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Physical networks as network-of-networks

Gábor Pete 1,2 , Ádám Timár1,3, Sigurdur Örn Stefánsson3,
Ivan Bonamassa 4 & Márton Pósfai 4

Physical networks are made of nodes and links that are physical objects
embedded in a geometric space. Understanding how the mutual volume
exclusion between these elements affects the structure and function of phy-
sical networks calls for a suitable generalization of network theory. Here, we
introduce a network-of-networks framework where we describe the shape of
each extended physical node as a network embedded in space and these
networks are bound together by physical links. Relying on this representation,
we introduce a minimal model of network growth and we show for a general
class of physical networks that volume exclusion induces heterogeneity in
both node volume and degree, with the two becoming correlated. These
emergent properties strongly affect the dynamics on physical networks: by
calculating their Laplacian spectrum as a function of the coupling strength
between the nodeswe show that degree-volume correlations suppress the role
of hubs as early spreaders in diffusive dynamics. We apply the network-of-
networks framework to describe several real systems and find properties
analog to the minimal model networks. The prevalence of these properties
points towards general growth mechanisms that do not depend on the spe-
cifics of the systems.

The building blocks of physical networks are extended objects that do
not intersect each other, resulting in non-trivial geometric layouts1,
link entanglement2 and emergent correlations between physical and
network structure3. Yet, these works model nodes as localized spheres
connected by extended tube-like links, an assumption that does not
necessarily reflect the structure of most real-world physical networks.
In the connectome, for example, nodes represent neurons with non-
trivial dendritic shapes, and links are point-like synapses4. A similar
picture emerges for molecular networks such as the cytoskeleton,
mitochondrial networks, or fiber materials, where nodes are extended
molecular strands and bonds between them are localized5–7, as well as
in thewood-wide-web, where extended tree roots andmycelia connect
to form a complex underground network8,9. Therefore, the sphere-
tubeparadigmoften falls short of describing physical networks, calling
for a more general framework to cope with the complex shape of
nodes and links.

In this work, we develop a network-of-networks representation of
physical networks that is able to capture arbitrary node shapes10,11 and

allows us to characterize both structural and dynamical properties of
networks. Relying on the network-of-networks framework, we intro-
duce a model that grows physical networks from fractal segments.
Analytically solving the model, we show that physicality induces het-
erogeneity in both the physical and the network properties of the
nodes and that the twobecome strongly correlated. Thesecorrelations
also affect the dynamics on the networks: generalizing the combina-
torial Laplacian to physical networks12–14, we show that fast dynamical
modes associated to hubs (and corresponding to the tail of the
Laplacian spectra) are suppressed by the emergent correlations
between node volume and degree. The usefulness of themathematical
tools we develop in this paper goes beyond the specifics of themodel,
and we demonstrate this by applying our framework to several real
physical networks, including a recently collected data set describing
more than ~ 20, 000 neurons of the adult fruit fly’s brain15. In doing so,
we identify positive node degree-volume correlations similar to our
minimal growth model, and we show that these have an analog effect
on the Laplacian spectrum of the connectome. The fact that degree-
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volumecorrelations emerge in aminimalmodel while also prevalent in
real systems suggests a general mechanism behind such correlations
that does not depend on the complex details of the growth of real
networks.

Results
Network-of-networks representation
We aim to describe physical networks embedded in some substrate or
medium. In its most general form, the substrate is represented by a
graph S, and each physical node i is an extended object occupying a
subgraph V i � S. To capture volume exclusion, we do not allow nodes
to overlap, i.e., V i \ V j =+ for i ≠ j. Two nodes i and jmay form a link
(i, j) if they occupy adjacent sites in S. The physical layout P of the
network is a network-of-networks, i.e., it is the union of physical nodes,
where each node is a network itself, together with the bonds forming
the connections between the nodes (Fig. 1a). The layout P is a physical
realization of the combinatorial network G, where node i of G corre-
sponds to the physical nodeVi, and nodes i and j are connected if there
is a bond between V i and V j in P (Fig. 1b). Though the substrate S can
represent any available space, here we focus on substrates that are d
dimensional cubic lattices with linear size L and periodic boundary
conditions. Note that network representations of this kind are
employed in the graph drawing literature with the focus on algorithms
that embed a given combinatorial network into S16. Here, we are
interested in physical networks P growing in S, the emergent relation
between P and G, and its consequences on the dynamics on the
network.

Network growth
To study the effect of physicality on network evolution, we define a
model of network growth relying on the network-of-networks repre-
sentation.We startwith an emptyS andweplace a single physical node
V0 occupying a subset of the sites. We add the rest of the nodes
iteratively: At time step t we add a new node Vt that is seeded at a
random unoccupied site and grows until it hits an already existing
node Vs and a link (t − s) is formed. The growth of node Vt is driven by
some random or deterministic process; and we assume that the phy-
sical nodes are characterized by a fractal dimension df∈ [1, d]17,18. We
add N physical nodes or until all of S is occupied; in the latter case we
call the physical network saturated.

Since the total volume of the network increases over time, later
nodes hit the network at higher rates, and the typical size of nodes
decreases. Hence, we expect that nodes added early have a higher
degree than nodes added in the final stages of the network evolution,
both because they are larger and they have more time to collect con-
nections. This suggests that to analytically characterize the evolution

of the physical network two ingredients have to be considered: (i)
network growth, i.e., nodes are added sequentially to the system and
(ii) externally limited node growth, i.e., the nodes grow until they hit
the already existing network. We show that these two ingredients lead
to the emergence of power law combinatorial networks with degree
exponents γ≤3.

We start the analytical treatment of the model by estimating the
probability pij that two randomly placed physical nodes Vi and V j

intersect. If the two boxes containing the physical nodes have side
length li≫ lj, respectively, and the larger node V i intersects the box
containing the smaller node V j, then, by dimension count, the two
nodes overlapwith positive probability if df≥d/2. We can tile the lattice
with ðL=ljÞd boxes with side length lj, and the number of such boxes
intersected by V i is ∼ ðli=ljÞdf . Therefore the intersection probability is

pij ∼
ldf
i ld�df

j

Ld
∼

viv
d=df�1
j

Ld
, ð1Þ

where vi = jVij∼ ldf
i is the volume of node i. If, however, df < d/2 and

lj≤li≪ L, then the nodes avoid each other with high probability. In this
case, the intersection probability will have the meanfield behavior,
well-approximated by the probability of selecting the sites of V i and V j

uniformly from S, i.e., pMF
ij ∼ vivj=L

d , which is independent of df and
agrees with Eq. (1) for df = d/2.

Using the same box-counting argument that led to Eq. (1), the
probability that a node added at time t intersects any existingnode s < t
is approximately given by

P
s<tpst = v

d=df�1
t V t�1=L

d , where Vt−1 is the
total volume of nodes s < t. A key observation is that the size of node t
increases until it hits the existing network, meaning that vt increases
until ∑s<tpst ≈ 1, allowing us to estimate the volume of node t as

vt≈ Vt�1=L
d

� �� df
d�df : ð2Þ

Equation (2) allows us to express the evolution of the expected
total volume via the recursion Vt+1 = vt+1 +Vt with initial condition
V0 = v0. Using a continuous time approximation, we obtain

Vt≈L
d d

d � df

t + c

Ld

� �d�df
d

∼ Ld
t

Ld

� �1�df=d

, ð3Þ

where c is a constant depending on v0. A natural choice for the latter is
that the first node spans the entire available space, i.e., v0 ∼ Ldf , in
which case c is independent of L. Equation (3) predicts that Nsat, the
number of nodes when the network saturates, scales as Nsat ~ Ld,
meaning that the average node volume 〈v〉 remains constant in the
L→∞ large system limit. Therefore, the physical layout P is optimal in
the sense that no physical representation of a combinatorial network
of Nsat nodes can fit into a smaller volume than ~Nsat ~ Ld. It is note-
worthy that the model achieves this bound despite the fact that the
nodes grow randomly.

In light of Eq. (3), we can now calculate the expected degree of the
physical nodes in the combinatorial network G. In the continuous time
approximation, the volume of the newly added node vt is provided by

the time derivative of Vt, i.e., vt ∼ t=Ld
� ��df=d

. Hence, following Eq. (1),

the expected degree of node t after the addition of N nodes is

ktðNÞ= 1 +
vt
Ld

XN

s = t + 1
vd=df�1
s ∼ vt �

N

Ld

� � d
df
, ð4Þ

where the proportionality is valid for t≪N. Thismeans that the volume
occupied by large nodes (i.e., nodes that were added early) in the
physical layout is proportional to their degree in the combinatorial
network.

Fig. 1 | Network-of-networks representation. a Each physical node V i is a sub-
graph of the substrate S. Physical nodes cannot overlap, i.e., V i \ V j =+ for i ≠ j.
The physical layout P (dashed area) is a network-of-networks: it is the union of
physical nodes V i together with the bonds connecting them. b The combinatorial
network G is a coarse-grained representation of P capturing the connections
between the nodes without the physical structure.
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We finally calculate the complementary cumulative degree dis-
tribution PðkÞ= 1� 1

N

PN
t:kt ≥ k

1, finding that P(k) ~ k−(γ−1) with exponent

γ = 1 +
d
df

: ð5Þ

For df≤d < 2df the degree exponent falls in the range 2≤γ < 3. In
the mean-field regime, the degree exponent can be obtained by
substituting d/df with 2, yielding γMF = 3. Note that the upper critical
dimension of the physical network depends on the kinetic growth of
the nodes. For example, growing nodes along a straight trajectory in a
random direction generates nodes with df = 1; therefore, the networks
fall in the mean-field regime df≤d/2 even for embedding dimen-
sion d = 2.

In the above model, each physical node grows starting from a
random location following some growth process. We stress that our
calculations hold for a general class of node growth algorithms, the
crucial assumption being that if the boxes around two random walk
pieces intersect, then with uniformly positive probability the trajec-
tories also intersect, which implies a level of isotropy of node growth.
As a counterexample, consider nodes that always grow inonedirection
along one of the axes. Such nodes will run parallel to each other,
avoiding intersection, hence the resulting network will be a collection
of disconnected chains. If, however, the nodes grow along straight
lines but in random directions, thus restoring isotropy on average,
then the resulting network has a power law degree distribution (SI
Sec. S1.4).

Numerical simulations
To test our analytical predictions, we numerically generate physical
networks where nodes grow according to random walk trajectories.
Specifically, we generate nodes using loop-erased random walks
(LERWs), i.e., a trajectory that evolves asa simple randomwalk inwhich
any loop is erased as soon as it is formed19–22. Here, we focus on the
LERW, as it represents a tractable model ofnon-self-intersecting ran-
dom trajectories with well-understood non-trivial critical properties.
Its critical properties are studied both in the mathematics and physics
literature23–26; for example, their fractal dimension in d = 2 is df = 5/422,
in d = 3 it is df≃ 1.6236(4)27,28, while its upper critical dimension is du = 4
where df = 2 with a logarithmic correction29. (See “METHODS” for fur-
ther details.)We remark that our predictions are not specific to LERWs,
in Sec. S1 of the Supplementary Information, we study various alter-
native growth processes.

Knowing the fractal dimensions of LERWs allows us to directly
verify the predictions of Eqs. (3)–(5):

Volume evolution. Equation (3) predicts that the total volume of the
physical network evolves as Vt ∼ t1�df=d . Figure 2a shows the excellent
agreement between the theoretical predictions and numerical simu-
lations. Note that, as expected, in the mean-field regime d≥4 the net-
work volume follows the classic diffusion growth Vt ~ t1/2. Figure 2b
further corroborates the predicted scaling of the number of nodes at
saturation, i.e., Nsat ~ Ld.

Degree-volume correlations. A second prediction is the emergence
of degree-volume correlations, capturing the interplay between the
physical layout P and the combinatorial network G. In particular, Eq.
(4) predicts a linear proportionality between the node volume vi and
degree ki, and we again find excellent agreement with simulations for
all the tested dimensions (Fig. 2c).

Power law emergence. As a final test, we verify the emergence of
power law scaling in the degree distribution of the combinatorial
networks G. As anticipated in Eq. (5), the degree exponent depends on
both the dimensionality of the embedding substrate, d, and the fractal
dimensionof thenodes,df. Figure 2d shows that numerical simulations
confirm the predicted degree exponent γ = 1 + d/df for dimensions
d < 4, while the mean-field exponent γMF = 3 is found for d≥4. In tra-
ditional models of combinatorial networks, heterogeneity typically
arises from preferential attachment or some other optimization pro-
cess. Our model is based on random growth without any explicit
preference to create highly connected nodes; therefore, the uniform
attachment treemay be considered as the non-physical counterpart of
our model. Uniform attachment yields exponential degree distribu-
tion, hence the power law distribution observed here is a direct con-
sequence of volume exclusion, which, together with the dynamic
network growth, induces effective preferential attachment.

Physical network Laplacian
The layout P is a physical realization of the combinatorial network G.
Traditional studies of dynamics on physical networks ignore the layout
P and focus only on the role of G, thus prompting the question: does
modeling dynamics on G accurately capture dynamics on physical
networks? To explore this, we study the spectral properties of P and
show that physical nodes emerge as functional units through timescale
separation, yet even in this limit the structure of P continues to affect
the dynamics.We focus on the Laplacian spectrum12 since it influences
the behavior of several dynamical processes on networks30 including
diffusion31,32, synchronization33 and it underlies thedefinitionof several
information-theoretic tools to analyze the multiscale functioning of
networks10,14,34–37.

Fig. 2 | Evolution of LERW physical networks. a The temporal evolution of the
total volume Vt of physical networks, dashed lines represent the theoretical pre-
diction Eq. (3). Networks built from LERWs in dimensions d≥4 fall into the mean-
field regime. b The number of physical nodes in the saturated networks is pro-
portional to the volume of the substrate jSj irrespective of df and d. cNode degree
is proportional to node volume independently from df and d. d The com-
plementary cumulative degree distribution function (CCDF) of the physical

networks. Dashed lines indicate the predicteddegree exponent γ = 1 + d/df≤3, while
the dotted line corresponds to the mean-field behaviour, γMF = 3. Plots (a), (c) and
(d) represent measurements of single networks with initial condition v0 = L

df and
jSj= 106. In (b) markers are an average of 10 independent networks, error bars
represent the standard error of the mean. Lines corresponding to different slopes
are shifted to increase readability.
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We study the problem by invoking, once again, the network-of-
networks representation. In our setup, we assign a weight to each
connection inP such that linkswithinphysical nodes haveweight 1 and
links connecting two physical nodes have weight w, capturing that in
real physical networks bonds between nodes are often qualitatively
different than those within nodes. The weighted Laplacianmatrix of P
occupying V sites is thenQP =DP � AP , whereAP is the V × Vweighted
adjacency matrix and DP is a diagonal matrix such that
½DP �ss =

P
u½AP �su is the sumof theweights of the links adjacent to site s

in P. If we now setw =0, the network-of-networks falls apart and each
physical node becomes a separate connected component, resulting in
a block-diagonal Laplacian QPð0Þ=diagðQV1

,QV2
, . . . ,QVN

Þ, where QVi

is the Laplacianof the physical nodeV i. The LaplacianQPð0Þ hasN zero
eigenvalues corresponding to the N blocks (i.e., the physical nodes),
hence we can assign an eigenvector ui(w = 0) to the i-th node such that
½uið0Þ�s = 1=

ffiffiffiffi
vi

p
if site s is within node i, otherwise ½uið0Þ�s =0, where

vi = jVij is the volume of node i. Since linear combinations of these
vectors are also eigenvectors, we canwrite the zero eigenvectors ofQP
as uð0Þ=M~u, where M is the N ×V membership matrix such that
½M�si = 1=

ffiffiffiffi
vi

p
if site s is part of node i, otherwise [M]si =0, and ~u is any

normalized N dimensional vector.
We can gain insights about the spectral properties of QP by

working in theweak coupling regimew≪ 1 and relying onperturbation

theory. Following a treatment similar to the one adopted to study
diffusion in multilayer networks38–40, we consider w a small perturba-
tion and writeQPðwÞ=QPð0Þ+wQ0

P , whereQ0
P is the Laplacian matrix

of the subnetwork of P formed by the bonds between physical nodes.
The characteristic equation, up to first order in w, becomes then

QPð0Þ+ wQ0
P

	 

uð0Þ+wu0ð Þ

≈ λð0Þ+wλ0
	 


uð0Þ+wu0ð Þ: ð6Þ

Perturbations around λ(0) = 0 lead to N eigenvalues that are OðwÞ,
while the rest of the eigenvalues are constant in leading order (Fig. 3a).
This means that on the 1/w timescale, diffusion-like dynamics on the
physical network are captured by the N slow eigenmodes. We obtain
these from Eq. (6) (see “METHODS”), yielding

V�1=2QGV
�1=2~u= λ0~u, ð7Þ

whereQG is the N ×N Laplacianmatrix of the combinatorial network G
and V is an N ×N diagonal matrix such that its diagonal elements are
[V]ii = vi. We call the volume-normalized Laplacian the physical
network Laplacian Qphys =V

�1=2QGV
�1=2.

Equation (7) is a key relation for understanding the dynamics on
physical networks since it allows to characterize the dynamics onP on

Fig. 3 | Laplacian of LERW physical networks. a For decreasing weight w the
eigenvalues of QP separate into two groups: eigenvalues corresponding to the
zero eigenmodes of QP ðw=0Þ decay as ~w (blue), while the rest converge to a
constant value (teal). (b–d) Comparing the spectrum of the physical Laplacian
Qphys =V

�1=2QGV
�1=2, the randomized physical LaplacianQrand

phys =V
�1=2
randQGV

�1=2
rand , and

the Laplacian of the combinatorial network QG. b, c The heterogeneous node

volume distribution and the correlation between node degree and volume sig-
nificantly reduce the largest eigenvalues of the spectra. d Heterogeneous node
volumes alone explain the reduction of the algebraic connectivity λ2. Eigenvalues
are calculated for d = 2 and L = 10 in (a) and L = 100 in (b). In (c) and (d) markers are
an average of 10 independent networks, error bars represent the standard error of
the mean.
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the timescale 1/w in a coarse-grainedway: after integrating out the fast
modes corresponding to eigenvalues λ(w)≫w, the state of each phy-
sical node V i is given by a single variable, while the coupling between
the nodes is provided by the combinatorial network G. However, the
combinatorial Laplacian QG is not sufficient to capture the dynamics,
and we must normalize QG by the volume of the nodes, as shown in
Eq. (7). Thismeans that physical networkswith the samecombinatorial
network but different layout can have drastically different dynamical
properties. For example, if nodes have approximately the same size,
i.e., vi ≈V/N, then the physical layout only affects the overall timescale,
otherwise the Laplacian spectrum is determined by QG. If, however,
node sizes are heterogeneously distributed, normalizing by volume
will also have a heterogeneous effect on the eigenvalues.

Application to the physical network growth model. We showed
above that physical networks generated by our network growthmodel
are characterized by heterogeneous node-volume distribution and
proportionality between the degree and the volume of nodes (Fig. 2).
To probe the effect of this emergent correlation,we shuffle the volume
of the nodes of a LERW physical network to remove the correlation
between network and physical structure. We then compare the spec-
trum of the volume-normalized Laplacian Qphys =V

�1=2QGV
�1=2 to its

randomized version Qrand
phys =V

�1=2
randQGV

�1=2
rand and to the Laplacian spec-

trum of the combinatorial network QG. Figure 3b shows that the
spectrum ofQG has a heavy tail characterized by the same γ exponent
of Eq. (5), as expected for combinatorial networks with power law
degree distributions12. Adding heterogeneous but uncorrelated node
sizes does not influence the tail while taking into account the degree-
volume correlation of nodes removes the heavy tail and leads to a
rapidly decaying spectrum. In power law networks, the eigenvector
corresponding to the largest eigenvalue λN of QG is typically con-
centrated on the node with the largest degree41,42. In our model, the
largest degree node also has the largest volume; therefore normalizing
by node volume V�1=2QGV

�1=2 significantly lowers λN. Since node sizes
are heterogeneously distributed, with high probability, we associate
volume ~ 1 to the highest degree node after randomization. Hence, the
eigenvalue λN of QG is largely unaffected by the randomized normal-
ization (Fig. 3c). At the other end of the spectrum, controlling the long-
time mixing of the dynamics, the eigenvector associated with the
algebraic connectivity λ2 typically spans the entire network. Figure 3d
shows that taking node volumes into account slows the dynamics
down; however, degree-volume correlations do not significantly
affect λ2.

Note that positive degree-volume correlations, responsible for
the suppression of the tail of the Laplacian spectrum, naturally arise in
minimum-volumephysical realizations of combinatorial networks. Any
combinatorial network G has many possible physical realizations P, a
minimum volume realization is a P that minimizes the total volume of
the network. Consider node i 2 G with degree ki; in any possible P, the
physical realization of node imusthave volumeat leastproportional to
ki, otherwise it is unable to support ki connections. Therefore, we
expect positive degree-volume correlations in minimum-volume phy-
sical layouts. Thismeans that any physical network generation process
that minimizes total volume – either explicitly or as an emergent
property, like in our model – is characterized by positive degree-
volume correlations and hence that the spectrum of Qphys is similarly
affected by physicality as in our model.

Real physical networks
We identified the degree-volume correlations and the profile of the
Laplacian spectrum as important features of physical networks that
can emerge even in the simplestmodels. Tomeasure these properties,
we do not need a detailed description of the layout of a physical sys-
tem – we only need the combinatorial network and a list of the node
volumes, allowing us to describe very large and complex physical

networks. As a case study, we investigate a recently published data set
providing the three-dimensional layout of more than 20,000 neurons
of the brain of an adult fruit fly and the locationofmore than 13million
synapses connecting them (Fig. 4a)15. Although our simple growth
model does not attempt to capture the myriad of complex mechan-
isms shaping brain development, we find that the fruit fly brain is
characterized by similar emergent properties as the model networks.
Figure 4b shows, for example, that the multiplicity-weighted node
degree, i.e., the number of synapses a neuron has, can be approxi-
mated by a power law γff ≈ 2.3, albeit with an exponential cutoff43,44.We
also find a strong positive correlation between the weighted degree
and the volume of the nodes (Fig. 4c).

To compare the spectrum of the combinatorial LaplacianQG and
the physical network Laplacian Qphys =V

�1=2QGV
�1=2, we measure

volume in units such that the mean node volume is unity, i.e., 〈v〉 = 1
(see “METHODS” for further details). Calculating the leading eigenva-
lues ofQG andQphys, wefind that λGN=λ

phys
N ≈32:7, indicating that degree-

volume correlations greatly suppress the modes of the dynamics that
spread the fastest, similarly to model networks. This is further sup-
ported by Fig. 4d, showing again that physicality suppresses the tail of
the spectrum.

To further probe the role of degree-volume correlations, we cal-
culate the leading eigenvectors ~uN of QG and Qphys. Figure 4e, g show
that, as expected for heterogeneous combinatorial networks, ~uG

N is
concentrated on the largest hub iG in the network, and the weight of
the eigenvector decays exponentially as the geodesic distance from iG
in G. This means that, without taking physicality into account, the
largest degree node is also the earliest spreader of diffusive dynamics.
For the physical Laplacian Qphys we find a different picture: ~uphys

N is
again concentrated on a single node iphys; this node, however, is not
the largest hub. The leading eigenvector instead is centered on a node
that balances high degree and low volume: node iphys is the 159th
largest degree node and is at the top 15 percentile of the volume dis-
tribution. In fact, node iphys is the node that maximizes the degree-
volume ratio, i.e., iphys = argmaxiki/vi. This means that degree-volume
correlations not only slow down spreading dynamics in physical net-
works, but also change the identity of the early spreaders.

Here we chose to focus on the fruit fly brain network as it repre-
sents one of the largest and most detailed maps of physical networks
available; however, our framework is not specific to neural networks. In
the Sec. S2 of the Supplementary Information, we analyze four addi-
tional real systems: a network describing the cavities of a porous
material, a neural network of a nematode, a river network, and a vas-
cular network. In each case, we find positive degree-volume correla-
tions and that these correlations suppress the tail of the Laplacian
spectra. The fact that the physical and network properties of nodes
become intertwined in such a diverse set of real networks, and also in
the simplest models, indicates a general mechanism behind the
emergence of degree-volume correlations that do not depend on the
details of the individual networks.

Discussion
Physical networks are complex networks that have a complex three-
dimensional layout. The network-of-networks framework naturally
lends itself to representing these systems: representing nodes as
physically embedded networks allows us to capture arbitrary node
shapes and complex wiring. Here, we relied on the network-of-
networks framework to characterize both model and real physical
networks. We identified correlations between node degree and
volume as a prevalent feature of physical networks: We analytically
showed that degree-volume correlations emerge in aminimal network
growth model, in fact, we provided arguments that such correlations
naturally arise through any growth process that minimizes network
volume. We also showed that positive degree-volume correlations are
generally present in real systems. These correlations have important
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consequences on dynamics unfolding on physical networks: the tail of
the physical Laplacian spectrum is suppressed by the large volume of
hubs. More broadly, these results vividly demonstrate that traditional
methods of network science focusing on combinatorial networks
cannot fully describe physical networks and that their three-
dimensional layout must be accounted for.

Our work opens new avenues for physical network research in
several ways. First, by establishing the connection between physical
networks and network-of-networks, we allow future work to leverage
the rich literature of multi-layer networks to characterize physical
systems10,11. For example, multi-layer centrality measures can be used
to quantify the importance of physical nodes45–47. Second, previous
work on physical networks relies on methods that require a full
description of their spatial layout and, therefore, are often limited to
systems of a few hundred nodes1–3. In contrast, the quantities we
studied can be measured relying on the combinatorial network and a
list of node volumes, allowing the characterization of large-scale
physical networks without the need of the full three-dimensional lay-
out. For example, we can tune the volume of the nodes to system-
atically study how physical layout affects the Laplacian spectrum.
Finally, the simple growth model and its analytical description can
serve as the starting point for the exploration of additional growth
mechanisms that characterize neural networks and other physical
networks. For example, future work may study branched nodes, long-
range interactions that guide the growth of physical nodes, or the
expansion of available space by modeling the evolution of the
underlying substrate.

Methods
Loop-erased random walks
In our network growth model, we can generate physical nodes with
any stochastic or deterministic process that produces a growing
fractal embedded in Zd . Standard self-avoiding walks are tradition-
ally used to model polymers obeying volume exclusion and, there-
fore, represent a natural choice to model node growth17. However,
the naïve kinetic version of the self-avoiding walk traps itself in two
and three dimensions at finite length21, making it a poor candidate for
constructing large physical networks. Instead, we focus on loop-
erased random walks (LERW): a LERW evolves as a simple random
walk, except when it intersects itself, we delete the loop that it cre-
ated and continue the walk20. This guarantees that the final physical
node does not intersect itself and that the walk never gets trapped.
Alternatively, the LERW can be defined as a special case of Laplacian-
random walks, where transition probabilities are defined by a har-
monic function48,49. This alternative construction does not require
deleting loops, hence is more realistic as a growth model. The
LERW has attractive mathematical properties making it amenable
to analytical treatment. For example, Wilson’s algorithm uses itera-
tive LERWs to construct a uniform spanning tree (UST) of any
graph24. In fact, the physical network our algorithm constructs is a
UST of the S substrate together with a partition identifying
the nodes. Future work may exploit this connection between USTs
and LERW physical networks, together with known results in
dimensions d = 2 and d > 422,50, to rigorously prove some of the results
presented here.

Fig. 4 | Fruit fly brain network. a The neurons have complex three-dimensional
shapes. Two intertwined neurons (teal and yellow) are connected by synapses (red
circles). b The tail of the weighted degree distribution can be approximated with
the power law with γff≈ 2.3 with an exponential cutoff. c Similar to the network
growthmodel, the volume of the nodes v is strongly correlated with their degree k.
The markers indicate binned degree-volume averages, where the data points are
binned based on node volume. The shading represents a kernel density estimate of
the joint v-k distribution, the dashed line indicates the least squares fit of the power
law scaling. d The effect of the node degree-volume correlation on the Laplacian
spectrum in the brain network is analog to the effect of correlations in the network
growthmodel. The spectra ofQphys andQrand

phys are shifted to the right to allow direct

comparison of the tails of the distributions. e, f A visualization of the leading
eigenvectors ~uN of the combinatorial and physical Laplacians. The color of each
node i corresponds to j~uN ðiÞj, the weight of the leading eigenvector at node i, and
the size of the nodes is a linear function of their degree. (e) The eigenvector ~uG

N is
concentrated on the node with the highest degree iG. f Due to degree-volume
correlations, the ~uphys

N is concentrated on node iphys, which has the maximum
degree-volume ratio in the network.gTheweight of the leading eigenvectors j~uG

N ðiÞj
and j~uphys

N ðiÞj decays exponentially as a function of the geodesic distance from iG
and iphys, respectively. Error bars indicate the standard error of the mean and are
typically smaller than the marker size. Node locations in (e) and (f) are generated
based on G, and do not correspond to the actual physical locations.
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Perturbation of the physical Laplacian
To obtain the slow eigenmodes, we match the first-order terms of Eq.
(6) and substitute uð0Þ=M~u, so that

QPð0Þu0 +Q0
PM~u= λ0M~u: ð8Þ

Multiplying from the left by the transposeof themembershipmatrixM
we get

MTQPð0Þu0 +MTQ0
PM~u= λ0MTM~u: ð9Þ

The ith row ofMT is the trivial eigenvector ui(w =0) corresponding to
physical node i; therefore MTQPð0Þ is all zeros and MTM is the N ×N
identity matrix, leading to Eq. (7) in the text.

The fruit fly connectome
We study the Hemibrain data set, which describes a portion of the
central brain of the fruit fly, Drosophila melanogaster15. The physical
layout of the connectome is provided by the detailed three-
dimensional shape of each neuron and the location of the synapses
between them. The corresponding combinatorial network contains
21,662 nodes representing neurons and 13,603,750 links representing
synapses. Synaptic partners are connected through approximately
5 synapses on average, and themaximumnumberof synapses between
two neurons is 6039. In our calculations, we treat the combinatorial
network as a weighted and undirected network, where the weight of
the link (i, j) is equal to the number of synapses between neurons i and
j. Note that we only require the combinatorial network and the volume
of each node for our calculations; therefore, the detailed physical
layout of the connectome is, in fact, not needed.

Note that the Hemibrain data set covers a large portion of, but
not the entire, fruit fly brain. Since degree and volume are local
properties of the nodes, we expect that the results presented here
would not change significantly if the entire connectome were to be
considered.

Degreedistribution.We find that theweighted degree distribution has
a heavy tail, which can be approximated by a power lawwith γff ≈ 2.3 for
degrees ≥1058 with an exponential cutoff; the power law fit, however,
cannot be distinguished from a lognormal fit on the same range43,44.

Laplacian spectrum. Comparing the spectrum of the combinatorial
Laplacian QG and the volume-normalized Laplacian Qphys =V

�1=2QG
V�1=2 carries a level of ambiguity: QG does not depend on the node
volumes, while changing the unit of volume multiplies the spectrum
of Qphys by a constant. To meaningfully compare the two spectra, (i)
we think of QG as a physical Laplacian where all nodes have
unit volume, and (ii) we set the mean node volume in Qphys to unity,
i.e., 〈v〉 = 1. With this choice of units, any difference in the eigenvalues
is due to the heterogeneous distribution of node volumes in the
physical network and not to a global shift caused by the choice
of units.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data to reproduce the figures is available at https://github.com/
posfaim/physnets_as_net-o-nets.

Code availability
Code to generate random networks and reproduce the figures is
available at https://github.com/posfaim/physnets_as_net-o-nets51.
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