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Introduction
Retained surgical items (RSIs), objects inadvertently left within patients following surgi-
cal interventions, present a significant challenge within contemporary healthcare envi-
ronments [1]. According to [2], approximately 0.3 to 1.0 cases of RSIs occur per 1,000 
abdominal surgeries. Patients in such scenarios encounter grave repercussions, includ-
ing infections, organ harm, extended hospitalization durations, and potentially fatal 
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Abstract
Retained surgical items (RSIs) pose significant risks to patients and healthcare 
professionals, prompting extensive efforts to reduce their incidence. RSIs are 
objects inadvertently left within patients’ bodies after surgery, which can lead to 
severe consequences such as infections and death. The repercussions highlight 
the critical need to address this issue. Machine learning (ML) and deep learning 
(DL) have displayed considerable potential for enhancing the prevention of RSIs 
through heightened precision and decreased reliance on human involvement. ML 
techniques are finding an expanding number of applications in medicine, ranging 
from automated imaging analysis to diagnosis. DL has enabled substantial advances 
in the prediction capabilities of computers by combining the availability of massive 
volumes of data with extremely effective learning algorithms. This paper reviews 
and evaluates recently published articles on the application of ML and DL in RSIs 
prevention and diagnosis, stressing the need for a multi-layered approach that 
leverages each method’s strengths to mitigate RSI risks. It highlights the key findings, 
advantages, and limitations of the different techniques used. Extensive datasets 
for training ML and DL models could enhance RSI detection systems. This paper 
also discusses the various datasets used by researchers for training the models. In 
addition, future directions for improving these technologies for RSI diagnosis and 
prevention are considered. By merging ML and DL with current procedures, it is 
conceivable to substantially minimize RSIs, enhance patient safety, and elevate 
surgical care standards.
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outcomes [3]. Additionally, these incidents expose healthcare providers to legal inves-
tigations and cast uncertainties on the standing of medical institutions [4]. Enhancing 
patient safety and diminishing the legal and reputational perils that healthcare practitio-
ners and organizations encounter make the prevention of RSIs a pivotal concern in con-
temporary healthcare [5]. The healthcare sector is making strides toward significantly 
reducing RSI occurrences, augmenting patient well-being and healthcare standards. This 
objective can be realized by prioritizing monitoring, detection, and reduction strate-
gies and harnessing the capabilities of integrated hardware-software solutions. Subse-
quent sections of this review article will analyze innovative methods and technologies 
employed for curtailing RSIs, shedding light on their merits, drawbacks, and potential 
for the future.

Three interlinked strategies have been adopted to tackle the issue of RSIs: monitor-
ing, detection, and prevention. Monitoring involves tracking surgical instruments and 
materials throughout the procedure, ensuring accurate record-keeping at each phase 
[6]. Detection entails recognizing and localizing retained objects post-surgery, utilizing 
diverse imaging and identification methodologies [7]. Prevention is achievable through 
advanced methods to diminish the likelihood of items being left behind after the sur-
gery [8]. Furthermore, patient safety and health are paramount; thus, there is a need to 
prevent RSI occurrences since they have physical, psychological, and emotional implica-
tions for patients.

Current RSI detection and prevention methods include manual counting, radiogra-
phy, radiofrequency identification (RFID), and barcoding. These approaches largely rely 
on error-prone human accuracy and are time-consuming. Advanced technologies with 
comprehensive solutions encompassing hardware and software components are gain-
ing momentum to address limitations in the current solutions [9]. Research on applying 
machine learning (ML) and deep learning (DL) technologies for RSI detection and pre-
vention is ongoing [10, 11].

Due to the limitations of the currently used methods in minimizing RSI occurrences, 
ML and DL methods are preferred because of their higher accuracy in object detection 
[12]. These approaches offer numerous benefits, notably a substantial enhancement in 
the accuracy of RSI detection and the capacity to track surgical items in real-time dur-
ing procedures. Their inherent ability to learn and adjust continuously enables them to 
steadily enhance their precision, diminishing the reliance on extensive human interven-
tion and mitigating the potential for RSIs [13]. Ultimately, this elevates the quality of 
surgical care by streamlining surgical processes and enhancing patient safety.

Reviews relating to RSIs that have been done focus on conventional methods, analyz-
ing their effectiveness and accuracy. This review explores cutting-edge advancements in 
healthcare. It investigates the possibilities for proactive and real-time monitoring to pre-
vent RSIs by leveraging ML and DL. The study presents a forward-thinking viewpoint on 
a significant topic of patient safety. It offers new insights into how advanced technology 
can prevent surgical objects from being retained, providing more efficient and accurate 
solutions that align with the changing landscape of modern healthcare.

The paper is structured into eight sections. As described above, Section I introduces 
RSIs and their significance in healthcare. Section II is the methodology, detailing the 
approach adopted for article selection for review. Sections III and IV explore ML and 
DL techniques, expounding on their benefits and limitations. Section V discusses the 
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primary datasets adopted in the different reviewed papers. Section VI is a discussion 
section that performs a comparative analysis of the technologies using results from the 
reviewed articles. Section VII examines the future directions in various technologies 
applicable to RSI occurrence minimization. Section VIII concludes the paper by summa-
rizing key findings, stressing the importance of RSI prevention, and suggesting potential 
future healthcare advancements.

Methodology
A comprehensive research strategy was developed to conduct a thorough literature 
review on minimizing retained surgical items using machine learning and deep learn-
ing. This strategy involved a systematic search across various scholarly databases, utiliz-
ing specific keywords to target relevant articles. The core keywords identified for this 
review were “retained surgical,” “machine learning,” and “deep learning.” These terms 
were selected based on their direct relevance to the research topic and frequent occur-
rence in existing literature.

The databases selected for this search included Scopus, Springer Link, PubMed, IEEE 
Xplore, Google Scholar, MDPI, Wiley, and Taylor and Francis. These databases were 
chosen due to their extensive collections of medical and technological research arti-
cles. The search was initiated with the broad term “retained surgical” to capture many 
articles related to surgical items. This initial search yielded 4,236 results, including arti-
cles, books, reports, chapters, and special issues. The distribution of the results across 
the electronic databases is shown in Fig. 1. Two refined search queries were employed 
to narrow down the results by adding the phrases “machine learning” for ML-related 
papers and “deep learning” for DL-related papers. This second stage resulted in 97 ML 
articles and 62 DL articles; their distribution across the databases is shown in Fig. 2.

A third refinement step involving an inclusion criterion was applied to ensure that 
only the most relevant articles were considered in this review. The inclusion criteria 
adopted for this review paper are summarized in Fig. 3. Also, the articles were further 

Fig. 1  Distribution of the papers across publishers in step 1
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Fig. 3  Inclusion criteria for reviewed articles

 

Fig. 2  Results of step 2 for a more refined search
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scrutinized based on their titles, abstracts, and, where necessary, full-text reviews. This 
would enable the identification of the most pertinent studies, which would then undergo 
a quality assessment for final selection into the review. Quality assessment questions 
aim to assess the scope and address bias and validity. The five quality assessment ques-
tions used in this review are presented in Table 1. For each question, there are only three 
options for a response: Yes = 1; Partially = 0.5; and No = 0. Based on the responses to the 
questions, the quality of the articles was classified as either excellent (> 80%), very good 
(60 - <80%), good (40 - <60%), poor (20 - <40%), or very poor (< 20%) as indicated in 
Table 2. The articles with excellent, very good, and good scores based on the questions 
were selected, while those with very poor and poor scores were discarded. This research 
strategy was designed to ensure a comprehensive and systematic approach to gather-
ing relevant literature, providing a robust foundation for the review article. A summary 
of the stages in selecting the 15 articles used in this review article is shown in Fig.  4. 
The integration of advanced technologies like ML and DL in this context is an emerging 
but increasingly notable area. However, the number of focused articles remains relatively 
small.

The review follows a well-structured framework to comprehensively evaluate the 
application of ML and DL techniques in diagnosing and preventing RSIs. The reviewed 
articles are classified into two main categories, one for ML-based and the other for DL-
based approaches. The categories are further subdivided based on the specific objec-
tives, focusing on diagnosing and preventing RSIs. The first objective focuses on the 
diagnostic aspect, evaluating the role of ML and DL in enhancing the accuracy and effi-
ciency of diagnosing RSIs. The second objective explores preventive measures and how 

Table 1  Quality assessment questions
No Item Answer
Q1 Does the article describe clearly the study objectives? Yes/Partially/No
Q2 Does the work provide adequate details on the research method? Yes/Partially/No
Q3 Is there a description of the dataset characteristics and source? Yes/Partially/No
Q4 Does the paper provide the architecture of the model used? Yes/Partially/No
Q5 Did the article verify the results by relying on standard measures? Yes/Partially/No

Table 2  Quality assessment scores
Quality scale Very poor 

(< 20%)
Poor (20 
- <40%)

Good (40 
- <60%)

Very good (60 
- <80%)

Excellent 
(> 80%)

Total

Number of articles 0 0 3 10 2 15
Percentage (%) 20 66.7 13.3 100

Fig. 4  Stages of articles selection process
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these advanced computational techniques contribute to minimizing the risk of RSIs. 
This structure with the various classifications is shown in Fig. 5. This classification allows 
for a detailed examination of the methodologies employed within each category, offer-
ing a thorough analysis of the effectiveness of ML and DL techniques in addressing the 
problem. It provides a clear and insightful overview of the current state of research in 
the field, thus highlighting the advancements, challenges, and potential future directions 
for utilizing ML and DL in enhancing surgical safety.

Machine learning-based methods
For decades, ML has transformed a wide range of industries by training computers to 
make predictions based on existing data. Much effort has been put into enhancing ML 
accuracy, and continual efforts are being made to incorporate these technologies into 
real-life applications [14]. ML has quickly moved beyond its early digital uses, such as 
email filtering, to other areas, such as healthcare. Aside from image recognition, lan-
guage processing, and data mining, ML techniques are finding an expanding number 
of applications in medicine, ranging from automated imaging analysis to diagnosis [15]. 
Several researchers are looking into ML as a potential solution to improve medical care 
and surgical procedure safety [16]. Advanced technologies that use ML algorithms to 
track a surgical process in real time and send out appropriate notifications may reduce 
the incidence of RSIs.

Machine learning models

Several ML models have already been studied and tested to have the capability to detect 
and track RSIs. The Random Forest model comprises several decision trees to enhance 
prediction accuracy and foster control over overfitting. Random forests do this by learn-
ing from diverse subsets of the data; they can smooth out possible overfittings in deci-
sion tree models, and by averaging predictions, it is possible to obtain a robust solution 
even from noisy data sources [10]. Featured in multiple studies [10, 17, 18], the model 
was utilized to improve predicting accuracy in RSI detection processes.

Neural networks, especially weighed multilayer perceptrons, are employed to classify 
the possible instances of RSI from radiologic images. This type of neural network is com-
posed of several layers of neurons with non-linear activation functions, which makes the 
model able to learn unbelievably complex patterns or relationships in input data [18]. 
Multilayer perceptron can manage the problems of classification of high-dimensional 
data and detailed image classifications where a precise feature analysis is needed to get 

Fig. 5  Review structure
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better results. Linear discriminant analysis (LDA) seeks a combination of features that 
would constitute a linear way of separating two or more categories of objects or events. 
Several studies have succeeded in using LDA to statistically strategize image features to 
discover RSIs’ presence [18]. The application of statistical methods for analyzing differ-
ent types of surgical materials based on their radiographic appearances assists in distin-
guishing between surgical tools.

Instead of the traditional convolutional networks designed for image labeling, which 
aim to classify in general terms, the fully convolutional networks (FCNs) are designed 
to precisely label each pixel, which is essential when pinpointing the localization. The 
researchers of the FCNs have participated in segmenting surgical instruments of a non-
rigid nature from video feeds [19]. Through the modification of convolutional layers 
from fully connected layers, FCNs consequently preserve the spatial designation, lead-
ing to the highly accurate pixel-level segmentation of objects. Along with these FCNs, 
optical flow tracking works best for real-time tracking of surgical tools. It calculates the 
object’s motion from one frame to the consecutive frame based on the visible changes 
[19]. This method is of fundamental importance to preserving the continuum of segmen-
tation in video sequences, especially when containers drift or deform between frames.

Diagnosis

The process of detecting RSIs by physician analysis of X-ray images is relatively lengthy, 
taking approximately 45 min to complete, and is susceptible to errors since it relies on 
the sharpness of the human eye for RSI detection. In [17], the researchers developed 
computer-aided detection (CAD) software to analyze X-ray (XR) images. By utiliz-
ing the large image data currently available, a system was proposed based on computer 
vision and ML algorithms, as shown in Fig.  6. Test images were obtained by placing 
2–3 sponges on either a turkey or phantom model and using actual XR images that had 
clutter but did not have any sponges, generating a total of 790 images of which 277 had 
sponges. The software may be implemented as a stand-alone application, be part of a pic-
ture archiving and communication system (PACS), or be used in portable XR machine 
software. The software was effective based on the preliminary experiments conducted 
using actual XR images. The obtained results had 90% sensitivity, 99% specificity, 95% 
precision, 92% F-measure, and 99% accuracy.

Interpretation of radiographs by radiologists is a tedious process and heavily relies on 
human accuracy. The integration of ML and CAD holds potential for analyzing radio-
graphs. In [20], the main aim was to assess the precision of a CAD technique in recog-
nizing instances of RSIs. This was achieved by utilizing a distinct radiopaque tag that 
doesn’t deform. The approach involved building a CAD system using separate sets of 
radiographs for training and validation. A fresh collection of radiographs from cadavers 
containing both tagged and non-tagged artificial objects was then processed through the 

Fig. 6  Computer vision and ML approach for detection of RSIs
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CAD system. Radiologists subsequently evaluated the CAD system’s negative classifica-
tions. The findings indicated that in collaboration with a failsafe radiologist, the CAD 
system achieved a solid ability to accurately detect the non-deformable radiopaque tag, 
displaying high levels of sensitivity and specificity. This combined approach facilitated 
swift and precise identification of the tag’s presence.

The adverse health effects and deaths related to the retention of foreign objects after 
surgery are substantial. According to [21], these incidents contribute to unnecessary 
medical expenses of $1.5 billion annually. Radiography has a limited success rate of 59% 
in detecting such retained objects. To tackle this issue, the authors employ two comple-
mentary technologies: a three-dimensional (3D) Gossypiboma Micro Tag (referred to as 
“Tag”), which enhances the visibility of these objects in radiographs, and a CAD sys-
tem that identifies the presence of the Tag. The Tag’s 3D structure allows it to be effec-
tively identified by radiologists, and the CAD system generates a consistent 2D image 
on radiographs, regardless of the object’s orientation within the body. By arranging the 
“Tag” and various common artificial objects in random patterns, a database of cadaver 
radiographs was established. CAD modules are developed for preprocessing and tag 
enhancement. The CAD system can function with high specificity for surgeons, fitting 
seamlessly into their workflow and serving as an initial evaluator. For precise detection, 
radiologists can employ the CAD in a high-sensitivity mode. In an evaluation involving 
346 cadaveric radiographs, the CAD system demonstrated robust specificity for operat-
ing rooms (85.5% sensitivity, 0.02 false positives per image) and high sensitivity for radi-
ologists (96% sensitivity, 0.73 false positives per image).

Top of form

Aaccidental retention of surgical tools within patients’ post-surgery can result in severe 
consequences. To address this issue, the research in [18] proposes using CAD on post-
operative radiographs as a preventive measure. This CAD system could serve as an addi-
tional check for surgeons and radiologists, aiding patient safety during surgeries. The 
study aims to identify surgical needles in radiographs, developing a CAD system with 
the necessary sensitivity and specificity for recognizing these objects.

The CAD solution employs techniques like image segmentation, enhancement, feature 
analysis, and curve fitting to identify surgical needles in radiographs [18]. In [18], the 
dataset was compiled, including both “normal” cadaver images with and without nee-
dles. A reference standard was established using a graphical interface to locate needle 
positions precisely. The dataset was split into training and test sets, each accommodat-
ing two operational modes for the CAD system – one prioritizing specificity and the 
other emphasizing sensitivity. Results indicated that the rule-based classifier in the CAD 
system achieved sensitivities of 89.8% with 0.36 false positives per image in sensitivity-
focused mode and 74.6% with 0.15 false positives per image in specificity-focused mode 
for the training set. For the test set, the CAD system demonstrated 77.2% sensitivity with 
0.26 false positives per image in specificity-focused mode and 88.1% sensitivity with 0.28 
false positives per image in sensitivity-focused mode when utilizing the neural network 
classifier. Overall, this novel CAD system effectively identified retained surgical needles 
in radiographs, presenting a promising solution to detect accidental retention within 
patients’ bodies at an affordable cost top of form.
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Prevention

In [19], the authors explained the significance of real-time segmentation in computer-
aided systems used in surgical procedures. As illustrated in Fig.  7, they proposed an 
automatic approach based on optical flow tracking and FCNs. Initially, no segmenta-
tion from FCN is present, leading to no system output. Once the initial FCN output 
is acquired, continuous per-frame segmentation occurs. All segmentation results are 
derived from the latest FCN-based creation.

Deep neural networks and high-speed optical flow are used to produce accurate seg-
mentation. The study used existing and new datasets from both in vitro and in vivo clini-
cal cases for validation. The non-real-time method achieved an 89.6% accuracy, which 
performed better than the real-time method (combining DL with optical flow tracking) 
by 3.8%. The average balanced accuracy for the real-time method was 78.2% in the vali-
dated datasets.

Several factors contribute to “never events” (retained foreign items and wrong-site 
surgery) in operating theatre rooms [22]. According to [10], little information is known 
about the quantified risks of major “never events” and the characteristics of different 
surgeries. The authors employed ML principles to identify and quantify these risk fac-
tors to improve patient outcomes. To identify risk factors contributing to “never events,” 
9,234 safety standards observations, 101 actual “never events,” and three ML models 
were used. The metrics of the three models were evaluated using a 10-cross validation 
technique to measure their impact on two “never events.” In 6 surgical departments, 24 
contributing factors were identified: 6 with an impact of > 900%, 6 with 0–900% impact, 
and 17 with an impact of < 0%. The paper proposed adjusting safety standards based 
on risk assessment of the surgery and the surgery room. The study focused on just six 

Fig. 7  An automatic real-time image segmentation based on optical flow tracking and FCN. (a) A system pro-
posed in [19], (b) Real-time diagram
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surgical departments and was based on analysis of actual “never events”; thus, it may be 
biased and may not represent all surgical errors.

The overall key findings from various studies highlight that ML methods have achieved 
high accuracy and precision in detecting surgical items and instruments in medical 
images. Some methods indicate significant efficiency improvements, potentially reduc-
ing the time needed to perform surgical count and analysis. The main advantages of 
implementing ML in surgical count include enhanced detection capabilities that could 
increase patient safety by identifying retained surgical items (RSIs). By automating the 
count procedure, these systems also help reduce human analysis errors. Additionally, 
several of these ML methods can be seamlessly integrated with existing medical systems 
like the picture archiving and communication system (PACS), making them a versatile 
addition to current medical infrastructures.

Some of the drawbacks of the performed studies include limited datasets, which 
impacts the generalizability of the findings. The effectiveness of these ML systems also 
heavily depends on the quality of the input data, such as image quality and the specific 
characteristics of the RSIs. While applications of ML methods in surgical count show 
promising potential for improving patient outcomes and operational efficiency, their 
practical application remains constrained by issues related to data and system limita-
tions. Continued research and the development of more diverse and extensive datasets 
are essential for advancing these technologies.

Table 3 includes the key findings and the main advantages and disadvantages of the 
ML methods described in [10] and [17–21].

Deep learning-based methods
DL, a subset of ML, is transforming a variety of industries. This component employs 
multilayer artificial neural networks to process complex data structures [23]. The analy-
sis and use of DL in numerous applications has yielded excellent results. DL has enabled 
substantial advances in the prediction capabilities of computers by combining the avail-
ability of massive volumes of data with extremely effective learning algorithms. Image 
recognition, object detection, self-driving cars, medication research, and disease diagno-
sis are just a few of the complex applications that have benefited from this advancement 
in ML [24]. Further research into the topic is critical since it may provide significant 
discoveries with practical applications. While traditional ML requires supervised feature 
extraction, DL can independently discover and evaluate non-structural input objects 
such as images and audio recordings [25]. After the lower layers have processed the input 
data or learned the simple features, the upper levels pick up on the complex features. DL 
is transforming healthcare, particularly in predictive analytics and diagnostic imaging 
[26]. One application is to improve the safety and precision of surgical procedures. This 
method could lead to better detection and warning systems for use in real-time surgery. 
Not only does it reduce the risk of surgical errors, but it also allows for a more intelligent 
surgical environment, which helps both surgeons and patients.

Deep learning models

With the aid of technology, many researchers are working on deep learning techniques 
suitable for image detection and classification [27]. Owing to their capability of extract-
ing image features at different levels of hierarchy, convolutional neural networks (CNNs) 
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Modality 
(Dataset)

Metrics Key findings Advantages Disadvantages

X-Ray radi-
ography (790 
images)
 [17], 2015

• Specificity: 
99%
• Sensitivity: 
90%
• Precision: 
95%
• Accuracy: 
99%
• F-measure: 
92%

• Experimental 
results show the 
effectiveness of 
the proposed 
approach.
• 10-fold cross-
validation on 790 
XR images (277 
with sponges).
• A total of 561 
sponges in the 
test collection.
• Preliminary 
data confirm 
feasibility, sug-
gest expanding 
the detection set, 
and prepare for 
further testing.

• The proposed CAD soft-
ware enhances patient 
safety through RSI detec-
tion in XR images.
• Computer vision and 
ML reduce human analy-
sis errors.
• Experiments show high 
specificity, sensitivity, 
precision, accuracy, and 
F-measure.
• Integration options: 
PACS, stand-alone 
software, portable XR 
machine software.

• A limited dataset requires 
larger-scale testing for 
validation.
• Superimposition process 
quality affects the accuracy of 
the proposed approach.
• Tested only for detecting 
sponges; more research is 
needed for other RSIs.
• Effectiveness can vary based 
on RSI appearance, location, 
and orientation.
• Manual analysis by physicians 
is still essential for comprehen-
sive detection.

Observations
 [10], 2023

- • In 6 surgical 
departments, 
24 contributing 
factors were 
identified.
• 15–20 pairs 
with a higher 
probability of 
occurrence in 5 
departments.
• Three random 
forest models 
were employed, 
showing strong 
performance 
(AUC 0.81–0.85).

• ML identifies hidden 
patterns and offers better 
insights.
• The random forest 
model tackles complexity 
and is accurate.
• Non-binary features 
are simplified through 
discretization.

• The study’s hospital-focused 
data limits the findings’ 
generalizability.
• Only two “Never Event” types 
were considered, not others.
• Patient-related factors are not 
factored in.
• Human, environmental, and 
organizational factors are not 
considered.

X-ray 
radiography 
(208 cadaver 
images)
 [18], 2017

- • CAD system 
developed for au-
tomated surgical 
needle detection 
post-surgery.
• CAD system 
effective in high 
sensitivity, high 
specificity modes.
• Potential as 
low-cost aid in 
reducing retained 
surgical needles.

• CAD enhances needle 
detection accuracy in 
X-rays.
• CAD performs well in 
high sensitivity, high 
specificity modes.
• Classifier comparison 
reveals sensitivity vs. false 
positive trade-offs.

• The study’s small dataset cov-
ers only two needle types and 
lacks scenario diversity.
• The dataset uses cadaver ra-
diographs, not fully replicating 
real-world conditions, limiting 
the findings’ generalizability.
• The CAD system’s sensitivity 
and specificity are relatively 
low, suggesting improvement 
with the larger dataset is 
needed.

Table 3  Machine learning methods key findings, prominent advantages, and disadvantages
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are crucial to image processing tasks [28]. One of the strengths of this model is that it 
is very useful for applications that require real-time tracking; thereby, it can be used 
for surgical tool detection during operations [29]. Spatial transformer networks (STNs) 
combine with convolutional neural networks to make it possible to adjust spatial data. 
This attribute plays a vital role when the objects of interest are constantly moving, such 

Modality 
(Dataset)

Metrics Key findings Advantages Disadvantages

X-ray radiog-
raphy (700 
thoracoab-
dominal 
images)
 [20], 2018

CAD:
• Sensitivity: 
79.5%
• Specificity: 
99.7%.
Radiologists:
• Sensitivity: 
92.9–100%
• Specificity: 
99.3–100%.
CAD + 1
• Sensitivity: 
98.5–100%
• Specificity: 
99.0-99.7%.

• Radiologist 
agreement is 
high, nearly per-
fect pairwise.

• CAD enhances accu-
racy, high sensitivity, and 
specificity.
• CAD’s automation, with 
no specialized training, 
is a convenient, efficient 
tool.
• CAD analyzes < 1 min/
radiograph, offers speedy 
results, and process 
streamlining.

• The small sample size (9 
cadavers) limits the findings’ 
generalizability.
• The study didn’t test the high-
sensitivity CAD + radiologist 
combo.
• The CAD system was not 
validated on the separate test 
set, affecting generalizability.
• There is no comparison with 
other methods, and relative 
strengths/weaknesses are 
missing.
• There is no data on the CAD 
system’s impact on clinical 
outcomes or cost savings.

X-ray 
radiography 
(346 cadaver 
images)
 [21], 2014)

• Sensitivity: 
96%
• Specificity: 
85.5%

• The paper 
suggests 3D 
µTag, CAD for 
RFOs: detection 
enhancement.

• Reliable detection: 
µTag’s 3D shape ensures 
accurate detection by 
radiologists and CAD.
• CAD performance: High 
specificity for OR, high 
sensitivity for radiologists.
• Workflow integration: 
CAD can seamlessly aid 
surgeons as the first 
reader.

• Limited dataset: The study 
uses 346 cadaveric radio-
graphs, not fully real-world.
• Lack of specific criteria info 
for CAD labelling, segmenta-
tion, analysis, and classification.
• There is no mention of 
limitations for real-world 
implementation.
• Cost-effectiveness and fea-
sibility details for technology 
adoption not elaborated.
• There is no info on the CAD 
system’s long-term impact on 
reducing retained objects in 
practice.

Optical imag-
ing (EndoVis-
Sub: 4760 
images
NeuroSurgi-
calTools: 2476 
images
FetalFlexTool: 
21 im-
ages + a video 
sequence)
 [19], 2017

EndoVisSub
• Sensitivity: 
72.2%
• Specificity: 
95.2%
• Accuracy: 
83.7%
NeuroSurgi-
calTools
• Sensitivity: 
82.0%
• Specificity: 
97.2%
• Accuracy: 
89.6%
FetalFlexTool
• Sensitivity: 
84.6%
Specificity: 
99.9%Accu-
racy: 92.3%

• Validation using 
existing and 
new benchmark 
datasets.
• Ex vivo and in 
vivo clinical cases 
with various sur-
gical instruments.
• There are two 
method versions: 
non-real-time 
and real-time.
• The real-time 
version combines 
DL with optical 
flow tracking.

• The method is efficient 
and less time-consuming.
• Accurately segments 
deformable parts of 
instruments in real-time.
• Useful for instrument 
localization and separa-
tion from tissue.
• The technology 
accurately segments 
extremely deformable 
surgical tools in real-time 
using optical flow track-
ing and FCN.
• The ability to detect 
various instruments and 
the presence of a frame-
work for tracking and 
learning detection.

• Quality of results affected by 
instrument deformability and 
movement speed.
• FCN in a proposed method, 
not real-time, impacting surgi-
cal scenarios.
• Challenges in real-time detec-
tion and tracking of surgical 
instruments include specular 
reflections, changing lighting 
conditions, motion blur, and 
occlusions caused by body 
fluids and smoke.
• Challenges faced during the 
fine-tuning process and real-
time instrument segmentation 
in surgical scenarios

Table 3  (continued) 
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as when the surgical tools are displaced from their initial placement [28]. STNs consider 
these disturbances while transforming feature maps into a canonical and analyzable 
representation.

The U-Net structure stands out from others and is dedicated to segmentation tasks. 
The contracting path keeps the details in context, and the expanding symmetric way 
quickly acquires location [27]. This is also critical in medical image segmentation, where 
one needs to outline and define objects, such as RSIs. Faster region-based convolutional 
neural networks (R-CNN) gained wide appreciation as they were the first to reliably 
detect objects due to the use of region proposal networks (RPN) and the Fast R-CNN 
component [30]. This model has the potential to achieve higher degrees of sensitivity 
and specificity, accurately identifying surgical items in images, which is paramount for 
medical diagnosis.

Diagnosis

Despite proposing a novel DL software that uses post-processed images created by 
combining X-ray images of typical post-operative radiography and surgical sponges, 
researchers have not fully investigated the relationship between the detectability of RSIs 
and human visual assessment. In [30], a study examined the relationship between the 
detectability of RSIs and human subjectivity using DL. A DL model was created using 
2987 training shots and 1298 validation images that were post-processed by integrating 
X-ray images of typical post-operative radiography and surgical sponges. A second batch 
of 800 pictures was also used, 400 with and 400 without surgical sponges. The research-
ers used receiver operator characteristics to see how well a DL network and a general 
observer with ten years of clinical experience spotted retained sponges. The radiologist 
and the DL model determined the following values: The areas under the curves were 
0.87 and 0.76, the cutoff values for probability were 0.37 and 0.45, and the sensitivity 
and specificity were 85% and 61%, respectively. When detecting surgical sponges, the 
DL model had higher sensitivity, while the human observer had higher specificity. These 
attributes suggested that the DL system, combined with human intervention, could 
improve clinical processes in operating rooms and effectively detect RSI.

When objects are accidentally left inside the brain during neurosurgical procedures, 
they can create potentially deadly health problems and necessitate invasive reoperations. 
A typical example of such retained surgical instruments is the cotton ball, which absorbs 
blood for improved surgical vision but becomes optically indistinguishable from brain 
tissue. However, due to their differing acoustic qualities, ultrasonic imaging can iden-
tify the difference between brain tissue and cotton. In [31], a fully automated approach 
for locating foreign bodies was developed. This algorithm was quickly integrated into 
the clinical workflow to discover and identify trapped cotton balls inside the brain. The 
DL method employed CNN, yielding 99% accuracy, sensitivity, and specificity. It out-
performed comparable algorithms in the process. The technique was also turned into 
valuable applications like web and mobile user interfaces. The approach could detect a 
single cotton ball in an ultrasound image in less than a second. This study was notable 
for using a foreign body recognition algorithm based on actual in-person datasets for 
the first time. The findings indicate its usefulness in preventing unintended foreign body 
retention in a translational healthcare setting.
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According to [32], 70% of RSIs are surgical sponges as they are more challenging to 
detect than other surgical items. The authors developed a CAD software program spe-
cialized in the diagnosis of retained surgical sponges. The program employed DL tech-
niques to detect RSIs easily and effectively with high specificity and sensitivity. Using 
training and validation datasets, the software was developed by training it through DL. 
The dataset had 4554 training subjects and 470 validation subjects, created by the fusion 
of normal postoperative radiographs with surgical sponge radiographs. Phantom radio-
graphs were taken using cadavers with surgical sponges inserted, and normal postop-
erative radiographs were also used for validation. Image interpretations of the phantom 
radiographs achieved 100% sensitivity and specificity. The composite radiographs’ sensi-
tivity was 97.7%, while the specificity was 83.8%. Normal postoperative radiographs used 
to determine false positive rates achieved a specificity of 86.6%, while in cadaveric radio-
graphs, both specificity and sensitivity of more than 90% were realized. More advanced 
technologies are required to incorporate the solution into existing hardware.

Prevention

Accidental retention of surgical sponges is easily preventable through the implementa-
tion of standardized counting procedures, but it persists due to human errors [33]. Sur-
gical gauzes are small and similar to human tissues when soaked in blood, making it 
difficult to detect them when retained. In [27], the authors proposed an image process-
ing system that uses the video captured by the endoscope during laparoscopy opera-
tions to track the gauze. Using texture analysis techniques, the application divides the 
video into different frames that are analyzed to determine the presence of a gauze pat-
tern. Testing of the algorithm was performed using clean gauze, some that were slightly 
stained and others that were soaked in blood. To achieve reliable results, convolutional 
neural networks (CNN) and local binary patterns (LBP) were used. The LBP algorithm 
achieved sufficient results (98% precision and 94% sensitivity) for robust detection even 
when the gauzes are soaked or stained. Superior outcomes are obtained with the CNN 
algorithm, achieving 100% precision and 97% sensitivity. However, real-time detection 
using standard hardware is unattainable due to high computational requirements.

In minimally invasive surgery (MIS), tracking surgical tools in real-time has vari-
ous uses for computer-assisted interventions (CAIs). Visually tracking approaches are 
meant to track surgical instruments in real time [34]. However, several methods have 
proved ineffective due to motion blur, poor illumination, specular reflections, shadows, 
and occlusions. In [28], a spatial transformer network (STN) and spatiotemporal con-
text (STC) were used to propose an automated real-time technique for 2D tool detection 
and tracking. Their solution merged CNN with specially trained STN and STC to recog-
nize the tool quickly and reliably. They used eight pre-existing online and internal data-
sets to compare their approach to four other generic CAIs’ visual tracking techniques, 
including in vivo abdominal, cardiac, and retinal clinical settings using diverse surgical 
equipment. The investigations found that the method’s accuracy and speed were both 
outstanding. Even in the most challenging environments, it could track a surgical tool 
in real-time without labeling with accuracy comparable to, and sometimes better than, 
most cutting-edge tracking systems. The technique would need to be refined further, 
focusing on multi-instruments and occlusion scenarios.
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In [35], the study aimed to create an algorithm for detecting surgical equipment’s dis-
tal end by employing object identification and DL. Nine video recordings of carotid end-
arterectomies were used for training and testing purposes. As annotated data, regions 
of interest (ROIs) of 32 × 32 pixels were produced and positioned at the distal end of the 
surgical tool within the video frames. These ROIs were subjected to data augmentation 
techniques. The model for training was a CNN based on YOLOv2. The researchers eval-
uated the detectors to determine the average detection precision. The YOLOv2 model 
predicted the central coordinates of bounding boxes used in this study’s approach. The 
detection rate was calculated using the test dataset. In the absence of data augmenta-
tion, the mean accuracy for the ROIs was 0.4272 ± 0.108. The mean accuracy with data 
augmentation, measured 0.7718 ± 0.0824, on the other hand, demonstrated a consider-
able improvement above the scenario without data augmentation. The detection rates 
were 0.6100 ± 0.1014 and 0.9653 ± 0.0177, respectively, when the computed coordinates 
of center points within 8 × 8 and 16 × 16 were included. The researchers predicted that 
the proposed method would be effective in analyzing surgical records.

Real-time monitoring of surgical procedures could enhance the safety of surgical pro-
cedures and prevent instances of retained sponges. In [36], a laparoscopic video was uti-
lized to obtain 4003 hand-labeled frames to be used as a segmentation dataset. Several 
baselines were analyzed to prove the dataset potential: detection with YOLOv3, segmen-
tation using U-Net, and coarse segmentation. Although YOLOv3 was appropriate for 
real-time execution, it provided a modest recall. On the other hand, coarse segmenta-
tion lacked inference speed. At the same time, U-Net provided a satisfactory speed-qual-
ity compromise, running above 30 frames per second (FPS) with an intersection over 
union (IoU) of 0.85. The good compromise the U-Net achieves is evidence that perform-
ing precise and real-time gauze segmentation is possible.

The authors in [29] developed a novel hierarchically organized dataset for research 
emphasizing intelligent surgical equipment management. A four-level hierarchical 
framework and 360 separate surgical instrument categories were applied to the dataset. 
This structure was made up of twelve packs, 35 sets, and two specials. The research-
ers used CNNs in various approaches to evaluate this dataset’s picture categorization 
and retrieval abilities. These approaches involved using several CNN training strategies, 
including adding past knowledge using a taxonomic hierarchy tree structure. The team 
investigated how image size and the number of photos in each class influenced the mod-
els’ ability to forecast. An in-depth study was conducted to map image characteristics 
and class embeddings within a semantic space using semantic similarity scores across 
categories. Surprisingly, these experiments revealed that adding prior knowledge con-
siderably improved the performance of picture retrieval on the dataset.

Keeping a record of surgical equipment is critical to ensuring surgical safety and 
patient welfare. However, due to the inherent uncertainties in manual record-keeping 
methods, instrument omissions or miscounts are possible [37]. Using computer vision 
technology makes the instrument counting technique more efficient, which also helps 
eliminate medical conflicts while developing medical information technology. Despite 
this, there are complications during the counting procedure. Surgical tools may be 
tightly packed or mutually obstructive, and their ability to be recognized may be influ-
enced by lighting circumstances.
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Furthermore, the presence of similar instruments with minor changes in appear-
ance and shape makes identification more challenging. To overcome these challenges, 
the researchers in [38] updated the YOLOv7x object detection algorithm for surgical 
equipment detection. First, the RepLK Block module was introduced to the YOLOv7x 
backbone network, increasing the effective receptive field and boosting the network’s 
capacity to learn from features. Second, the neck module of the network was upgraded 
to add the ODConv structure, which significantly improved CNN’s ability to extract fea-
tures while capturing richer contextual data. To simplify model training and evaluation, 
the researchers compiled the OSI26 dataset, which includes 452 pictures of 26 surgical 
equipment. Empirical results demonstrated the updated algorithm’s superior accuracy 
and durability in surgical equipment detection tasks. For the F1, AP, AP50, and AP75 
parameters, the baseline was exceeded by 4.6%, 3.1%, 3.6%, and 3.9%, respectively, with 
94.7%, 91.5%, 99.1%, and 98.2%. The proposed method has substantial advantages com-
pared to other top object detection algorithms. These findings proved the method’s abil-
ity to detect surgical tools accurately, improving surgical safety and protecting patient 
health.

Table 4 includes the imaging modalities, metrics, key findings, and the main advan-
tages and disadvantages of the DL methods described in [27–32, 35, 36, 38].

Datasets
The dataset used in [17] comprises 790 X-ray images, with a staggering 25,638 nega-
tive box locations for non-RSI candidates and 561 positive box places for RSIs such as 
sponges. This semi-automatically labeled dataset is critical for teaching the automated 
identification system to distinguish between RSIs and non-RSI regions and aiding the 
training and testing of the system. Furthermore, the author’s ongoing efforts to add syn-
thesis data to the dataset reflect their commitment to expanding its scope, ultimately 
improving the accuracy of RSI recognition in radiological images.

The authors of [19] emphasize the significance of using multiple datasets to advance 
various medical and surgical imaging aspects: they used three types of datasets in their 
study. The “NeuroSurgicalTools Dataset” contains 2476 monocular images ranging in 
size from 612 × 460 to 1920 × 1080 pixels captured during actual neurosurgery proce-
dures. It is divided into training (1221 images) and testing (1255 images) halves as an 
essential tool for building and assessing algorithms for neurosurgical image processing. 
The “EndoVisSub Dataset,” a MICCAI 2015 endoscopic vision challenge component, 
comprises two sub-datasets, one robotic and one non-robotic. The robotic sub-dataset 
contains videos for training and testing at a resolution of 720 × 576 pixels. The non-
robotic sub-dataset includes 160 in vivo abdominal images for training. Despite lacking 
extensive dataset metadata, the “FetalFlexTool Dataset” focuses on images of a flexible 
McKibben actuator used in fetal surgery. Collectively, these datasets offer specialized 
imaging data for medical and surgical research, covering neurosurgery, endoscopy, and 
fetal surgery tool analysis. These datasets are diverse, allowing the authors to investigate 
and build algorithms that aided in solving the issue of retained surgical artifacts in vari-
ous surgical procedures and environments.

In [27], a dataset of images from laparoscopic recordings was employed, with 4891 
blocks labeled as a backdrop and 1782 as gauze. These graphic blocks depicted various 
gauze conditions, including clean, unclean, and damp. In their study, 75 blocks were 
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Modality 
(Dataset)

Metrics Key findings Advantages Disadvantages

Optical im-
aging (vari-
ous surgical 
tools​)
 [28], 2019

• Accuracy: 
100%

• The paper compares 
the proposed 
method with four 
others.
• Uses eight diverse 
surgical video 
datasets.
• It covers varied 
surgical scenarios and 
conditions.
• Demonstrates 
strong accuracy and 
speed in experiments.
• Tracks tools label-
free in real-time, 
excelling in tough 
cases.

• The method tracks 
surgical tools in real-time 
without labels, saving 
time.
• Enhances accuracy and 
speed of surgical tool 
tracking.
• Achieves high per-
formance in accuracy 
and speed, improving 
procedures.•

• Method lacks real-time 
object tracking, limiting 
specific procedures.
• Not effective with 
occlusion and multi-
instruments, impacting 
accuracy.
• Experiments on limited 
datasets may hinder 
broad usability.
• High computational 
time (2.5 s) hampers real-
time use on i3 CPU.

Optical im-
aging (4891 
background, 
1782 gauze)
 [27], 2020

• Precision: 100%
• Sensitivity: 97%

• Paper presents an 
image processing 
system for gauze 
tracking in endo-
scope video.
• Results based on the 
average of 110 simu-
lated laparoscopic 
images in different 
conditions.

• The method achieves a 
highly accurate and sensi-
tive real-time detection of 
gauzes.
• The program analyzes 
the footage invis-
ibly and without human 
intervention.
• The algorithm is capable 
of tracking gauzes in real 
time.
• The system is conve-
nient and straightforward 
to use.

• The high computational 
demand of the CNN ap-
proach prevents real-time 
processing with standard 
hardware.
• Limited testing in a lapa-
roscopic simulator; more 
testing in real surgical 
scenarios is required.
• The algorithm may not 
detect gauze hidden 
or obscured by tissues/
organs in the video.

Optical im-
aging (4608 
images)
 [35], 2020

• Detec-
tion rates: 
0.6100 ± 0.1014 
and 
0.9653 ± 0.0177.
• Average 
precision 
(AP) without 
augmentation: 
0.4272 ± 0.108.
• AP with 
augmentation: 
0.7718 ± 0.0824

• The Mann-Whitney 
U-test was used to 
compare the impact 
of augmentation.
• Evaluated detection 
with AP, LAMR, and 
FPS.
• MATLAB’s Com-
puter Vision Toolbox 
assessed bounding 
boxes.

• The algorithm enables 
real-time surgery 
monitoring.
• Data augmentation 
notably enhances the 
algorithm’s accuracy and 
reliability.
• Offers innovative 
surgical tool detection 
approach, enhancing 
outcomes and safety.
• Contributes to expand-
ing research on DL’s role 
in surgery advancement.

• Limited sample size 
(nine carotid endarter-
ectomy videos) hampers 
generalization.
• The study focused only 
on distal end detection, 
overlooking tissue factors.
• Lack of real-time evalua-
tion for practical surgery 
application.
• Absence of comparison 
with existing detection 
methods.
• Ethical and legal 
concerns, like patient 
privacy and liability, are 
unaddressed.

Optical im-
aging (4003 
frames)
 [36], 2022

• Precision: 
94.34%
• Recall: 76.00%
• F1 score: 
84.18%

• Paper presents 
quantitative and 
qualitative results on 
the proposed dataset.
• YOLOv3 offers real-
time execution but 
modest recall.
• Coarse segmenta-
tion is satisfactory but 
slow.

• U-Net achieves real-time 
segmentation balance.
• Gauze detection auto-
mates surgical tasks and 
aids in video analysis.
• Datasets and baselines 
offer a foundation for fu-
ture research in the field.

• The dataset is limited to 
specific gauze types and 
surgery, not covering all 
scenarios.
• Evaluation metrics in-
clude recall, MCC, and AP, 
possibly inadequate.
• There is no comparison 
with existing methods in 
the field.
• Lack of clinical valida-
tion impacts real-world 
applicability.

Table 4  Deep learning methods key findings, prominent advantages, and disadvantages
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Modality 
(Dataset)

Metrics Key findings Advantages Disadvantages

X-ray imag-
ing (5085 
images)
 [30], 2022

• Sensitivity: 85%
• Specificity: 73%
• AUC: 0.87

• DL is better for lung 
regions (AUC and 
sensitivity), and heart 
and subdiaphragmat-
ic regions are equally 
high-performing 
(AUC > 0.9).
• DL had lower speci-
ficity for all regions 
except the heart than 
human observers.

• The model has higher 
sensitivity, indicating 
a superior ability to 
identify surgical sponges 
in images.
• The DL model enhances 
human visual examina-
tion while reducing the 
number of surgical items 
that are overlooked and 
not retained.
• Improved model’s ac-
curacy and reliability
• Combining X-ray images 
from routine post-oper-
ative radiography and 
surgical sponges may 
allow for more precise 
detection of surgical 
sponges.

• Bias potential due to 
fusion with standard, not 
post-op, radiography.
• Limited to chest sponge 
detection; further re-
search is needed.
• Medical staff’s familiarity 
with image interpretation 
could impact the study.
• They relied on accessible 
NIH databases, affecting 
result generalizability.
• There is no comparison 
with other RSI detection 
methods in the study.

Ultrasound 
imag-
ing (7121 
images)
 [31], 2022

• Accuracy: 99%
• Sensitivity: 99%
• Specificity: 99%

• Fully automated 
algorithm for detect-
ing cotton balls in the 
brain.
• It is integrated into 
the web app for rapid 
ultrasound image 
detection.
• Actual in-human 
dataset use prevents 
foreign body 
retention.
• Large, diverse ex 
vivo porcine brain 
ultrasound dataset for 
DL model.

• The method is non-
invasive and safe; it uses 
ultrasound to detect cot-
ton balls in the brain.
• The automated 
algorithm integrates 
into the workflow and is 
time-efficient.
• The algorithm achieves 
high accuracy, sensitivity, 
and specificity.
• The first use of a real in-
human dataset; prevents 
accidental retention, 
clinically relevant.

• Limited by a small 
sample (2 human brains), 
not generalizable.
• Only cotton ball detec-
tion was studied; no as-
sessment of other foreign 
bodies.
• No real-time surgery 
evaluation; limits clinical 
use insight.
• There is no comparison 
with human experts’ 
performance.
• Not tested for foreign 
bodies outside the brain; 
limited applicability to 
other surgeries.

Optical 
imaging 
(15,522 
surgical tool 
images)
 [29], 2022

• Accuracy: 88%
• F1-score: 86%
• Top-5 accuracy: 
100%
• Hierarchical 
accuracy: 84%

• Good classification, 
limited hierarchy 
impact.
• Embedding strate-
gies aid retrieval.
• Single image 
retrieval is robust, and 
embedding helps 
with similarity.
• Semantic data 
boosts image 
retrieval.
• Hierarchy and 
semantics enhance 
performance.

• CNN strategies enhance 
dataset structure.
• Semantic info boosts 
content-based image 
retrieval quality.
• Research findings ap-
plicable in surgical tool 
management.
• Insight into organizing 
tools for efficient surgical 
procedures.

• Limited data-
set focus may hinder 
generalization.
• Single dataset ex-
periments limit real-world 
applicability.
• Lack of detailed compu-
tational resource analysis.
• There is no comparison 
with the current top 
methods for image tasks.

Table 4  (continued) 
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used for analysis, specifically to develop a pattern histogram, while 25 blocks were used 
for testing, which included the construction of receiver operating characteristic (ROC) 
curves. The authors used a dataset of image blocks from laparoscopic recordings to 
examine several LBP variants. They used the area under the curve of the receiver operat-
ing characteristic (AUC-ROC) to quantify their performance. The study also includes 
a clean gauze video with a Storz Telecam endoscope in a laparoscopic simulator. This 
video was used during the experimental setup and testing phases. The study examines 
how successfully LBP variations distinguish between gauze and non-gauze regions using 
image data, ROC curves, and AUC-ROC computations, which is significant for develop-
ing tools to avoid complications from RSIs.

In [36], the dataset contains 42 video files, 30 of which have RSIs and 12 of which do 
not. There are 33 min of RSI videos and 13 min of non-RSI videos. It was shot with a 
PAL color STORZ TELECAM one-chip camera head with a 752 × 582-pixel image sen-
sor. However, it is based on simulated scenarios using animal organs rather than actual 
treatments. This dataset is extremely useful for RSI research since it provides a wide 
range of operating settings, such as varied gauze conditions and tool presence, which are 
required for developing and analyzing RSI detection algorithms.

In [28], the authors employed eight distinct datasets sourced internally and via the 
Internet to test a novel method for real-time monitoring of surgical equipment during 
MIS. In vivo, abdominal, heart, and retinal surgeries, as well as various clinical settings 

Modality 
(Dataset)

Metrics Key findings Advantages Disadvantages

Optical 
imaging (452 
images)
 [38], 2023

• Precision: 
92.6%
• Recall: 97.0%
• FI-score: 94.7%
• AP: 91.5%

• Paper’s algorithm 
enhances YOLOv7x 
for surgical instru-
ment detection.
• The proposed 
method shows 
higher accuracy and 
robustness.
• Ablation ex-
periments validate 
proposed improve-
ments for instrument 
detection.

• Improved YOLOv7x algo-
rithm enhances surgical 
instrument detection.
• RepLK Block and 
ODConv improve the 
receptive field shape 
learning and context.
• The approach ac-
counts for obstacles 
such as closely packed 
equipment, occlusions, 
and varying lighting 
conditions, making it 
suitable for actual surgical 
circumstances.

• Errors are likely for simi-
lar-looking instruments.
• Possible errors for simi-
lar-looking instruments.
• The method works for 
standard OR instruments; 
special ones need spe-
cific methods.
• Lighting variations 
impact accuracy.

X-ray radiog-
raphy (5024 
images)
 [32], 2021

Phantom
• Sensitivity: 
100%
• Specificity: 
100%
Composite
• Sensitivity: 
97.9%
• Specificity: 
83.8%
Cadaver
• Sensitivity: 
97.7%
• Specificity: 
90.4%

• CAD software devel-
oped for preventing 
RSIs.
• They are trained 
to detect surgical 
sponges.
• High sensitivity and 
specificity in various 
radiographs.
• CAD system has the 
potential to enhance 
patient safety.

• The CAD software 
enhances patient safety 
through the detection 
of RSIs.
• Reduces human error, 
improving surgical 
sponge detection 
accuracy.
• Achieves high sensitivity 
and specificity in detect-
ing surgical sponges.
• Potential for cost-effec-
tive, practical use without 
extra equipment.

• The software special-
izes in detecting specific 
surgical sponges, not all 
retained items.
• Technology’s applica-
bility to other surgical 
instruments might be 
limited.
• The study used a small 
sample of radiographs, 
potentially lacking 
generalizability.
• No evaluation of CAD in 
larger clinical settings.
• There is no assessment 
of CAD’s impact on pa-
tient outcomes or costs.

Table 4  (continued) 
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and surgical instruments, were all included in these datasets. The dataset is critical for 
evaluating how well the suggested tracking system may minimize the potentially fatal 
retention of surgical equipment since it replicates difficult situations seen in MIS. They 
addressed various standard and challenging conditions, including motion blur, low 
lighting, reflections, shadows, and obstructions. The study compared the precision and 
real-time performance of four existing generic CAI tracking methods to the suggested 
tracking approach, which was measured in FPS. This dataset’s test video footage, which 
includes embedded ground truth data, was utilized to evaluate tracking algorithms.

In [35], specialized software was developed to select the 32 × 32-pixel (ROIs on surgi-
cal equipment and collect object names and ROI coordinates. This resulted in a thor-
oughly vetted dataset, which the researchers used. The dataset was divided into nine 
subgroups for nested cross-validation to guarantee that patient images were separated 
between training and testing. The training dataset, which included 4096 training images 
obtained from eight patients and 512 for testing, performed better after data augmen-
tation with image rotation. The separation of patient images in training and testing is 
ensured by nested cross-validation with nine subgroups, increasing the model’s robust-
ness for identifying RSIs in various settings.

The HOS-PITools dataset in [29] contains 360 surgical instrument classifications 
organized hierarchically across four tiers, which is an essential resource for the study. 
CNNs and other DL approaches can be investigated for usage in image categorization 
and retrieval applications. The study analyzes the effects of image size and image count 
per class on model performance to better understand the semantic links among surgical 
equipment. It also explores mapping image properties and class embeddings in a seman-
tic space. This dataset greatly promotes research on RSIs in the surgical domain by pro-
viding a comprehensive and hierarchically organized model evaluation and development 
resource.

In [30], the study used two crucial datasets for DL, each with its collection of numer-
ical features. The initial dataset had 8619 chest radiography images from 51 patients, 
which were obtained utilizing precise imaging parameters: a 200 cm source-to-detector 
distance, 120 kVp tube voltage, and 160 mA tube current. The second dataset included 
surgical sponge pictures obtained by imaging three sponges under controlled settings 
using a 100 cm source-to-detector distance, 66 kVp tube voltage, and 1.6 mA tube cur-
rent-time product. These datasets are critical for detecting retained surgical objects, 
contributing significantly to patient safety during surgical procedures.

In [31], the dataset contains photographs of pig brains labeled with cotton’s location in 
the brain. The images were divided into three groups based on their diameter: training 
(70%), validation (15%), and test (15%). The edges of these photos were enhanced with 
anisotropic diffusion, and the pixel intensity was smoothed. They were also scaled and 
modified to preserve the values between 0 and 1. In addition, lower-resolution human 
neurosurgical pictures were handled using contrast-limited adaptive histogram equal-
ization (CLAHE), which improves contrast. This dataset’s thorough curation and range 
of image types are critical for developing and testing RSI detection algorithms, which 
will considerably improve surgical precision and patient safety.

The OSI26 dataset used in [38], containing 452 images and 26 surgical instruments, is 
essential in exploring surgical tool detection for reducing RSIs. Each image was anno-
tated and standardized at 1980 × 1080 pixels. Several data augmentation approaches, 
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such as translation, scaling, flipping, brightness, hue, saturation adjustments, and mixup 
and mosaic methods, were applied to boost model performance. The data was divided 
into training, validation, and testing sets (in an 8:1:1 ratio) to guarantee category bal-
ance. Because of its broad diversity, well-annotated images, and additional data, the use-
fulness of this dataset rests in developing an improved algorithm for surgical instrument 
detection, which is critical for minimizing the incidence of RSIs during surgery.

The dataset in [32] included a validation set of 470 images to evaluate the program’s 
effectiveness and a training set of 4,554 composite radiographs to train the CAD algo-
rithm. Various radiograph types were included in the validation set, including 1,776 nor-
mal postoperative radiographs and 369 cadaver radiographs. The software’s capacity to 
find surgical sponges inside the body was tested in several conditions, including con-
trolled phantoms and cadaver radiography. The study’s findings revealed that the CAD 
software is susceptible to detecting retained surgical sponges, significantly increasing 
patient safety and medical imaging. DL was used to train the software, which was fed a 
dataset of composite radiographs that combined images of surgical sponges with usual 
postoperative X-rays. Various radiograph types, including cadaver, composite, phantom, 
and standard postoperative images, were used to properly examine the software’s effi-
ciency. An upgraded model based on Faster R-CNN was used to improve object detec-
tion. The accuracy was evaluated using sensitivity, specificity, and precision rate criteria. 
One critical feature that qualifies the DL model for clinical use is its ability to transfer 
information across multiple radiological categories. Essentially, this technique dem-
onstrates how DL may improve the detection of retained surgical sponges, enhancing 
patient safety in medical imaging.

In [20], the research used radiographic images from 10 cadavers to develop and test a 
CAD system for detecting radiopaque, ultimately eliminating inadvertent surgical equip-
ment retention. The dataset used in this study contains 700 radiographs, 410 of which 
include radiopaque features randomly placed, and the remaining 290 do not. The cadav-
ers were positioned in several orientations and rotations to properly mimic various clini-
cal situations, resulting in a dataset that accurately reflects real-world environmental 
variables. Objects commonly seen in intraoperative radiographs were deliberately placed 
in the cadavers to mimic surgical circumstances.

The dataset employed in [18] comprises radiographic images of cadavers with surgi-
cally implanted needles in their chest and abdomen regions, replicating instances in 
which RSIs appear in medical imaging. The collection had 108 radiographs with 116 
needles embedded at various places from 19 different cadavers. The dataset was sepa-
rated into a training subset of 53 radiographs with 59 needles and a testing subset of 
55 radiographs with 57 needles to facilitate model training and evaluation. The testing 
subset also included 100 radiographs of cadavers without needles to assess the CAD sys-
tem’s false-positive rate.

Discussion
It is vital to highlight that the use of ML and DL in the diagnosis and prevention of RSIs 
could result in increased surgical safety and improved diagnosis accuracy. Each tech-
nology has its own set of advantages and disadvantages in this critical medical field, as 
demonstrated in the reviewed articles. To fully comprehend the impact, it is crucial to 
examine their characteristics, benefits, and drawbacks before presenting a comparison.
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Strengths and limitations

ML is applied in predictive analysis, utilizing various risk factors to anticipate RSIs. 
It aids in real-time monitoring of surgical instruments and sponges and enhances the 
accuracy of postoperative scans. ML could enable the creation of training simulations, 
the detection of dangerous surgical workflow patterns, the automation of inventory 
management, and the interface with EHR for thorough documentation. ML is adaptable 
to any data, and its predicting capabilities in identifying RSIs may be integrated into cur-
rent systems such as EHR.

DL is well-known for its superiority in advanced image recognition, which is required 
for real-time tracking of surgical items. DL is also important in constructing customiz-
able training and could be connected to EHR for more comprehensive database assess-
ment. DL demonstrates outstanding performance capabilities in pattern identification, 
particularly in image and video analysis. It does, however, offer better accuracy RSI scan-
ning with advanced analytics for complex datasets.

Despite these strengths, both technologies have limitations. ML performance is largely 
dependent on data quality and quantity, yet it can struggle with intricate pattern recog-
nition. It also carries the risk of overfitting. DL is powerful, but the cost of operation is 
expensive, and this operation is similar to a black box since its method of operation is 
opaque or unclear. It is a significant challenge because it requires a huge, well-labeled 
dataset during the training process.

Comparative analysis

ML is adaptable and can be used at any surgical stage to provide precise predictions in 
a high-risk setting. DL is better positioned in applications that require precision, such 
as real-time monitoring and post-operative scan interpretation, because of its high-
quality visual analysis. However, the complexity and resource demands of DL can limit 
its accessibility, particularly in resource-constrained contexts. ML is significantly easier 
to employ because it uses less complex and less expensive software and hardware and 
requires less data.

Overall, ML and DL could be useful in detecting and diagnosing RSIs, each with its 
unique set of strengths. The decision between them should be based on the nature of 
the task, the availability of resources, and the desired output. An ideal approach might 
involve leveraging the strengths of the two techniques to provide a holistic solution to 
enhance surgical safety and patient care.

Future directions on RSI occurrence minimization
Data integration and connectivity

Reducing the occurrence of RSIs requires the use of cutting-edge technologies. This 
undertaking requires connectivity and data integration. Centralized data platforms can 
be built up to aggregate data from various sources in the surgical setting, such as inven-
tory management systems, electronic health records (EHR), and surgical team com-
munications. This complete integration provides a comprehensive view of the surgical 
operation, allowing for real-time monitoring and analysis. Furthermore, the integration 
of Medical Internet of Things (MIoT) devices creates a connected network that offers 
real-time information about surgical items.
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Blockchain technology

Blockchain technology can significantly minimize RSI incidence. By exploiting its 
inherent properties of transparency and unchanging recording, it is possible to ensure 
unchangeable documentation of each stage of the surgical operation. Some parts of the 
counting process can be automated using smart contracts, which are programmable 
blockchain components. Smart contracts, for example, can send out alerts or alarms if 
variations in the surgical item count are discovered.

Computer vision and image recognition

The combination of image recognition and computer vision technology holds a lot of 
promise for RSI prevention. Automated count verification is possible with computer 
vision systems that analyze visual data in real-time and cross-reference it with pre-sur-
gical checklists to ensure all objects are appropriately retrieved. Identifying and classify-
ing sponges and surgical instruments can be taught to object recognition algorithms, 
which will build a visual database for cross-referencing and validation while performing 
surgery.

Augmented reality

Augmented Reality (AR) stands out as a transformative technology in the context of RSI 
prevention. AR overlays can provide real-time visual cues to surgical teams regarding 
the location and status of instruments. For example, AR can highlight missing items or 
offer a digital checklist that updates dynamically as instruments are used and accounted 
for. Moreover, AR can be employed for remote expert assistance during surgeries, allow-
ing experts to view the surgical field and provide guidance, including double-checking 
instrument counts through a virtual interface.

Conclusion
RSIs, objects inadvertently left within patients’ post-surgery, pose significant risks to 
patient safety, healthcare professionals, and institutions. Per 1,000 abdominal surgeries, 
there are approximately 0.3 to 1.0 occurrences of retained surgical objects [2]. Patients in 
such situations face serious consequences, such as infections, organ damage, prolonged 
hospitalization, and, in some cases, fatal outcomes. Given the limitations of current RSI 
prevention methods like radiography and manual counting, there is growing interest in 
advanced solutions such as ML and DL. Although research on these advanced solutions 
has produced promising results, the potential of this technology requires more explora-
tion. This paper underscores the significance of integrating multiple RSI prevention and 
diagnosis approaches into a comprehensive strategy for optimal results. The evaluation 
explores cutting-edge medical technology improvements. It investigates the potential for 
proactive diagnosis and prevention of RSIs using DL and ML. DL and ML algorithms 
can efficiently analyze vast amounts of data to identify patterns related to RSIs, reducing 
the need for extensive human intervention, and enhancing precision. Once trained on 
diverse datasets, these models offer highly accurate RSI prevention, ultimately improv-
ing surgical outcomes and patient safety.

Leveraging advanced technology represents a promising strategy to mitigate the 
occurrence of RSIs, a critical concern in healthcare. Future directions in this field 
encompass developing real-time intraoperative monitoring systems, refining AI models 
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to enhance accuracy, and exploring cutting-edge technologies to assist surgical teams 
in preventing RSIs. As technology continues to advance, there is a substantial poten-
tial to significantly reduce the occurrence of RSIs, enhancing patient safety and elevating 
the standard of surgical care. The fusion of emerging technologies with the current ones 
such as ML and DL presents an innovative solution to the pressing issue of RSIs, illus-
trating the healthcare industry’s commitment to using innovation to create safer, more 
efficient, and patient-centric surgical environments.
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