generalized harmonic numbers, 
their automated computation, and their relevance in particle physics, we refer to [1] 
and the references give there. Apery's proof of the irrationality of S (3) can be found 
in [56]. 

Zeilberger promoted holonomic sequences and power series in [65], there he dis
cusses a more general definition applicable to sequences and series in several vari
ables. Closure properties can be proven and computed also in this case. Stanley 
treats holonomic objects in Sect. 6.4 of [54] under the names D-finite (for power 
series) and P-recursive (for sequences). Summation algorithms for general multi
variate holonomic sequences and functions are described in [15] and [14]. 

The solution of linear differential equations in terms of generalized series goes back 
to the work of Frobenius at the end of the 19th century. 

The criterion that a(x) and I/a(x) are holonomic if and only if a'(x)/a(x) is alge
braic can be found as Exercise 1.39 in [57]. The original source is [26]. 

Petkovsek's algorithm first appeared in [43] and is also described in [44, 35]. 
Abramov and van Hoeij present their summation algorithm in [4]. 

Proofs for the claimed permutation statistics are given in [62]. For techniques for 
high performance computations of constants, see the book [II]. Bessel functions 
are described at length in the classical book [60]. 

The fast median search algorithm discussed in Problem 7.19 is described in Chap. 9 
of [16]. 
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