
Appendix A
Installing R and R-Commander

This appendix gives detailed instructions for installing R and R-Commander.

A.1 Installing R

1. Go to http://www.r-project.org/.
2. Click on the download R link.
3. Then select a location closest to you.
4. Click on your operating system (Linux, MacOS X, Windows) and follow direc-

tions.

If you are a Mac user, download the latest .dmg file and follow the instructions.
Once installed, R will appear as an icon in the Applications Folder. After you in-
stall R, you should go back to the same webpage (where you obtained the latest
.dmg file), click on “tools”, which is located under “Subdirectories”, and install the
universal build of Tcl/Tk for X11. The file name contains “tcltk”, three numbers
representing the current version, and “x11.dmg”. (Currently, the file name is “tcltk-
8.5.5-x11.dmg”.) This file includes additional tools necessary for building R for
Mac OS X.

If you are running Windows, click on base and then on the link that downloads
R for Windows. (In the link, the current version number appears after “R”.) When
the dialog box opens, click Run, and a “Setup Wizard” should appear. Keep clicking
Next until the Wizard is finished. Now, you should see an icon on your desktop,
with a large capital R.

A.2 Installing R-Commander

A.2.1 From the Command Line

You can download R-Commander from the command line by following these steps:
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Fig. A.1 Installing R-Commander by entering the command install.packages
("Rcmdr", dependencies=TRUE) in R Console

1. Once you have installed R, open it by double-clicking on the icon.
2. A window called “R Console” will open.
3. Make sure you have a working internet connection. Then, at the prompt (the >

symbol), type the following command exactly and then press enter (Fig. A.1):

> install.packages("Rcmdr", dependencies = TRUE)

4. R may respond by asking you to select a mirror site and listing them in a pop-up
box. Choose a nearby location.

5. Depending on your connection speed, the installation may take awhile. Be patient
and wait until you see the prompt again before you do anything.

A.2.2 From the Menu Bar

Alternatively, you can download R-Commander from the menu bar by following
these steps:

1. Open R by clicking on its icon.
2. Click “Packages & Data” from the menu bar and then click “Package Installer”.

This opens a window similar to Fig. A.2.
3. Click “Get List”.
4. Scroll down and select “Rcmdr”.
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Fig. A.2 Installing R-Commander using “Package Installer” from the menu bar

5. Check “Install dependencies” and click “Install Selected”.
6. R may respond by asking you to select a mirror site and listing them in a pop-up

box. Choose a nearby location.
7. The installation may take awhile. Wait until you see the prompt again before you

do anything.

A.3 Starting R-Commander

If R is not already open, open it by clicking on its icon. To open R-Commander, at
the prompt enter the following command (Fig. A.3):

> library(Rcmdr)
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Fig. A.3 Opening R-Commander by entering the command library(Rcmdr) in R Console

Fig. A.4 The “Package Manager” window
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Fig. A.5 The R-Commander window

Alternatively, you can load R-Commander by clicking “Packages & Data” from
the menu bar and then clicking “Package Manager”. This will open a window similar
to Fig. A.4. Scroll down to find R-Commander (“Rcmdr” package) and check its box
to change the status from “not loaded” to “loaded”.

You should see a large new window pop-up, labeled R-Commander (Fig. A.5).
You are now ready to analyze your data. If you close this window while R is still
open, you can start R-Commander again by entering the command Commander()
in R Console. (Entering library(Rcmdr) in this situation will not work unless
you close R and open it again.) Alternatively, you can use the “Package Manager”
window to unload and reload R-Commander.

If you are a Mac user and your OS version is 10.4.11 or lower, you might need to
open X11 manually before entering the command library(Rcmdr) in R Con-
sole. To do this, under Misc from the top bar menu choose Run X11 Server. If
you do not have X11, you can install it from your install DVD or find it online.



Appendix B
Basic R

This appendix gives a brief introduction to R language for those who want to use R
(instead of R-Commander) for data analysis. The introduction given here is meant
to help with the initial steps toward this goal. To use R more broadly and more
effectively, one needs to refer to more advanced references for R programming as
well as reading the advanced sections in this book.

B.1 Starting with R

In the R Console, you can type commands directly at the prompt, >, and execute
them by pressing enter. Commands can also be entered in the Script window in R-
Commander and executed by pressing the “Submit” button. Both the R Console and
R-Commander provide an interactive environment where the results are immedi-
ately shown similar to a calculator. In fact, R can be used as a calculator. The basic
arithmetic operators are + for addition, - for subtraction, * for multiplication, and
/ for division. The ^ operator is used to raise a number (or a variable) to a power.
Try executing the following commands:

> 65 + 32

[1] 97

> 3 * 1.7 - 2

[1] 3.1

> 4 * 3 + 6/0.2

[1] 42

> 5^2

[1] 25
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There are also built in functions for finding the square root sqrt(), the expo-
nential exp(), and the natural logarithm log():

> sqrt(430)

[1] 20.73644

> exp(-1.3)

[1] 0.2725318

> log(25)

[1] 3.218876

Here, the numbers in the parentheses serve as input (parameters or arguments) to
the functions. Most functions have multiple parameters and options. For example,
to take the base-10 logarithm of 25, we include the option base=10:

> log(25, base = 10)

[1] 1.39794

In general, you can always learn more about a function and its options (arguments)
by writing its name after a question mark (e.g., ?log).

We can combine two or more functions such that the output from one function
becomes the input for another function. For example, the following code combines
the above log() function with the round() function, which is used to specify
the number of decimal places (here, two digits):

> round(log(25, base = 10), digits = 2)

[1] 1.4

In the above code, the output of log(25, base=10) becomes the first argument
of the function round(). The second argument, digits=2, specifies the number
of decimal places.

B.2 Creating Objects in R

Instead of directly entering commands such as 2+3, we can create objects to hold
values and then perform operations on these objects. For example, the following set
of commands creates two objects x and y, adds the values stored in these objects,
and assigns the result to the third object z:
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> x <- 2
> y <- 3
> z <- x + y

In general, we use left arrow <- (i.e., type < and then -) to assign values to an
object. Almost always, we can use the equal sign “=” instead of <- for assignment.
For example, we could use y = 3 to assign the value 3 to y, and use z = x+y to
set z equal to the sum of x and y. The two options, “=” and <-, have some small
differences, which are not discussed here.

Simply typing the name of an object displays its contents. We could also use the
function print():

> x

[1] 2

> print(y)

[1] 3

> print(z)

[1] 5

Object names are case sensitive. For example, x and X are two different objects.
A name cannot start with a digit or an underscore _ and cannot be among the list
of reserved words such as if, function, NULL. We can use the period . in a
name to separate words (e.g., my.object).

The objects are created and stored by their names. We can obtain the list of
objects that are currently stored within R by using the function objects():

> objects()

[1] "x" "y" "z"

The collection of these objects is called the workspace. (Note that although we are
not specifying the values of arguments, we still need to type parentheses when us-
ing functions.) When closing an R session, you have the opportunity to save the
objects permanently for future use. This way, the workspace is saved in a file called
.RData, which will be restored next time you open R. If you want to save only few
objects, as opposed to the entire workspace, you can use the function save(). For
example, suppose that we only want to save the objects x and y:

> save(x, y, file = "myObjects.RData")

The above command saves x and y in a file called myObjects.RData in the
current working directory. You can see where the current working directory is by
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entering the command getwd(). If you want to save your objects in another direc-
tory, either enter the full path when specifying the file name in the save() function
or use the menu bar to change the directory. (For Mac, this option is located under
“Misc”. For Windows, it is located under “File”.)

After you save the x and y in myObjects.RData, you can load these objects
for future use with the load() function:

> load("myObjects.RData")

Give the full address for the file if it is not located in the current working directory.
Alternatively, you can change the working directory from the menu bar.

B.3 Vectors

Using objects allows for more flexibility. For example, we can store more than one
value in an object and apply a function or an operation to its contents. The following
commands create a vector object x that contains numbers 1 through 5 and then apply
two different functions to it:

> x <- c(1, 2, 3, 4, 5)
> x

[1] 1 2 3 4 5

> 2 * x + 1

[1] 3 5 7 9 11

> exp(x)

[1] 2.718282 7.389056 20.085537 54.598150
[5] 148.413159

The c() function is used to combine its arguments (here, integers from 1 to 5) into
a vector. Since 1,2, . . . ,5 is a sequence of consecutive numbers, we could simply
use the colon “:” operator to create the vector:

> x <- 1:5
> x

[1] 1 2 3 4 5

To create sequences and store them in vector objects, we can also use the seq()
function for additional flexibility. The following commands create a vector object y
containing a sequence increasing by 2 from −3 to 14:
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> y <- seq(from = -3, to = 14, by = 2)
> y

[1] -3 -1 1 3 5 7 9 11 13

If the elements of a vector are all the same, we can use the rep() function:

> z <- rep(5, times = 10)
> z

[1] 5 5 5 5 5 5 5 5 5 5

The following function creates a vector of size 10 where all its elements are un-
known. In R, missing values are represented by NA (Not Available):

> z <- rep(NA, times = 10)
> z

[1] NA NA NA NA NA NA NA NA NA NA

This way, we can create a vector object of a given length and specify its elements
later.

To find the length of a vector (i.e., number of elements), we use the length()
command:

> length(x)

[1] 5

> length(y)

[1] 9

Functions sum(), mean(), min(), and max() return the sum, average, min-
imum, and maximum for a vector:

> x

[1] 1 2 3 4 5

> sum(x)

[1] 15

> mean(x)

[1] 3
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> min(x)

[1] 1

> max(x)

[1] 5

The elements of a vector can be accessed by providing their index using square
brackets [ ]. For example, try retrieving the first element of x and the 4th element
of y:

> x[1]

[1] 1

> y[4]

[1] 3

The colon : operator can be used to obtain a sequence of elements. For instance,
elements 3 through 6 of y can be accessed with

> y[3:6]

[1] 1 3 5 7

To select all but the 4th element of a vector, we use negative indexing:

> y[-4]

[1] -3 -1 1 5 7 9 11 13

The above objects are all numerical vectors. A vector can also hold character
strings delimited by single or double quotations marks. For example, suppose that
have a sample of 5 patients. We can create a character vector storing their gender
as

> gender <- c("male", "female", "female", "male",
+ "female")

(The plus sign means that the second line is the continuation of the command in the
first line. You should not type it when trying the above command in R.) Retrieving
the elements of the vector is as before:

> gender[3]

[1] "female"
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A vector could also be logical, where the elements are either TRUE or FALSE
(NA if the element is missing). Note that these values must be in capital letters and
can be abbreviated by T and F (not recommended). For example, create a vector
storing the health status of the five patients:

> is.healthy <- c(TRUE, TRUE, FALSE, TRUE, FALSE)
> is.healthy

[1] TRUE TRUE FALSE TRUE FALSE

When used in ordinary arithmetic, logical vectors are coerced to integer vectors,
0 for FALSE elements and 1 for TRUE elements. For example, applying the sum()
function to the above logical vector turns the TRUE and FALSE values to ones and
zeros, and returns their sum, which in this case is equivalent to the number of healthy
subjects:

> sum(is.healthy)

[1] 3

Use the as.integer() function to see the equivalent integer vector for
is.healthy:

> as.integer(is.healthy)

[1] 1 1 0 1 0

Logical vectors are usually derived from other vectors using logical operators.
For example, with the gender vector, we can create a logical vector showing which
subjects are male:

> gender

[1] "male" "female" "female" "male" "female"

> is.male <- (gender == "male")
> is.male

[1] TRUE FALSE FALSE TRUE FALSE

Here, == (i.e., two equal signs) is a relational operator that returns TRUE if the two
sides are equal and returns FALSE otherwise. As the second example, we create a
numerical vector for the age of the five subjects and then check to see which person
is 60 years old:

> age <- c(60, 43, 72, 35, 47)
> is.60 <- (age == 60)
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> is.60

[1] TRUE FALSE FALSE FALSE FALSE

The != operator, on the other hand, returns a TRUE value when the two sides are
not equal:

> is.female <- (gender != "male")
> is.female

[1] FALSE TRUE TRUE FALSE TRUE

> not.60 <- (age != 60)
> not.60

[1] FALSE TRUE TRUE TRUE TRUE

The other relational operators commonly applied to numerical vectors are “less
than”, <, “less than or equal to”, <=, “greater than”, >, “greater than or equal to”:
>=

> age < 43

[1] FALSE FALSE FALSE TRUE FALSE

> age <= 43

[1] FALSE TRUE FALSE TRUE FALSE

> age > 43

[1] TRUE FALSE TRUE FALSE TRUE

> age >= 43

[1] TRUE TRUE TRUE FALSE TRUE

We can also use Boolean operators to create new logical vectors based on existing
ones. The logical NOT, !, negates the elements of a logical vector (i.e., changes
TRUE to FALSE and vice versa). For example, create a is.female vector from
the is.male vector:

> is.female <- !is.male
> is.female

[1] FALSE TRUE TRUE FALSE TRUE

The logical AND, &, compares the elements of two logical vectors and returns TRUE
only when the corresponding elements are both TRUE:
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> is.male

[1] TRUE FALSE FALSE TRUE FALSE

> is.healthy

[1] TRUE TRUE FALSE RUE FALSE

> is.male & is.healthy

[1] TRUE FALSE FALSE TRUE FALSE

The logical OR, |, also compares the elements of two logical vectors and returns
TRUE when at least one of the corresponding elements is TRUE:

> is.male | is.healthy

[1] TRUE TRUE FALSE TRUE FALSE

We can use combinations of two or more logical operators. The following com-
mands check to see which subjects are male and less than 45 years old:

> is.young.male <- is.male & (age < 45)
> is.young.male

[1] FALSE FALSE FALSE TRUE FALSE

Using the which() function, we can obtain the indices of TRUE elements for a
given logical function:

> ind.male <- which(is.male)
> ind.male

[1] 1 4

> ind.young <- which(age < 45)
> ind.young

[1] 2 4

We can then use these indices to obtain their corresponding elements from a vector:

> age[ind.male]

[1] 60 35

> is.male[ind.young]

[1] FALSE TRUE
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We can combine the two steps:

> age[is.male]

[1] 60 35

> age[gender == "male"]

[1] 60 35

> is.male[age < 45]

[1] FALSE TRUE

> gender[age < 45]

[1] "female" "male"

B.4 Matrices

In the above examples, we used one vector for each characteristic (e.g., age, health
status, gender) of our five subjects. It is easier, of course, to store the subject in-
formation in a table format, where each row corresponds to an individual and each
column to a characteristic. If all these measurements are of the same type (e.g., nu-
merical, character, logical), a matrix can be used. For example, besides age, assume
that for our five subjects, we have also measured BMI (body mass index) and blood
pressure:

> BMI = c(28, 32, 21, 27, 35)
> bp = c(124, 145, 127, 133, 140)

Now create a matrix with the cbind() function for column-wise binding of age,
BMI, and bp:

> data.1 = cbind(age, BMI, bp)
> data.1

age BMI bp
[1,] 60 28 124
[2,] 43 32 145
[3,] 72 21 127
[4,] 35 27 133
[5,] 47 35 140

If we had wanted a matrix where each row represented a characteristic and each col-
umn a subject, we would have used the rbind() function for row-wise binding:
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> data.2 = rbind(age, BMI, bp)
> data.2

[,1] [,2] [,3] [,4] [,5]
age 60 43 72 35 47
BMI 28 32 21 27 35
bp 124 145 127 133 140

We could obtain data.2 by transposing (e.g., interchanging the rows and columns)
data.1 using the t() function:

> t(data.1)

[,1] [,2] [,3] [,4] [,5]
age 60 43 72 35 47
BMI 28 32 21 27 35
bp 124 145 127 133 140

In general, matrices are two-dimensional objects comprised of values of the same
type. The object data.1 is a 5 × 3 matrix. The function dim returns the size (i.e.,
the number of rows and columns) of a matrix:

> dim(data.1)

[1] 5 3

When creating the matrix data.1, R automatically uses the vector names as the
column names. They can be changed or accessed with the function colnames():

> colnames(data.1)

[1] "age" "BMI" "bp"

Likewise, we can obtain or provide the row names using the function row-
names():

> rownames(data.1) <- c("subject1", "subject2",
+ "subject3", "subject4", "subject5")
> data.1

age BMI bp
subject1 60 28 124
subject2 43 32 145
subject3 72 21 127
subject4 35 27 133
subject5 47 35 140
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To access the elements of a matrix, we still use square brackets [ ], but this
time, we have to provide both the row index and the column index. For instance, the
age of the third subject is

> data.1[3, 1]

[1] 72

If only a row number is provided, R returns all elements of that row (e.g., all the
measurements for one subject):

> data.1[2, ]

age BMI bp
43 32 145

Likewise, if only a column is specified, R returns all elements of that column (e.g.,
all the measurements for one characteristic):

> data.1[, 2]

subject1 subject2 subject3 subject4 subject5
28 32 21 27 35

A matrix can also be created by rearranging the elements of a vector with the
matrix function:

> matrix(data = 1:12, nrow = 3, ncol = 4)

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

Here, the argument data specifies the numbers (vector), whose rearrangement
creates the matrix. The arguments nrow and ncol are the number of rows and
columns, respectively. By default, the matrix is filled by columns. To fill the matrix
by rows, we must use the argument byrow=TRUE:

> matrix(data = 1:12, nrow = 3, ncol = 4, byrow = TRUE)

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12

The length of data is usually equal to nrow × ncol. If there are too few elements
in data to fill the matrix, then the elements are recycled. In the following example,
all elements of the matrix are set to zero:
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> mat <- matrix(data = 0, nrow = 3, ncol = 3)
> mat

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 0 0
[3,] 0 0 0

We can obtain or set the diagonal elements of a matrix using the diag() function:

> diag(mat) <- 1
> mat

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

Similar to vectors, we can create a matrix with missing values (NA) and specify the
elements later:

> mat <- matrix(data = NA, nrow = 2, ncol = 3)
> mat

[,1] [,2] [,3]
[1,] NA NA NA
[2,] NA NA NA
> mat[1, 3] <- 5
> mat

[,1] [,2] [,3]
[1,] NA NA 5
[2,] NA NA NA

B.5 Data Frames

In general, we use matrices when all measurements are of the same type (e.g.,
numerical, character, logical). Otherwise, the type of measurements could change
when we mix different types. In the following example, we show this by using the
mode() function that returns the type for a given object:

> mat <- cbind(age, gender, is.healthy)
> mode(mat)

[1] "character"
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In the above example, the matrix type is character, although age is numeric and
is.healthy is logical. Note that their values will be printed in quotation marks,
which is used for character strings, if you enter mat.

To avoid this issue, we can store data with information of different types in a table
format similar to the format of spreadsheets. The resulting object (which includes
multiple objects of possibly different types) is called a data frame object. For this,
we use the function data.frame():

> data.df = data.frame(age, gender, is.healthy,
+ BMI, bp)
> data.df

age gender is.healthy BMI bp
1 60 male TRUE 28 124
2 43 female TRUE 32 145
3 72 female FALSE 21 127
4 35 male TRUE 27 133
5 47 female FALSE 35 140

To create a data frame this way, all vectors must have the same length. You may
notice that while gender is a character vector, its elements are not printed with
quotation marks as before. The reason is that character vectors included in data
frames are coerced to a different type called factors. A factor is a vector object
that is used to provide a compact way to represent categorical data. Each level of
a factor vector represents a unique category (e.g., female or male). We can directly
create factors using the factor() function:

> factor(gender)

[1] male female female male female
Levels: female male

To access elements of a data frame, we use the square brackets [ , ] with the
appropriate row and column indices. For example, the BMI of the 3rd subject is

> data.df[3, 4]

[1] 21

As before, we can access an entire row (e.g., all the measurements for one subject)
by only specifying the row index and an entire column (e.g., all the measurements
for one variable) by only specifying the column index. We can also access an entire
column by providing the column name:

> data.df[, "age"]

[1] 60 43 72 35 47
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The $ operator also retrieves an entire column from the data frame:

> data.df$age

[1] 60 43 72 35 47

This column can then be treated as a vector and its elements accessed with the square
brackets as before. For instance, try obtaining the BMI for the 3rd subject and the
gender of the 2nd subject:

> data.df$BMI[4]

[1] 27

> data.df$gender[2]

[1] female
Levels: female male

B.5.1 Creating Data Frames Using a Spreadsheet-Like
Environment

We can create a data frame by invoking a spreadsheet-like environment in R. For
this, we start by creating an empty data frame object:

> new.df <- data.frame()

Then, we use the function fix() to edit the newly created data frame new.df.

> fix(new.df)

This way, R opens a window for data editing similar to Fig. B.1. You can use the
four icons at the top of the editor to add or delete columns or rows. (Hover your
mouse pointer over each icon to see its function.) For new.df, we have created
four columns and three rows. The column names and the content of the data frame
can be edited the same way we edit spreadsheets.

B.5.2 Importing Data from Text Files

Data are usually available in a tabular format as a delimited text file. We can import
the contents of such files into R using the function read.table(). For instance,
let us try importing the BodyTemperature data set (this data set is available
online from the book website http://extras.springer.com):

http://extras.springer.com
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Fig. B.1 R window for data editing invoked by applying the function fix() to an empty data
frame object

> BodyTemperature <- read.table(
+ file = "BodyTemperature.txt",
+ header = TRUE, sep = " ")

Here, we are using the read.table() function with three arguments. The first
argument, file="BodyTemperature.txt", specifies the name and location
of the data file. If the file is not in the current working directory, you need to give
the full path to the file or change the working directory. The header=TRUE option
tells R that the variable names are contained in the first line of the data. Set this
option to FALSE when this is not the case. The sep option tells R how the columns
are separated in the text file. In this example, the columns are separated by white
spaces. If the columns were separated by commas, for example, we would have used
sep=",".

The BodyTemperature object is a data frame holding the contents of the
“BodyTemperature.txt” file. Type BodyTemperature to view the entire data set.
If the data set is large, it is better to use the head() function, which shows only
the first part (few rows) of the data set:

> head(BodyTemperature)

Gender Age HeartRate Temperature
1 M 33 69 97.0
2 M 32 72 98.8
3 M 42 68 96.2
4 F 33 75 97.8
5 F 26 68 98.8
6 M 37 79 101.3

In the BodyTemperature data frame, the rows correspond to subjects and the
columns to variables. To view the names of the columns, try
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> names(BodyTemperature)

[1] "Gender" "Age" "HeartRate"
[4] "Temperature"

Accessing observations in the BodyTemperature data frame is the same as be-
fore. We can use square brackets [ , ] with the row and column indices or the $
operator with the variable name:

> BodyTemperature[1:3, 2:4]

Age HeartRate Temperature
1 33 69 97.0
2 32 72 98.8
3 42 68 96.2

> BodyTemperature$Age[1:3]

[1] 33 32 42

B.6 Lists

The data frames we created above (either directly or by importing a text file) include
vectors of different types, but all the vectors have the same length. To combine
objects of different types and possibly with different length into one object, we use
lists instead. For example, suppose that we want to store the above body temperature
data along with the name of investigators and students who have been involved in
the study. We can create a list as follows:

> our.study <- list(data = BodyTemperature,
+ investigators = c("Smith", "Jackson",
+ "Clark"), students = c("Steve", "Mary"))
> length(our.study)

[1] 3

We have created a list with three components: data, investigators, and stu-
dents. Each component has a name, which can be used to access that component:

> our.study$investigator

[1] "Smith" "Jackson" "Clark"

The components are ordered, so we can access them using double square brackets
“[[ ]]”:
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> our.study[[2]]

[1] "Smith" "Jackson" "Clark"

If the component is a matrix or a vector, we can access its individual elements as
before:

> our.study[[2]][3]

[1] "Clark"

> our.study[[1]][2:4, ]

Gender Age HeartRate Temperature
2 M 32 72 98.8
3 M 42 68 96.2
4 F 33 75 97.8

B.7 Loading Add-on Packages

A package includes a set of functions that are commonly used for a specific appli-
cation of statistical analysis. R users have been creating new packages and making
them publicly available on CRAN (Comprehensive R Archive Network). To use a
package, you first need to download it from CRAN and install it in your local R
library. For this, we can use the install.packages() function. For example,
suppose that we want to perform Biodemographic analysis. The “Biodem” package,
which is created by Boattini et al., provides a number of functions for this purpose.
The following command downloads the Biodem package:

> install.packages("Biodem", dependencies = TRUE)

The first argument specifies the name of the package, and by setting the option
dependencies to “TRUE”, we install all other packages on which “Biodem” de-
pends. The reference manual for this package is available at http://cran.r-project.org/
web/packages/Biodem/Biodem.pdf.

After we install a package, we need to load it in R in order to use it. For this, we
use the library() command:

> library(Biodem)

Now we can use all the functions available in this package. We can also use all the
data sets included in the package. For example, the Biodem package includes a data
set called valley where every row corresponds to a different marriage record. To
use this data set, we enter the following command:

http://cran.r-project.org/web/packages/Biodem/Biodem.pdf
http://cran.r-project.org/web/packages/Biodem/Biodem.pdf
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> data(valley)

The data set becomes available in the workspace as a data frame.
One of the most widely used packages in R is the MASS package. This package is

automatically installed when you install R. However, you still need to load it before
you can use it. Enter the command library(MASS) to load this package. One
of the data sets available in the MASS package is the birthwt data set, which
includes the birthweight, bwt, of newborn babies.

B.8 Conditional Statements

The birthwt data set from the MASS package includes a binary variable, low,
that indicates whether the baby had low birthweight. Low birthweight is defined as
having birthweight lower than 2500 grams (2.5 kilograms). Suppose that we did not
have this variable and we wanted to create it. First, let us load the birthwt data
set into R:

> data(birthwt)
> dim(birthwt)

[1] 189 10

The data set includes 189 cases and 10 variables.
We now create an empty vector, called low, of size 189:

> low <- rep(NA, 189)

Alternatively, we could use create an empty numerical vector without specifying its
length using the numeric() function:

> low <- numeric()

Note that this way we specify the type of the object. We would have used charac-
ter(), or data.frame(), or list(), if we wanted to create an empty object
of the type character, or data frame, or list.

Now we want to examine the birthweight of each baby, and if it is below 2500,
we assign the value of “1” to the low variable; otherwise, we assign the value “0”.
The general format for an if() statement is

> if (condition) {
+ expression
+ }

If the condition is true, R runs the commands represented by expression.
Otherwise, R skips the commands within the brackets { }.

Try an if() statement to set the low of the first observation:
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> if (birthwt$bwt[1] < 2500) {
+ low[1] <- 1
+ }

Check the result:

> birthwt$bwt[1]

[1] 2523

> low[1]

[1] NA

Since the condition was not true (i.e., bwt is not below 2500), the expres-
sion was not executed. To assign the value “0”, we can use an else statement
along with the above if statement. The general format for if-else() statements
is

> if (condition) {
+ expression1
+ } else {
+ expression2
+ }

If the condition is true, R runs the commands represented by expression1;
otherwise, R runs the commands represented by expression2. For example, we
can use the following code to decide whether the first baby in the birthwt data
has low birthweight or not:

> if (birthwt$bwt[1] < 2500) {
+ low[1] <- 1
+ } else {
+ low[1] <- 0
+ }
> birthwt$bwt[1]

[1] 2523

> low[1]

[1] 0

Conditional statements can have multiple else statements to test multiple condi-
tions:

> if (condition1) {
+ expression1
+ } else if (condition2) {
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+ expression2
+ } else {
+ expression3
+ }

B.9 Loops

To apply the above conditional statements to all observations, we can use a for()
loop, which has the general format

> for (i in 1:n) {
+ expression
+ }

Here, i is the loop counter that takes values from 1 through n. The expression
within the loop represents the set of commands to be repeated n times. For example,
the following R commands create the vector y based on the vector x one element at
a time:

> x <- c(3, -2, 5, 6)
> y <- numeric()
> for (i in 1:4) {
+ y[i] <- x[i] + 2 * i
+ }
> y

[1] 5 2 11 14

For the example discussed in the previous section, we use the following loop:

> for (i in 1:189) {
+ if (birthwt$bwt[i] < 2500) {
+ low[i] <- 1
+ }
+ else {
+ low[i] <- 0
+ }
+ }

The counter starts from 1 (i.e., the first row), and it ends at 189 (i.e., the last row). At
each iteration, evaluate the conditional expression birthwt$bwt[i] < 2500. If
the expression is true, it sets the value of low for that row to 1, otherwise, it sets it
to 0. The variable low you created using the above loop and conditional statements
will be exactly the same as the existing variable low in the data frame birthwt.



344 B Basic R

B.10 Creating Functions

So far, we have been using R to perform specific tasks by creating objects and apply-
ing functions to them. If we need to repeat the same task over and over again under
different settings, a more efficient approach would be to create a function which can
be called repeatedly. The function we create is itself an object and is similar to ex-
isting functions in R, such as sum(), log(), and matrix(), that we have been
using. The general form of creating a function is as follows:

> fun.name <- function(arg1, arg2, ...) {
+ expression1
+ expression2
+ ...
+ return(list = c(out1 = output1,

out2 = output2, ...))
+ }

For example, suppose that we routinely need to find the min and max for a given
numerical vector and print the sum of its elements. Also, we need to round the
elements of the vector. However, the number of decimal places could be different
for different vectors. Instead of writing the codes to create the function in R Console,
it is better to write it in a file using a text editor so that we can modify it later. For
this, click File → New Document from the menu bar. This will open a text
editor. Now we can type the following commands in the text editor to create our
function (Fig. B.2):

> my.fun <- function(x, n.digits = 1) {
+ min.value <- min(x)
+ max.value <- max(x)
+ print(sum(x))
+ y <- round(x, digits = n.digits)
+ return(list(min.value = min.value,

max.value = max.value, rounded.vec = y))
+ }

The above function takes two inputs: a numerical vector x and the number of
decimal places n.digits. For the number of decimal places, we set the default
to 1. If the user does not specify the number of decimal points, the function uses the
default value. For x, there is no default value, so we need to provide its value every
time we use this function.

The function then creates two objects, min.value and max.value, that store
the min and max of x, respectively. Next, the function prints the sum of all elements.
Finally, the function creates a new vector called y, which contains the rounded val-
ues of the original vector to the number of decimal place specified by n.digits.

Using return(), we specify the outputs of the function as a list. In this case,
the list has three components. The first component is called “min.value”, and it
contains the value of the object min.value. The second component is called
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Fig. B.2 Creating a function called my.fun() using the text editor in R

“max.value”, and it contains the value of the object max.value. The last com-
ponent is called “rounded.vec”, and it contains the new vector y, which was created
by rounding the values of the original vector.

Note that in Fig. B.2, we wrote some comments in the text editor to explain what
the function does. The comments should be always preceded by the symbol “#”.
R regards what we write after “#” as comments and does not execute them.

When we finish typing the commands required to create the function, we save
the file by clicking File → Save As. When prompted, choose a name for your
file. For example, we called our file “CreateMyFun.R”. The file will have the “.R”
extension.

So far, we have just created a file that contains the command necessary to create
the function. The function has not been created yet. To create the function, we need
to execute the commands. For this, we can use the source() function to read
(evaluate) the codes from the “CreateMyFun.R” file:

> source("CreateMyFun.R")

Again, give the full address for the file if it is not located in the current working
directory. We can now use our function the same way we have been using any other
function. The following is an example:

> out <- my.fun(x = c(1.2, 2.4, 5.7), n.digits = 0)

[1] 9.3

> out

$min.value
[1] 1.2

$max.value
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[1] 5.7

$rounded.vec
[1] 1 2 6

When we run the function, it prints the sum of all elements, which is 9.3, as we re-
quested. The outputs will be assigned to a new object called “out”. Since the output
was a list, out will be a list, and we can print its contents by using their names.
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