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Abstract

In video stabilization, a steady camera path plan is as important as accurate camera motion prediction. While several
camera path planning algorithms have been studied, most algorithms are used for post-processing video stabilization.
Since all of the frames are accessible in post-processing video stabilization, a camera path planning method can
generate a good camera path, considering the camera movements at all of the frames. Meanwhile, the number of
accessible frames in real-time video stabilization is limited. Thus, smooth camera path planning is a challenging issue
in real-time video stabilization. For example, a camera path planner does not know in advance the locations of sudden
camera motions, so it is not easy to compensate a sudden camera movement. Therefore, this paper proposes a novel
camera path planning algorithm for real-time video stabilization. A camera path planning method should fully utilize
the given image margin to provide steady camera paths. In contrast, it should retain the certain amount of an unused
image margin for use in frames with dynamic or sudden camera movements. To resolve this problem, the proposed
algorithm uses two terms related to the steady camera path and the amount of image margin, and it cross-optimizes

the two terms to provide a new camera path on-the-fly. Experimental results show that the proposed algorithm
provides excellent performance in real-time video stabilization while requiring negligible computation.
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1 Introduction

With the recent advancement in camera technology, the
shooting and sharing of videos with consumer cam-
eras has significantly increased. However, the quality
of videos made by amateur users differs from that
by professional users. One of the most obvious differ-
ences between videos shot by amateur and professional
users is the quality gap in terms of video stability. In
order to stabilize videos, professional users adopt var-
ious professional stabilization hardware tools such as
gimbals, steadicams, tripods, and camera dollies. In con-
trast, the amateur user shoots videos using consumer
cameras equipped with only an optical image stabi-
lizer [1] without professional stabilization hardware tools.
Hence, video stabilization is crucial to reduce the qual-
ity gap between videos shot by amateurs and those by
professional users.
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1.1 Video stabilization

Video stabilization mainly consists of three steps: cam-
era motion estimation, new camera path planning, and
new image synthesis. In camera motion estimation, the
geometric relationship between consecutive frames is
analyzed based on the adopted motion model, and the
original camera path is predicted. The new camera
path is planned by smoothing the original camera path.
Finally, the stabilized views on the new camera path are
synthesized.

1.1.1 Camera motion estimation
The geometric relationship between consecutive frames
should be accurately described to completely remove
unwanted camera motion. Hence, the performance of
video stabilization is directly related to the accuracy of
the adopted motion model, and the main concern of
conventional video stabilization techniques is to develop
new motion models to accurately describe the geometric
relationship between consecutive frames.

Video stabilization is categorized into 2D and 3D
approaches according to the motion model. The first
approach is 2D video stabilization [2] that describes a
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relationship between two successive frames using a 2D
motion model such as a simple translational model, 2D
rigid model, and 2D affine model [3-12]. The 2D meth-
ods are fast and robust, compared to the 3D approach.
If camera rotations are small along the x and y axes in
the 3D space, 2D video stabilization provides good per-
formance [13]. However, as the camera motion becomes
dynamic, the 2D motion model cannot describe the geo-
metric relationship between successive frames, and the
performance is very limited. Lee at el. proposed a method
to directly stabilize a video without explicitly estimating
camera motion [14]. This method finds a set of transfor-
mations to smooth out feature trajectories [15, 16] and
stabilize the video.

The second approach is 3D video stabilization intro-
duced by Buehler et al. [17]. Early 3D approaches recon-
struct 3D models of the scene and camera motion using
structure-from-motion (SFM) techniques [18]. The sta-
bilized views are then rendered at the new 3D camera
path [17, 19]. The 3D video stabilization provides bet-
ter performance than the 2D approach. Since these 3D
methods often fail with videos that lack parallax, they
are not practical in many cases [20]. Liu proposed sub-
space video stabilization that combines the advantages of
2D and 3D video stabilization [21]. However, this method
often fails for videos that include dynamic motion due to
an insufficient number of long feature trajectories [20].
Hence, Wang [20] proposed video stabilization for a video
where 3D reconstruction is difficult or where long fea-
ture trajectories are not available. Liu et al. [22] proposed
a motion model SteadyFlow that is a specific optical flow
by enforcing strong spatial coherence. Grundmann et al.
proposed calibration-free rolling shutter removal, based
on a mixture model of homographies [23]. Dong pro-
posed video stabilization for real-time applications using a
motion model based on inter-frame homography estima-
tion [24]. Ringaby et al. proposed a method for rectifying
and stabilizing video by parameterizing camera rotation
as a continuous curve [25]. Karpendo et al. proposed video
stabilization and rolling shutter correction using gyro-
scopes [26]. Lee proposed video stabilization based on
human visual system [27].

1.1.2 Camera path planning

The second step of video stabilization is new camera path
planning that removes the annoying irregular perturba-
tions. The simplest method for predicting a new camera
path is the application of a low-pass filter (or IIR filter
[28]) or Gaussian filter, which suppresses high-frequency
jitter in the original camera path. Since the low-pass filter
efficiently smooths the original camera path, it is widely
used in video stabilization [3, 5, 10-12, 12, 27, 29, 30].
Zhu et al. proposed an inertial motion model [8] for the
motion filtering. Litvin et al. [31] proposed a Kalman filter
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to smooth the camera path. Because of camera shake, the
actual camera path includes noise in the intended camera
path. These methods [4, 31] estimate the intended camera
path using the Kalman filter [32]. Another camera path
planning is to model the camera trajectory such as linear
and parabolic [29].

Video stabilization methods crop the original view by
a cropping window positioned on the new camera path,
which is one of the simplest and most robust approaches
[21]. If input videos include dynamic camera motion,
the cropping windows sometimes will not fit the original
frame. In this case, out-of-bound areas will not be visible
or complex motion-inpainting will be required [10, 33].
However, motion-inpainting does not provide satisfactory
performance in some cases and has a high computa-
tional cost. Another approach is to forcibly modify the
new camera path to fit the original frame, but compul-
sory modification of the new camera path will degrade the
visual quality of the stabilized videos. In other approaches,
the size of output videos can be set so that the cropping
window always fits the original frame. While this method
significantly reduces the field of view (or the size of output
views) for videos having dynamic camera motions, it can
maximize dramatic cinematographic effect [34]. Video 1,
which can be downloadable on website [35], shows exam-
ples of a video having dynamic camera motion. Videos
1(a), 1(b), 1(c), and 1(d) depict an original video, a sta-
bilized video including out-of-bound, a video stabilized
by forcibly modifying the new camera path, and a video
stabilized by reducing the size of the cropping window,
respectively. While Video 1(d) provides the best perfor-
mance in terms of video stability, the field of view is
considerably reduced. Hence, Grudmann et al. proposed
an algorithm for automatically applying constrainable, L1-
optimal camera paths for post-process video stabilization
[36]. Under boundary constraints, the method computes
camera paths that are composed of constant, linear, and
parabolic segments, in order to mimic camera motions
employed by professional cinematographers.

1.1.3 Image synthesis

Based on the adopted motion model, the 2D methods syn-
thesize output videos using an interpolation technique.
The 3D methods need to employ the view interpolation
for rendering output videos. However, the output videos
from the view interpolation sometimes include image
artifacts like the ghost effect [29]. In order to reduce
the image artifacts, new image rendering by content-
preserving warp [29, 30] was proposed. The content-
preserving warp relaxes the constraint for a physically cor-
rect reconstruction while preserving the perceptual qual-
ity. Some studies employ a purely rotational motion model
without considering translational camera motion, in order
to avoid image artifacts from view interpolation [26, 27].
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Since they consider only the camera rotation, there is no
occlusion issue.

1.2 Real-time processing

Most conventional video stabilization methods have been
developed for post-processing used in professional video
editing tools. After shooting videos, experts can edit their
videos using the professional video editing tools. These
methods are necessary in generating high-quality videos
for advertisement, film, commercial use, etc. Meanwhile,
most users using consumer digital cameras are not good at
the professional video editing tools. They usually display,
upload, and share videos without modification. There-
fore, the performance of real-time video stabilization is
very crucial in consumer digital cameras. Fast and effi-
cient video stabilization methods for real-time applica-
tions have been studied [5, 12, 24, 27, 37, 38]. However,
these methods did not consider camera path planning in
depth.

On the other hand, camera path planning for real-time
video stabilization has several challenging issues as fol-
lows. First, the size of output videos should be determined
prior to applying real-time video stabilization, regardless
of whether an input video includes static or dynamic cam-
era motions. Thus, the real-time video stabilization can-
not adaptively determine the size of the cropping window
to fit the original frame according to the given video. Sec-
ond, a camera path planning algorithm should predict the
new camera path on-the-fly. Unlike post-processing video
stabilization, the new camera path cannot be updated or
modified to gradually improve the quality. Third, it can-
not consider camera motions at all of the frames to plan
the new camera path. For example, since Grundmann’s
method obtains the L1-optimal camera paths via linear
programming using all of the frames, it cannot be used
for real-time video stabilization [36]. If the quality of a
planned camera path is not acceptable, although accurate
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camera motions are predicted, the visual quality of stabi-
lized videos will be significantly degraded. Consequently,
in real-time video stabilization, camera path planning is
as important as accurate camera motion prediction. As
Dong pointed out, most conventional video stabilization
methods have been developed for post-processing [24].
Moreover, camera path planning algorithms for real-time
video stabilization have not yet been studied in detail.
Therefore, in this paper, we propose a new camera path
planning algorithm for real-time video stabilization by
cross-optimizing two terms related to steady camera path
and the amount of image margin. One term renders the
new camera trajectory smooth, and the other term retains
the certain amount of an unused image margin for use in
dynamic or sudden camera motions.

2 Background

For convenience of explanation, this paper describes the
proposed algorithm of the camera path planning under
simple video stabilization with a 2D translational motion
model as depicted in Fig. 1. However, the proposed
method can be modified to plan the camera path for
other stabilization using a different motion model such as
homography.

The original camera path of videos shot by a hand-held
camera is usually shaky, as depicted in Fig. 2. To provide
steady output videos, it is necessary to predict a smooth
camera path from the original camera path. The simplest
method for estimating a smooth camera path is to apply a
low-pass filter to the original camera path as follows.

Pn(t) =Y w(k)Po(k) (1)
k

Here, Po(¢) and Py (¢) denote the original and new cam-
era positions, respectively. w(k) is the kth coefficient of
the low-pass filter. Since the above ideal filter requires an
infinite number of signals, it is impossible to realize. In
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Fig. 1 Simple video stabilization with 2D translational motion model
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Original camera path

Fig. 2 Original and new camera path

New camera path /
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practice, the low-pass filter should consider a finite num-
ber of signals. Specifically, a casual filter that depends on
camera positions of past and present frames is considered
in real-time applications as follows.

k=t

Pn(t) =) wlk)Po(k) (2)
k=0

Figure 2 shows the result of applying the casual low-pass
filter to a camera path along the x direction. The low-pass
filter significantly smoothens the camera path. Here, the
difference between the original and new camera paths in
Fig. 2 can be interpreted as the amount of the cropping
window shift shown in Fig. 1. If the amount of the shift is
more than the width or height of the margin, the cropping
window will not fit within the original frame. The width
and height margins (M and Mp) are defined as follows.

Wi — Wo H; —Hop

My=—, My=—— 3
w 5 H 5 (3)

where Wj, Hj, and Wp, Hp are the width and height
of the original and output frames, respectively. Out-of-
bound areas will be invisible or require motion-inpainting
[10, 33]. The boundaries are depicted in Fig. 3. In the
figure, a gray region illustrates an example of the out-
of-bound area. For real-time applications, the motion-
inpainting is not a feasible solution due to complexity.
Hence, the new camera path should be determined so that
the cropping window is located inside the original frame.
However, the amount of cropping window shift in the
method based on the low-pass filter is uncontrollable, and
the method does not guarantee that the cropping window
will always be located within the original frame. There-
fore, this simple method cannot be applied to real-time
video stabilization where the size of the output video is
fixed.

In post-process video stabilization, the entire original
camera path is given before planning the new camera
path. Hence, the smooth camera path can be optimally
planned so that an out-of-bound area does not occur.
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However, since camera positions at the subsequent frames
are unknown in the real-time video stabilization, it is
sometimes difficult to correctly determine the camera
position at the current frame. Figure 4 illustrates an exam-
ple of the difficulty in planning a camera path for real-time
video stabilization. In Fig. 4a, it could not be predicted
whether the camera path goes up or down at the subse-
quent frames. If the camera path travels downward at the
subsequent frames, the new camera path can be straight,
as shown in Fig. 4b. If the camera path travels upward at
the subsequent frames, the direction of the new camera
path should change, as seen in Fig. 4c. This sudden move-
ment will degrade the visual quality of the stabilized video.
On the other hand, since the entire original camera path
is given in post-process video stabilization, the new cam-
era path can be planned as shown in Fig. 4d. As shown in
this example, the real-time video stabilization is difficult
without the camera positions at the subsequent frames.
The performance of the camera path planning in real-time
video stabilization will inevitably be limited. Therefore,
camera path planning for real-time video stabilization is a
challenging problem.
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3 Method—camera path planning

3.1 Observation

Simple tests were performed to observe how camera paths
affect visual perception. People who did not have related
knowledge were selected as participants. Ten participants
evaluated the visual perception of synthetic videos with
different types of camera paths. Each video has one type
of camera path among various types including static view,
horizontally moving views with zero acceleration, and
randomly moving views. If the synthetic video includes
local motion, it will disturb the evaluation of the visual
perception caused only by the camera path. In order to
exclude the local motion, the test videos are synthesized
by shifting a single image along the camera path. The par-
ticipants were asked to sort the videos in a high-quality
order according to their visual perception. Table 1 shows
the results. Interestingly, the scores made by the partici-
pants were in the same order. Obviously, the static camera
path obtained a high score. Hence, the constant path is the
first property to consider when planning a camera path.
The next property is the linearity of a camera path. Con-
sistency in camera movements is an important feature.

Boundary
Original camera path \

New camera path

Boundary

(a)

(©

path in “case a," and d the ideal camera path in “case a"

\ Current frame

M >

(b)
(d)

Fig. 4 Difficulty in planning a camera path for real-time video stabilization a current status, b the new camera path in “case b," ¢ the new camera
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Table 1 Simple test showing how camera paths affect visual
perception

Order Motion type Amount of motion (pixel)
1 Static 0

2 Horizontal 1

3 Horizontal 2

4 Horizontal 3

5 Horizontal 4

6 Random +1

7 Random +2

Results are sorted in high-quality order

Even a small random motion gives a poor visual impres-
sion. A camera path with a 4 pixel horizontal movement
is better than a camera path with a +1 random camera
movement. The amount of slope of the linear camera path
also affects the visual quality. A linear camera path with
a gentle slope gives better visual quality than that with a
steep slope.

More complex experiments are needed to more pro-
foundly understand the relationship between the camera
path and visual perception in terms of stability. How-
ever, it may require deep psychovisual understanding
and extensive experiments with a greater number of par-
ticipants. This paper considers only the two properties
obtained from the above simple experiments in planning
the new camera path.

3.2 Assumption

It is challenging to plan the steady camera path within the
upper and lower boundaries. As discussed in Section 2,
the difficulty is that the real-time video stabilization deter-
mines the new camera position in the current frame
without the original camera positions in the subsequent
frames. Even if the original camera positions in several
subsequent frames are available before determining the
new camera position in the current frame, the quality
of the new camera path will be significantly increased.
Fortunately, recent camera systems have extraordinarily
large memory to temporally store multiple frames. Some
frames can be buffered to improve the quality of the new
camera path. Figure 5 shows the assumptions for solving a
problem in the proposed algorithm. In the figure, the cam-
era captures up to the (n + K)th frame and stores them to
the buffer. The original camera positions for the buffered
frames are predicted. The proposed algorithm then deter-
mines the new camera position in the (#)th frame (or
the current frame). Here, K represents the number of
additional buffered frames.

The quality of the new camera path will depend on the
amount of K. This paper proposes a new method to esti-
mate a steady camera path for the given K with the lower
and upper boundary constraints.
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3.3 Framework of the proposed algorithm

The first property to consider in planning camera path
is providing constant camera path. The constant camera
path represents a line with a zero slope. The next property
is the linear camera path where the camera has a constant
velocity. While the slope of the linear camera path is not
zero, the linear path is also a line. Although the physical
meanings of the two properties differ in terms of camera
movement, the shape of the constant and linear camera
paths is basically a line. Hence, the proposed algorithm
considers a line as a basic feature to pursue in the camera
path.

The proposed algorithm first finds all possible candidate
lines that pass through the last camera position on the
new camera path, as shown in Fig. 6. Since the new cam-
era path should be continuous, the candidate lines should
start from the camera position at the (n — 1)th frame,
where it is the last camera position on the new camera
path. They then end between low and upper boundaries
at the (n + K)th frame. All possible candidate lines are
generated in a way that the interval between adjacent can-
didate lines is 1 at the (# 4+ K)th frame. In the figure, the
camera position at the current frame (or the nth frame)
is not yet determined. The buffered frames range from
the (7+1)th frame to the (#+K)th frame. Camera motions
for the buffered frames can be predicted in advance, so
that the original camera positions and boundaries at the
buffer frames can be determined. Hence, the end points
of the candidate lines are simply located between the two
boundaries at the (n+K)th frame. Then, the proposed
algorithm examines all the possible candidate lines within
the search range using the proposed cost function that
will be described in the next subsection. The candidate
line having the minimum cost is chosen as the best line.
Finally, the camera position at the current frame is calcu-
lated from the best line. Note that the camera positions at
the buffered frame do not belong to the new camera path.

If a candidate line passes through an out-of-bound
area, it should not be chosen as the best line. Figure 7
depicts examples of the candidate lines that should
not be chosen. In Fig. 7a, candidate lines in region R
pass through an out-of-bound area. Hence, no candi-
date line in region R should be chosen as the best line.
Sometimes, all the candidate lines within the search
range pass through the out-of-bound area as shown
in Fig. 7b. In this case, when no best line can be
found, the value of K is decreased by 1 until the best
line is found.

3.4 Costfunction

The proposed algorithm chooses a candidate line having
the minimum cost as the best line. The cost function of the
ith candidate line at the nth frame is defined as follows.
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o K frames
Position
Original camera path
Boundary N
\ .
Buffered
frames
v\ New camera path
Boundary Frame
Current frame index
n (n+K)

Fig. 5 The goal of the proposed algorithm is to provide a novel camera path under that the original camera positions for the next available K frames

C(n,i) = w1Cs(n, i) + woCr(n, i) + wsCpr(n, i)  (4)

Here, w;, wy, and w3 are weighting factors. Cs(n, i) is

defined as follows.

Cs(n,i) = |S(n, D)

S(n,i) is a slope of the ith candidate line at the

nth frame. The zero slope of a candidate line repre-

sents no camera movement. Therefore, Cs(n,i) can

be interpreted as a term to pursue the static cam-
(5) era path, which is the first property. If the slope
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Fig. 7 a Some and b all candidate lines pass through an out-of-bound area. None of these candidate lines should be chosen as the best line

of a candidate line is steep, this term becomes
large.
Cr(n,i) is defined as follows.

Cr(n,i) =1S(n,i) — S(n — 1,ip™)] (6)

Here, l;“f} is the index of the best line at the (n — 1)th
frame. Therefore, S(n — 1, i;“_“i) denotes the slope of the
best line at the (z — 1)th frame. Cy (n, i) will be zero if the
slope of a candidate line at the current frame is the same
as the slope of the best line at the previous frame. It can
be interpreted that this term seeks to keep the linearity of
the camera path, which is the second property.

If the camera path plan method utilizes the upper and
lower boundaries as simple constraints, although the con-
straints will prevent the new camera path exceeding the
available image margin, the new camera position can
sometimes be very close to the lower boundary such as
the new camera position for the current frame in Fig. 4a.
In this case, if the original camera path travels upwards
(case a), since there is no image margin in the down direc-
tion, the new camera path should suddenly change the
direction to upward. This sudden movement on the new
camera path will degrade the visual quality of stabilized
videos. To avoid this situation, this paper considers a new
term of Cas(n,i) to retain the available image margin in
the upper and lower directions.

n+K
Cu(m i) = ) (Fro(k,i) + Fup(k, i)
k=n
Fup(n,i) = : )
UPYE Y = hax(0.01, Po(n) + Mup — Ply(m)?
1
FoWm,i) =

max(0.01, Py;(n) — Po(n) + Mio)?

where P}'\[(n) is a camera position at the nth frame on the
ith candidate line. M} o and Myp are the sizes of the lower
and upper margins, respectively. These margins are usu-
ally set at the same value. Po (1) +Muyp —va (n) (or Pf\[ (n)+
My o—Po(n)) is the Euclidean distance between P}, (#) and
the upper boundary (or lower boundary), as given in Fig. 8.
Here, 0.01 is considered to prevent division by zero. If
Pi[(n) is close to the upper boundary (or lower boundary),
the value of Fyp(#n,i) (or FrLo(n,i)) will become signifi-
cantly large. If P4 (n) is remote from the upper boundary
(or lower boundary), the value of Fyp(n,i) (or FLo(n,i))
will become significantly small. When P (n) is located
at a position equally far from both of the two bound-
aries, (Fup (n, i)+F1.o(n, i)) will obtain the minimum value.
Accordingly, Fup(n, i) and FLo(#, i) can be interpreted as
forces to push a camera position from boundaries to retain
the image margin. Cp;(n,i) accumulates all of Fyp(n, i)
and Fio(n,i) at camera positions on the ith candidate
line. The camera position cannot be located outside the
boundaries. If the K value decreases, Cy;(n,i) becomes
an important term to achieve a new camera path with
high quality in real-time video stabilization. The details
are given in Section 4 with the experimental results.

Let us briefly consider the computational process of
the proposed method. The first step of the proposed
algorithm is to find candidate lines. This can be sim-
ply achieved by obtaining the lines connecting from the
(n — 1)th camera position to the points within the search
range, as shown in Fig. 6. The next step involves exclud-
ing candidate lines that include at an out-of-bound area,
as shown in Fig. 7. If any point on the ith candidate line (or
Pf\[(n)) is not located from Pp(n) — Mo to Po(n) + Myp,
the corresponding candidate line should be excluded. In
the final step, the method evaluates each candidate line
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according to Eq. (4) and finds the candidate line having the
minimum cost. As shown above, the proposed algorithm
requires several arithmetic operations and comparisons to
plan the new camera position of the new camera path at
the current frame. Compared to the computational bur-
den of video stabilization, its computational process is
extremely low, as will be demonstrated in the Section 4.

4 Experimental results and discussion

We show simulation results of four representative videos
among the extensive test videos to evaluate the proposed
algorithms. Two videos were made by a man running, so
that the videos include very dynamic camera motion. The
other two videos were shot while walking, and the camera
motion is normal. In the videos, the region of interest is
set on the human face. For each video, the original camera
path is extracted by tracking the human face. In this paper,
not all simulation results can be illustrated due to the lim-
ited space. Only some of the simulation results are given in
this section. The original and new camera paths for all the
frames in four representative test videos are downloadable
on the Web [35]. Output videos are also downloadable on
the Web. High-quality Figs. 9, 10, 11, 12, 13, and 14 were
uploaded on the Web.

Figure 9 depicts some part of the simulation results, in
order to show the effect of Cs(n,i) in Eq. (4). Here, (w1,
wy, ws) for Fig. 9 a and b are set at (0, 0.01, 10) and (0.01,
0.01, 10), respectively. Without Cs(#, i), the first property

mentioned in Section 3.1 is not satisfied. Therefore, the
new camera path is not constant as shown in Fig. 9 a.
Cs(n, i) renders the new camera path constant.

Figure 10 shows the effect of C (#,7) in Eq. (4). Weights
for Fig. 10 a and b are set at (0.01, 0, 10) and (0.01,
0.01, 10), respectively. The method without Cy(#,{) con-
siders only a constant camera path (Cs(n,i)) and a force
pushing from boundaries (Cas(7,7)). When the current
position is located remote from the boundaries, Cs(n, i)
is dominant and the method renders the new cam-
era path constant. If the original camera path globally
descends as in Fig. 10, the camera position along the
constant camera path eventually approaches close to the
boundary. Then, the force pushing from the bound-
ary becomes large so that the method will change the
direction of the new camera path downward. The cam-
era position again becomes remote from the boundary.
Then, Cs(n,i) becomes dominant and the method ren-
ders the new camera path constant again. Accordingly,
the slope of the new camera path frequently changes as
shown in Fig. 10 a. Cy(n, i) improves the performance as
shown Fig. 10 b.

If the value of K is large, the proposed method with-
out a term of Cpr(n,i) can easily plan a steady camera
path. Figure 11 a shows an example where K is set at 60.
Since the method can consider 60 frames in the future,
it can provide a steady camera path by coping with sud-
den camera movements in advance. However, when the
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New camera path

Fig. 9 a Without Cs(n,/) and b with Cs(n, /) in Eq. (4). K'is set at 10

value of K decreases, it is difficult to cope with the sud-
den camera movements, as shown in Fig. 11 b. Here, K
is set at 2. The proposed method without Cys(n,i) uti-
lizes the upper and lower boundaries as only boundary
constraints. Hence, even if the amount of available image
margin is very small, the method attempts to make the
new camera path constant. Only if there is no image mar-
gin, the method changes the new camera path upward

or downward. Accordingly, even for small fluctuations of
the original camera path, the direction of the new cam-
era path frequently changes, which is undesirable. On
the other hand, Cu;(n,i) pushes the new camera path
from the boundaries to maintain the image margin. In the
details, if the weights for Cr(n,i) and Cs(n,i) are set at
the same value, Cj (1, i) and Cs(#n, i) show almost the same
dominance. Then, Cy;(n,i) becomes a dominant term.

Fig. 10 a Without C;(n,i) and b with C; (n, i) in Eq. (4). K is set at 10

The slope of the new camera path is
frequently changing

New camera path
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(a)

() ©

Fig. 11 aK =60, b K = 2 without Cy(n, /), and € K = 2 with Cy(n, /). Weights are setata (0.01,0.01,0), b (0.01,0.01,0),and € (0.01,0.01, 1), respectively

Therefore, the new camera path travels to the center or the
middle of the upper and lower boundaries where the push-
ing forces from the two boundaries are the same. After the
path reaches the center, Cj;(#, i) becomes a weak term and
the method can set the new direction of the new camera
path as shown in Fig. 11c.

Figure 12 depicts the simulation results for a video,
including usual camera motion, in order to show the per-
formance of the proposed algorithm. The image margins
for Fig. 12 a, b, ¢, and d are set at 10%. The values of K
are set at 2, 5, 10, and 60, respectively. The proposed algo-
rithm significantly reduces the high-frequency jitter of
camera motion, and the new camera path does not cross

the upper and lower boundaries. Although the number of
buffer frames in the proposed method of Py 19y is only
2, it provides outstanding performance. For reference, the
new camera paths based on the following simple low-pass
filters, Pk[PF (¢), are illustrated in Fig. 12 e and f.

k=t+K
PR = > wk)Pok) ®)
k=t—K

The values of K for LPFjp and LPFg in Fig. 12 e and f
are set at 10 and 60, respectively. While LPFq significantly
reduces high-frequency jitter of the camera motion, the

(a)

(e)

are set at (0.01,0.01, 10). Image margin is set at 10%

(b)

Fig. 12 Simulation results for a video including usual camera motion. a P,100 (K = 2, proposed), b Ps 109 (K = 5, proposed), € Pig,100% (K = 10,
proposed), d Peo 100 ( K = 60, proposed), @ LPF o (K = 10, low-pass filter), and f LPFgp (K = 60, low-pass filter). Weights for the proposed algorithm

()
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(a)

(©)

(e)

are set at (0.01,0.01, 10). Image margin is set at 20%

(b)

(d)

®

Fig. 13 Simulation results of a video including dynamic camera motion. a P200 (K = 2, proposed), b Ps 200 (K =5, proposed), € P1g20% (K = 10,
proposed), d Pso,200 (K = 60, proposed), @ LPF1o (K = 10, low-pass filter), and f LPFgp (K = 60, low-pass filter). Weights for the proposed algorithm

new camera path is still unstable. Although LPF¢o pro-
vides good performance, the value of K is very large. For
full-HD video, the memory size is 178 M bytes (= 1920 x
1080 x 1.5 x 60) for a YCbCr format. Moreover, LPFqg
and LPF¢ do not guarantee that the cropping window will
always be located within the original frame (see Fig. 3.)
The performance of the proposed method of P; 1994 pro-
vides better performance than LPF;o. Note that while the
number of buffer frames in LPFjg is 10, that in Py 19y is
only 2.

Figure 13 depicts the simulation results for a video,
including dynamic camera motion depending on the value
of K. The image margins for Fig. 13 a, b, ¢, and d are set
at 20%. The values of K are set at 2, 5, 10, and 60, respec-
tively. Figure 13 e and f show simulation results of LPFg
and LPFgp. Although the new camera path predicted from
the proposed algorithm of P; 0y is much better than the
original camera path, it does not provide outstanding per-
formance, compared to that shown in Fig. 12 a. Two frame
buffers are insufficient to cope with sudden camera move-
ment in the video, including dynamic camera motion. As
the value of K increases, the proposed algorithm provides
more stable camera path. While LPFgp provides good

performance, since this method does not consider
boundary constraints, the new camera path crosses the
boundary.

The threshold values of wy and wy can be set as the dif-
ferent values. For example, the value of w; can be set larger
than that of w, in order to give priority to Cs(#, {). How-
ever, according to our extensive experiments, it is recom-
mended to set the two thresholds to the same value. The
performance of the proposed algorithm is not sensitive to
the threshold value of ws.

Figure 14 shows the performance of the proposed algo-
rithm according to the image margin. The image margins
for Fig. 14 a, b, ¢, and d are set at 10%, 10%, 20%, and 20%,
respectively. The values of K are set at 10, 20, 10, and 20,
respectively. As the size of the image margin decreases,
the algorithm performance reduces. The performance gap
between P10,10% and Py 10% is more than the performance
gap between P1g20% and Pag20%. When the image margin
decreases, the value of K needs to be large.

Comparison of performance between the proposed
algorithm and Grundmann’s work [36] is as illustrated in
Fig. 15. The image margins for Fig. 15a, b, and ¢ were
set at 20%. The values of K were set at 2, 10, and 60,
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(a)

(©)

(b)

(d)

Fig. 14 Simulation results for a video including dynamic camera motion. a Pig10% (K = 10, image margin 10%), b P10 (K = 20, image margin
10%), € P10,20% (K = 10, image margin 20%), and d P2,209 (K = 20, image margin 20%). Weights for the proposed algorithm are set at (0.01, 0.01, 10)

respectively. Figure 15 d and e represent LPF;o and LPFg,
respectively. Figure 15 f, g, and h illustrate Grundmann’s
results. Parameters wy, wy, and ws for Fig. 15f, g, and h
were set to (0, 1, 0), (0, 0, 1), and (10, 1, 100), respectively.
Py 900 and P1g %20 did not outperform Grundmann’s work
[36]. However, while his work considers all the fames in
order to get the optimal paths, the proposed P; 20 and
P1o%20 consider only 2 and 10 buffered frames. As the
proposed algorithm uses more buffered frames, its per-
formance becomes comparable to Grundmann’s work as
shown in Fig. 15c. Since LPF¢ strongly smoothens the
original camera path without considering boundary con-
straints, it provides performance similar to that of the
proposed method and Grundmann’s work.

The original camera path was extracted by tracking the
human face, and the camera path was generated by using
the proposed method, LPFjp, and LPFgy. Then, simple
video stabilization with 2D translational motion model in
Fig. 1 was applied to generate the output videos that were
uploaded on the web [35]. To evaluate the proposed algo-
rithm, the stability of the human face position along time
needs to be examined. Since LPFgy sometimes exceeds
the available image margin, out-of-bound regions (black
regions) are frequently observed in the stabilized videos.

Moreover, it requires huge frame delay. Thus, LPFg is
not adequate for real-time video stabilization. However,
since LPFgp provides a very stable camera path, a video
rendered by LPFep is used for comparison purpose. As
shown in the comparison videos, the proposed algorithm
provides performance close to LPFgg. A video from LPFjq
reduces high-frequency jitter of the original video com-
pared to the original video. However, the human face is
slightly unstable.

Table 2 shows mean absolute slopes of camera paths
used to evaluate the performance of algorithms. The
smaller the value of the mean absolute slope, the more sta-
ble the camera path. The mean absolute slopes of LPFy,
LPFso, P10,10% P10,20% Pe0,10%> and Pep20% are signifi-
cantly lower than those of the original camera path. It
means that they provide more stable camera path than
the original camera path. Pjg10% always provides bet-
ter performance than LPFjg. Since 10 frame buffers are
not enough to provide very stable camera path, P10,10%
does not outperform LPFgp. If the size of the buffer
becomes the same as 60 frames and the margin is enough,
Pgp 209 outperforms LPFgp. It is noted here that LPFjg
and LPFgp do not consider the upper and lower boundary
constraints.
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Fig. 15 Performance comparison of the proposed algorithm with [36]. @ P220% (K = 2, image margin 20%), b P10,%20 (K = 10, image margin 20%),
Pe0,200% (K = 60, image margin 20%), d LPF1o (K = 10, low-pass filter), @ LPFgo (K = 60, low-pass filter), f [36], wo, = 1, wy = w3 = 0,9 [36], w3z =1,
wy =w; = 0,and h [36], w; = 10, w; = 1, ws = 100. Weights for the proposed algorithm are set at (0.01,0.01, 10)

The proposed algorithm is designed for real-time video
stabilization. Hence, its computational burden needs to
be dealt with. Table 3 shows the time for processing a
single frame in the proposed algorithm under Intel Core
i7-7700K CPU (4.2 GHz) according to the value of K.

The proposed algorithm was implemented with C lan-
guage without optimization. As mentioned in Section 1,
video stabilization generally requires huge computational
complexity; however, the real-time video stabilization is
quite challenging. In that sense, tens of microseconds for

Table 2 Comparisons of mean absolute slopes

Method Normal motion Dynamic motion

A B C D

X y X y X y X y
Original 9.04 6.02 9.85 537 18.09 17.28 18.70 17.47
LPF1o 3.62 1.72 5.34 1.57 7.06 2.95 822 276
LPFeo 1.83 0.35 345 0.58 3.25 0.80 4.76 0.84
P10,10% 218 0.86 4.51 0.85 457 2.72 7.01 2.54
Pe0,10% 1.84 040 4.05 0.50 4.0 240 6.63 2.25
P10,20% 1.93 031 4.04 041 367 133 6.11 1.28
Pe0,20% 1.66 032 3.08 042 3.06 0.77 5.06 0.64
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Table 3 Processing time of the proposed algorithm under Intel
Core i7-7700K CPU (4.2 GHz)

Parameter (K value) Time (us)
2 75

5 10.6

10 14.8

60 62.2

processing a single frame is extremely small, hence con-
sidered negligible, compared to the total processing time
of the video stabilization. As the value of K increases,
the computational burden also increases. However, the
increase of complexity is not proportional to the value
of K. Moreover, the processing time for K = 60 is only
62.2us.

5 Conclusion

This paper presents a novel camera path planning algo-
rithm for real-time video stabilization by cross-optimizing
two terms related to steady camera path and the amount
of image margin. Hence, the proposed algorithm attempts
to provide a steady camera path while maintaining a suffi-
cient image margin to compensate for dynamic or sudden
camera motions.

While all the frames can be used for to plan the new
camera path in post-processing video stabilization, only
a limited number of frames can be used in real-time
video stabilization. Moreover, the real-time camera path
planning algorithm should predict the new camera path
on-the-fly. Once the new camera path is planned, it can-
not be updated or modified to improve the quality, unlike
post-processing video stabilization. Hence, camera path
planning is a challenging issue in real-time video stabiliza-
tion. If the quality of a planned camera path is not accept-
able, although accurate camera motions are predicted, the
quality of stabilized videos will be degraded. Hence, cam-
era path planning is an essential feature in real-time video
stabilization, and our work is thus meaningful.
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