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Embodied neuromorphic intelligence

Chiara Bartolozzi 1'3@, Giacomo Indiveri® 23 & Elisa Donati%3

The design of robots that interact autonomously with the environment and exhibit complex
behaviours is an open challenge that can benefit from understanding what makes living
beings fit to act in the world. Neuromorphic engineering studies neural computational prin-
ciples to develop technologies that can provide a computing substrate for building compact
and low-power processing systems. We discuss why endowing robots with neuromorphic
technologies - from perception to motor control - represents a promising approach for the
creation of robots which can seamlessly integrate in society. We present initial attempts in
this direction, highlight open challenges, and propose actions required to overcome current
limitations.

Opportunities and challenges

euromorphic circuits and sensorimotor architectures represent a key enabling technology

for the development of a unique generation of autonomous agents endowed with

embodied neuromorphic intelligence. We define intelligence as the ability to efficiently
interact with the environment, to plan adequate behaviour based on the correct interpretation of
sensory signals and internal states, for accomplishing its goals, to learn and predict the effects of
its actions, and to continuously adapt to changes in unconstrained scenarios. Ultimately,
embodied intelligence allows the robot to interact swiftly with the environment in a wide range
of conditions and tasks!. Doing this “efficiently” means performing robust processing of
information with minimal use of resources such as power, memory and area, while coping with
noise, variability, and uncertainty. These requirements entail finding solutions which improve
performance and increase robustness in a way that is different from the standard engineering
approach of adding general purpose computing resources, redundancy, and control structures in
the system.

Current progress in both machine learning and computational neuroscience is producing
impressive results in Artificial Intelligence (AI)2~4. However, conventional computing and robotic
technologies are still far from performing as well as humans or other animals in tasks that require
embodied intelligence!>. Examples are spatial perception tasks for making long-term navigation
plans, coupled with fine motor control tasks that require fast reaction times, and adaptation to
external conditions. Within this context, a core requirement for producing intelligent behaviour is
the need to process data on multiple timescales. This multi-scale approach is needed to support
immediate perception analysis, hierarchical information extraction and memorisation of tem-
porally structured data for life-long learning, adaptation and memory reorganisation. While
conventional computing can implement processes on different timescales by means of high-
precision (e.g. 32-bit floating point) numerical parameters and long-term storage of data in

TEvent-Driven Perception for Robotics, Istituto Italiano di Tecnologia, via San Quirico 19D, 16163 Genova, Italy. 2 Institute of Neuroinformatics, University of
Zurich and ETH Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland. >These authors contributed equally: Chiara Bartolozzi, Giacomo Indiveri, Elisa Donati.
Mamail: chiara.bartolozzi@iit.it

| (2022)13:1024 | https://doi.org/10.1038/s41467-022-28487-2 | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28487-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28487-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28487-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28487-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28487-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28487-2&domain=pdf
http://orcid.org/0000-0003-3465-6449
http://orcid.org/0000-0003-3465-6449
http://orcid.org/0000-0003-3465-6449
http://orcid.org/0000-0003-3465-6449
http://orcid.org/0000-0003-3465-6449
http://orcid.org/0000-0002-7109-1689
http://orcid.org/0000-0002-7109-1689
http://orcid.org/0000-0002-7109-1689
http://orcid.org/0000-0002-7109-1689
http://orcid.org/0000-0002-7109-1689
mailto:chiara.bartolozzi@iit.it
www.nature.com/naturecommunications
www.nature.com/naturecommunications

PERSPECTIVE

external memory banks, this results in power consumption figures
and area/volume requirements of the corresponding computa-
tional substrate that are vastly worse than those of biological
neural networks®.

The neuromorphic engineering approach employs mixed-
signal analogue/digital hardware that supports the implementa-
tion of neural computational primitives inspired by biological
intelligence that are radically different from those used in classical
von Neumann architectures’. This approach provides energy-
efficient and compact solutions that can support the imple-
mentation of intelligence and its embodiment on robotic
platforms®. However, adopting this approach in robotics requires
overcoming several barriers that often discourage the research
community from following this promising avenue. The challenges
range from the system integration of full-custom neuromorphic
chips with sensors, conventional computing modules and motors,
to the “programming” of the neural processing systems integrated
on neuromorphic chips, up to the need for a principled frame-
work for implementing and combining computational primitives,
functions and operations in these devices using neural instead of
digital representations.

Both conventional and neuromorphic robotics face the chal-
lenge of developing robust and adaptive modules to solve a wide
range of tasks especially in applications in human-robot colla-
boration settings. Both will benefit from a framework designed to
combine such modules to deliver a truly autonomous artificial
agent. In this perspective, we discuss the current challenges of
robotics and neuromorphic technology, and suggest possible
research directions for overcoming current roadblocks and
enabling the construction of intelligent robotic systems of the
future, powered by neuromorphic technology.

Requirements for intelligent robots

Recent developments in machine learning, supported by
increasingly powerful and accessible computational resources, led
to impressive results in robotics-specific applications®~4. Never-
theless, except for the case of precisely calibrated robots per-
forming repetitive operations in controlled environments,
autonomous operations in natural settings are still challenging
due to the variability and unpredictability of the dynamic envir-
onments in which they act.

The interaction with uncontrolled environments and human
collaborators requires the ability to continuously infer, predict
and adapt to the state of the environment, of humans, and of the
robotic platform itself, as described in Box 1. Current machine
learning, deep networks, and AI methods for robotics are not

best suited for these types of scenarios and their use still has
critical roadblocks that hinder their full exploitation. These
methods typically require high computational (and power)
resources: for example deep networks have a very large number
of parameters, they need to be trained with very large datasets,
and require a large amount of training time, even when using
large Graphics Processing Unit (GPU) clusters. The datasets used
are mostly disembodied, while ideally, for robotic applications,
they would need to be tailored® and platform specific. This is
especially true for end-to-end reinforcement learning, where the
dataset depends on the robot plant and actuation. Data acqui-
sition and dataset creation are expensive and time consuming.
While virtual simulations can partially improve this aspect,
transfer learning techniques do not always solve the problem of
adapting pre-trained architectures to real-world applications.
Off-line training on large datasets with thousands of parameters
also implies the use of high performance, powerful but expensive
and power-hungry computing infrastructures. Inference suffers
less from this problem and can be run on less demanding,
embedded platforms, but at the cost of very limited or no
adaptation abilities, thus making the system brittle to real-world,
ever-changing scenarios!?.

The key requirements in robotics are hence to reduce or
possibly eliminate the need for data- and computation-hungry
algorithms, making efficient use of sensory data, and to develop
solutions for continuous online learning where robots can
acquire new knowledge by means of weak- or self-supervision.
An important step toward this goal is moving from static
(or frame-based) to dynamic (or event-based) computing
paradigms, able to generalise and adapt to different application
scenarios, users, robots, and goals.

Neuromorphic perception addresses these problems right from
the sensory acquisition level. It uses novel bio-inspired sensors
that efficiently encode sensory signals with asynchronous event-
based strategies!!. It also adopts computational primitives that
extract information from the events obtained from the sensors,
relying on a diverse set of spike-driven computing modules.

Neuromorphic behaviour follows control policies that adapt to
different environmental and operating conditions by integrating
multiple sensory inputs, using event-based computational pri-
mitives to accomplish a desired task.

Both neuromorphic perception and behaviour are based on
computational primitives that are derived from models of neural
circuits in biological brains and that are therefore very well suited
for being implemented using mixed signal analogue/digital
circuits!2, This offers an efficient technological substrate for
neuromorphic perception and actions in robotics. Examples are

Box 1 | The need for adaptation in robotics

While the majority of industrial robots are currently operating in controlled settings to execute programmable and repetitive actions, robotics research
is moving towards human-robot collaboration scenarios, where robots are expected to interact and collaborate with humans in uncontrolled
environments in daily tasks'33134, Different individuals’ behavioural and environmental physical conditions might change across days and tasks. The
ability of robots to adapt is hence crucial for functioning in the real world and interacting with humans'3>. In the majority of applications, including in
industry, the robot plant wears out over time, and the controller needs to adapt to changes on the plant characteristics over very long time scales. In
rehabilitation robotics, the controller needs to adapt to the progress of each individual during therapy as well as to different patients, requiring
adaptation both over long and short temporal scales'3®. In most interactive applications robots must also be able to react to sudden environmental
changes over short time scales, for example by switching to previously learned configurations. Unmanned autonomous robotic vehicles need to cope
with changes in the environment, such as wind strength and direction; humanoid and roving robots need to adapt to different types of terrains'3/;
artificial hands need to learn to manipulate objects of different weight and softness.

Biology provides a rich set of examples to address these needs, adapting to the changes described above'3813%. On short time scales, biological systems
can adapt away constant inputs with short-term plasticity mechanisms'49; for longer time scales, their sensors can adapt their sensitivity to the level of
the encoded signal (e.g., photoreceptors adapt to the global illumination level, to become more sensitive in dim illumination, or less sensitive under
direct sun light)'#1. On very long time scales, homoeostatic mechanisms regulate the overall neural activity to keep it within defined bounds, thus coping
with slow changes in the environment, or in the population's overall drive'42,
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2 JContext adaptation

Fig. 1 Robots with end-to-end neuromorphic intelligence. Some non
exhaustive examples of perception (magenta), intelligent behaviour (green)
up to action execution (blue) that would all be implemented by means of
dedicated Spiking Neural Network (SNN) hardware technology. iCub
picture ©IIT author Agnese Abrusci.

context-dependent cooperative and competitive information
processing, and learning and adaptation at multiple temporal
scales!314,

The development and integration of neuromorphic perception
and behaviour using hardware neuromorphic computational
primitives has the final goal of designing a robot with end-to-end
neuromorphic intelligence as shown in Fig. 1.

In the next sections, we present an overview of the neuro-
morphic perception, action planning, and cognitive processing
strategies, highlighting features and problems of the current state
of the art in these domains. We conclude with a road map and a
“call for action” to make progress in the field of embodied neu-
romorphic intelligence.

Neuromorphic perception. Robots typically include many sen-
sors that gather information about the external world, such as
cameras, microphones, pressure sensors (for touch), lidars, time-
of-flight sensors, temperature sensors, force-torque sensor,s or
proximity sensors. In conventional setups, all sensors measure
their corresponding physical signal and sample it at fixed tem-
poral intervals, irrespective of the state and dynamics of the signal
itself. They typically provide a series of static snapshots of the
external world. When the signal is static, they keep on trans-
mitting redundant data, but with no additional information, and
can miss important samples when the signal changes rapidly, with
a trade-off between sampling rate (for capturing dynamic signals)
and data load. Conversely, in most neuromorphic sensory sys-
tems, the sensed signal is sampled and converted into digital
pulses (or “events”, or “spikes”) only when there is a large enough
change in the signal itself, using event-based time encoding
schemes!>16 such as pulse-density or sigma-delta modulation!”.
The data acquisition is hence adapted to the signal dynamics,
with the event rate increasing for rapidly changing stimuli and
decreasing for slowly changing ones. This type of encoding does
not lose information!8-20 and is extremely effective in scenarios
with sparse activity. This event-representation is key for efficient,
fast, robust and highly-informative sensing. The technological
improvement comprises a reduced need for data transmission,
storage and processing, coupled with high temporal resolution —
when needed - and low latency. This is extremely useful for real
time robotic applications.

Starting from the design of motion sensors and transient
imagers?!, the first event-driven vision sensors with enough
resolution, low noise and sensor mismatch - the Dynamic Vision
Sensor (DVS)?2 and Asynchronous Temporal Imaging Sensor
(ATIS)?3 - triggered the development of diverse algorithms for
event-driven visual processing and their integration on robotic
platforms?*. These sensor information encoding methods break
decades of static frame encoding as used by conventional
cameras. Their novelty calls for the development of a new

principled approach to event-driven perception. The event-driven
implementation of machine vision approaches vastly outperforms
conventional algorithmic solutions in specific tasks such as fast
object tracking?®, optical flow26-28 or stereo?® and Simultaneous
Localisation and Mapping (SLAM)30. However, these algorithms
and their hardware implementations still suffer from task
specificity and limited adaptability.

These event-driven sensory-processing modules will progres-
sively substitute their frame-based counterparts in robotic
pipelines (see Fig. 2). However, despite the promising results,
the uptake of event-driven sensing in robotics is still difficult due
to the mindset change that is required to work with streams of
events, instead of static frames. Furthermore, this new data
representation calls for the development of new ad hoc interfaces,
communication protocols (described in Box 2 and Fig. 3) and
software libraries for handling events. Open source JAVA3! and
C++3233 libraries have already been developed, also within two
of the main robotic middlewares - ROS and YARP - but they
require additional contributions from a large community to grow
and reach the maturity needed for successful adoption in robotics.
Eventually, a hybrid approach that combines frame-based and
event-driven modules, and that fosters the growth of the
community revolving around it, could favour a more widespread
adoption in the robotics domain. However, this hybrid neuro-
morphic/traditional design strategy would not fully exploit all the
advantages of the neuromorphic paradigm.

Working towards the implementation of robots with full
neuromorphic vision, the neuromorphic and computational
neuroscience communities have started in-depth work on
perceptive modules for stereo vision’* and vergence®,
attention3®, and object recognition3”. These algorithms can run
on neuromorphic computing substrates for exploiting efficiency,
adaptability and low latency.

The roadmap of neuromorphic sensor development started
with vision, loosely inspired by biological photo-transduction,
and audition, inspired by the cochlea, and only later progressed to
touch and olfaction. The event-driven acquisition principle is
extremely valuable also when applied to other sensory modalities,
especially those characterised by temporally and spatially
localised activation, such as tactile, auditory, and force-torque
modalities, those requiring extremely low-latency for closed-loop
control, such as encoders and Inertia Measurement Units (IMUs),
non-biological like sensors that augment the ability to monitor
the environment, such as lidar, time-of-flight, 3D, and proximity
sensors, and sensors that help the robot to monitor the state of
human beings, e.g. Electromyography (EMG), Electroencephalo-
graphy (EEG), centre of mass, etc.38.

Available cochlear implementations rely either on sub-
threshold mixed-mode silicon devices®*%0 (as do the vision
sensors), or on Field Programmable Gate Arrays (FPGAs)4l. They
have been applied mostly to sound source localisation and
auditory attention, based on the extremely precise temporal
footprint of left and right signals*>43, and, lately, on audio-visual
speech recognition*. Their integration on robots, however, is still
very limited: as in event-driven vision, they require application
development tools, and a way in which they can be exploited in
speech processing.

The problem of tactile perception is further complicated by
three factors. First, by the sheer number of available different
physical transducers. Second, by the difficulty in interfacing the
transducers to silicon readout devices. This is unlike the situation
in vision, where silicon photo-diodes can capture light and are
physically part of the readout device. Third, there are the
engineering challenges in integrating tactile sensors on robotic
platforms, comprising miniaturisation, and design and imple-
mentation on flexible and durable materials with good
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(a)
Sensor | Resolution | Frames Robot
DVS [21] 640 x 480 Goalie, Pencil balancer
ATIS [22] VGA External trigger & pixel update | iCub (beam splitter configuration with external 1.3M frame-based
at change detection camera)

DAVIS [131] [ 346x260 20Hz Active Pixel Sensor (APS) | Drones
Rino 3 320262 30Hz APS AR/VR Mobile
CeleX5 [132] | 1280 Dual readout -

Fig. 2 Neuromorphic sensing for robots. a the iCub robot (picture ©IIT author Duilio Farina) is a platform for integrating neuromorphic sensors. Magenta
boxes show neuromorphic sensors that acquire continuous physical signals and encode them in spike trains (vision, audition, touch). All other sensors, that
monitor the state of the robot and of its collaborators, rely on clocked acquisition (green boxes), that can be converted to spike encoding by means of Field
Programmable Gate Arrays (FPGASs) or sub-threshold mixed-mode devices. b The output of event-driven sensors can be sent to Spiking Neural Networks
(SNNs) (with learning and recurrent connections) for processing. VISION box in (a): Event-driven vision sensors produce “streams of events” (green for
light to dark changes, magenta for dark to light changes). The trajectory of a bouncing ball can be observed continuously over space, with microsecond
temporal resolution (black rectangles represent sampling of a 30 fps camera). Table: Event-driven vision sensors evolved from the Dynamic Vision Sensor
(DVS) with only “change detecting” pixels - to higher resolution versions with absolute light intensity measurements. The Dynamic and Active pixel Vlision
Sensor (DAVIS)3! acquires intensity frames at low frame rate simultaneously to the “change detection” (with minor cross talk and artefacts on the event
stream during the frame trigger). The Asynchronous Temporal Imaging Sensor (ATIS)132 samples absolute light intensity only for those pixels that detect a
change. The CeleX5 offers either frame-based or event-driven readout (with a few milliseconds delay between the two, resulting in loss of event stream
data during a frame acquisition). Similar to the DAVIS, the Rino3 captures events and intensity frames simultaneously, however, it employs a synchronised
readout architecture as opposed to the asynchronous readout typically found in other event-driven sensors. The ultimate solution combining frames and
events is yet to be found. Merging two stand-alone sensors in a single optical setup poses severe challenges in terms of the development of optics that
trade-off luminosity with bulkiness. Merging two types of acquisition on the same sensor limits the fill-in factor and increases noise and interference

between frames and events.

mechanical properties, wiring, and robustness. Very few native
neuromorphic tactile sensors have been developed so far*>-48 and
none has been stably integrated as part of a robotic platform,
besides lab prototypes. While waiting for these sensors to be
integrated on robots, existing integrated clock-based sensing can
be used to support the development of event-driven robotics
applications. In this “soft” neuromorphic approach, the front end
clocked samples are converted to event-based representation by
means of algorithms implemented in software*®=>! or embedded
on Digital Signal Processors (DSPs)*2 or FPGAs®3°4. The same
approach is valuable also in other sensory modalities, such as
proprioception®>°%, to support the development of event-driven
algorithms and validate their use in robotic applications.
However, it is not optimal in terms of size, power, and latency.

For all sensory modalities, the underlying neuromorphic
principle is that of “change detection”, a high level abstraction
that captures the essence of biological sensory encoding. It is also
a well defined operation that allows algorithms and methods to
extract information from data streams!® to be formalised.
Better understanding the sophisticated neural encoding of the
properties of the sensed signal and their relation to behavioural
decisions of the subject®” - and their implementation in the

design of novel neuromorphic sensors — would enhance the
capability of artificial agents to extract relevant information and
take appropriate decisions.

Neuromorphic behaviour. To interact efficiently with the
environment, robots need to choose the most appropriate beha-
viour, relying on attention, allocation, anticipation, reasoning
about other agents, planning the correct sequence of actions and
movements based on their understanding of the external world
and of their own state. Biological intelligent behaviour couples the
ability to perform such high level tasks with the estimation, from
experience, of the consequences of future events for generating
goal-oriented actions.

A hypothesis for how intelligent behaviour is carried out by the
mammalian nervous system is the existence of a finite set of
computational primitives used throughout the cerebral cortex.
Computational primitives are building blocks that can be
assembled to extract information from multiple sensory mod-
alities and coordinate a complex set of motor actions that depend
on the goal of the agent and on the contingent scenario (e.g.
presence of obstacles, human collaborators, tools).
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Box 2 | Neuromorphic communication protocols

Like neural systems, neuromorphic systems rely on digital communication: information is encoded in the timing of voltage pulses (or spikes). Biological
neurons have dedicated connections with huge fan-in and fan-out, supported by the three-dimensional structure of the neural tissue. Silicon neurons
instead can only use wires on two-dimensional planes, but they can exploit the speed of metal wires that are orders of magnitude faster than axons.
These limits in physical connectivity can therefore be partially solved by adopting temporal multiplexing techniques that use the same physical wires to
send spikes of different neurons. To distinguish the spikes that travel on the same wire, the identity of the source or destination neuron is encoded with
a digital world, implementing what is known as the Address Event Representation (AER) protocol™3.

AER has been implemented by the neuromorphic community since the late 90's'44-146, in many different setups and variants. The need for integrating this
communication protocol on robotic platforms defines a set of requirements such as sparsity of event-communication, high noise rejection, low-latency,
sufficient bandwidth, and a minimum number of wires that can lead to the definition of a widely adopted standard. In robotic applications that combine
multiple distributed sensors, asynchronous serial implementations are preferable'#’, as the use of synchronous protocols would require including and
synchronising multiple clocks. Given the recent uptake of neuromorphic technologies by large industries and the growth of the research community, the
definition of a common standard is necessary and timely, to allow interoperability across different sensing, computing and actuating modules. The
communication protocol can be standardised and optimised following the definition of application, data and physical layers of Fig. 3. The application layer
comprises a neuromorphic component that sends or receives asynchronous address events. At this level, time represents itself: events are communicated
asynchronously at the time in which they occur. Events are bundled together into larger packets with either fixed or varying sizes in the data layer. This is a
required step, if well established standards such as MIPI or USB are also going to be used. Interfacing AER to synchronous implementations requires to
embed the precise timing information of the events within the data stream (e.g., by time-stamping). The physical layer defines the means of transmitting
the actual bits. To accommodate the bandwidth required by state-of-the-art vision sensors, well-established high-speed communication standards, such as
differential signalling may be used. For each layer the community will have to define common specifications, and develop the necessary interfacing circuits
for on-chip integration, removing the need for bridging devices such as Field Programmable Gate Arrays (FPGASs). In this perspective, the definition of a
standard application layer would decrease the cost of the development of a number of application specific interfaces. However, the definition of
requirements for the optimal protocol is still an open question in the community and strongly depends on the application.
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Fig. 3 AER: example of communication between an event-driven sensor (triangular skin patches, each with 6 sensing areas) and a spiking neural
network (SNN) chip. Each sensing element emits asynchronous spikes that are sent to a bus through arbitration. The same are de-multiplexed to be

sent to the correct synapse of the SNN chip.

The choice of the most appropriate behaviour, or action, in the
neuromorphic domain is currently limited to proof-of-concept
models. Box 3 reviews the state-of-the-art of robots with sensing
and processing implemented on neuromorphic devices. Most
implementations consist of a single bi-stable network discrimi-
nating between ambiguous external stimuli®® and selecting one of
two possible actions. Dynamic Field Theory (DFT) is the
reference framework for modelling such networks, where the

basic computational element is a Dynamic Neural Field (DNF)>?,
computationally equivalent to a soft Winner-Take-All (WTA). As
described in Box 4, WTA networks are one of the core
computational primitives that can be implemented in neuro-
morphic hardware. Therefore, DNF represents an ideal frame-
work which can translate intelligent models into feasible
implementations in a language compatible with neuromorphic
architectures®), The current challenge in such systems is to
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Box 3 | Neuromorphic robots

Wheeled robots Wheeled robots are often used to implement spatial navigation tasks. However, despite recent advances in research30:148-150 yobots
are still not able to compete with biological systems in terms of robustness to the changes in the visual scene for map formation, or in terms of power
and resource efficient ways to store maps and path-planning data. Neuromorphic wheeled robots are being used to validate studies of how the nervous
system accomplishes these tasks with low power and limited resources (e.g. by using spiking neural networks). These studies are still in the early
stages, however successful examples already exist of basic navigation tasks (such as turning left/right or tuning the robot's speed) implemented using
hardware Spiking Neural Networks (SNNs) in small robotic agents>8148151152,

iCub The iCub is a humanoid robot that can be used to perform closed-loop experiments with neuromorphic devices, since it supports the use of event-
driven vision and touch sensors that can be interfaced to neuromorphic processors. In ref. 56 the authors present a neuromorphic architecture for head
pose estimation and scene representation realised using the Loihi neuromorphic processor’C. The network integrates motor commands to estimate the
iCub's head pose in a neural path-integration process based on Dynamic Neural Field (DNF). In ref. 55 a closed-loop PID controller was implemented
using relational neural networks to control the iCub’s head rotation. The network was implemented using the mixed-signal DYNAP-SE neuromorphic
processor®®. In ref. 153 the Vestibulo-Ocular Reflex (VOR) was implemented using a spiking cerebellar model within an adaptive real-time control loop.
The VOR protocols moved the iCub head and the eyes which incorporate a camera that can be used to check the image motion on the “retinas”. In
these proof-of-concept, the robot shows adaptation behaviour, however, limited in one DoF.

Drones SNNs represent a promising tool for controlling resource-constrained agents that require fast reaction times, such as Unmanned Aerial Vehicles
(UAVs) thanks to their low-latency and fast response times. In ref. 1°4 a drone was able to perform optic flow landings with an evolved SNN running at
high frequencies (over 250 kHz). The performance compared to conventional mobile GPU shows 75 x lower power, without any loss in performance,
but again for a single DoF. A similar work interfaced Loihi to a UAV to control a single DoF using a spiking Proportional Integral Derivative (PID). The
controller is built using neuronal populations, in which single spikes carry information about sensory and control signals’”.

Robotic arms In ref. 155 the authors compared two different platforms, Loihi and SpiNNaker2 on a common benchmark, the control of a robotic arm, in
terms of computation time and active energy. Both platforms are efficient in specific parameter regions, SpiNNaker2 is more efficient when the number
of input dimensions is high, while Loihi is more efficient when the number of input dimensions is low. Another example deploys Neural Engineering
Framework (NEF)-based neuromorphic algorithms for inverse kinematics and a PID for the control of a six-DoF robotic arm'>®. The algorithms are
designed using Nengo and evaluated on Loihi. Similarly, in ref. 79 a spiking PID is used to control a four-DoF robotic arm. Combining the spiking PID with
PFM motor control, the system achieves a current consumption below 1A when all the motors are working at the same time. The controller is
implemented on an Field Programmable Gate Array (FPGA), and the robot joints’ commands can be received from a population of silicon-neurons
running on the DYNAP-SE platform that generates the required Pulse Frequency Modulation (PFM) reference signals for the FPGA.

Legged-robot Central Pattern Generator (CPG) is a computational primitive that generates and controls rhythmic movements. Spiking CPG are used in

insect robots' locomotion, to coordinate single leg movements and the coordination of multiple legs. Spiking CPG show stable and coordinated
locomotion pattern that can robustly adapt to external disturbances'’ and can be implemented on FPGA'8,

develop a multi-area and multi-task spiking neuron model of the
cortical areas involved in decision making under uncertainty.

Different branches of robotics have tackled this challenge by
exploring biologically inspired embodied brain architectures to
implement higher-level functions®! to provide robots with skills
to interact with the real world in real-time. These architectures
are required to learn sensorimotor skills through interaction with
their environment and via incremental developmental stages®2-93,

Once the appropriate behaviour is selected, it has to be
translated into a combination of actions, or dynamic motor
primitives, to generate rich sets of complex movements and
switching behaviours, for example switching between different
rhythmic motions such as walking, generated via a Central
Pattern Generator (CPG), and swimming®. The stability and
capability of these systems in generating diverse actions is
formally proven®. This motivates their adoption and further
progress to biological plausibility with spiking implementations®®.
As a result, robots benefit from the biology of animal locomotor
skills and can be used as tools for testing animal locomotion
and motor control models and how they are affected by sensory
feedback®”.

Despite taking its inspiration from neural computation,
robotics inspired by neural systems has only recently started to
use Spiking Neural Networks (SNNs) and biologically plausible
sensory input, and the corresponding computational substrate
that can support SNNs and learning. Neuromorphic technologies
move one step further in this direction. In recent years there has
been substantial progress in developing large-scale brain inspired
computing technologies®®-7! that allow the exploration of the
computational role of different neural processing primitives to
build intelligent systems’2-74. Although knowledge of the neural
activity underlying those functions is increasing, we are not yet
able to explicitly and quantitatively connect intelligence to neural

architectures and activity. This hinders the configuration of large
systems to achieve effective behaviour and action planning. An
example of an attempt to develop tools to use spiking neurons as
a basis to implement mathematical functions is the “Neural
Engineering Framework (NEF)”7>, that has been successfully
deployed to implement adaptive motor control for a robotics
arm’®. The NEF formalisation allows the use of neurons as
computational units, implementing standard control theory, but
overlooks the brain architectures and canonical circuits that
implement the same functionalities.

Current research on motor control implementation based on
brain computational primitives mainly focuses on the translation
of well-established robotic controllers into SNNs that run on
neuromorphic devices®®’7-79, Although the results show the
potential of this technology, these implementations still need to
follow a hybrid approach in which neuromorphic modules have
to be interfaced to standard robotics ones. In the example cited
above, motors are driven via embedded controllers with
proprietary algorithms and closed/inaccessible electronic compo-
nents. There is therefore the need to perform spike encoding of
continuous sensory signals measured by classical sensors, and to
perform decoding from spike trains to signals compatible with
classical motor controllers. This inherently limits the perfor-
mance of hybrid systems that would benefit from being end-to-
end event-based. In this respect, the performance of the standard
motor controller and its spiking counterpart cannot be bench-
marked on the same robotic task, because of the system-level
interfacing issues. To make inroads toward the design of fully
neuromorphic end-to-end robotic systems, it is essential to
design new event-based sensors (e.g. IMU, encoders, pressure)
to complement the ones already available (e.g. audio, video,
touch). In addition, motors or actuators should be directly
controlled by spike trains, moving from Pulse Width
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Box 4 | A dictionary of hardware neural primitives

Sensors transduce analogue and continuous physical signals into electrical discrete pulses that emulate neural sensory encoding. Depending on the
physical position, shape and local computation, they can pre-process the sensory signal in non-trivial ways. For example, in vision, neuromorphic
sensors work as edge extractors!!, neuromorphic cochleae act as frequency tuned filters!>°,

Neurons integrate information from different sources over time and, depending on multiple factors that influence their state, communicate the result of
a non-trivial analogue computation to other neurons by means of digital voltage pulses (action potentials, or spikes). Starting from the silicon
implementation of the Hodgkin and Huxley neuron model'€9, in which various ion currents modulate the membrane potential'®!, more compact circuits
have been proposed to improve the trade-off between accurate modelling and functional behaviour. The Leaky Integrate-and-Fire (LIF)'62 model
captures the principle of integrating spikes over time and producing an output firing activity proportional to the input. Generalised LIF circuits reproduce
neurons’ characteristic bursting behaviours'63-165,

Synapses connect neurons and mediate the propagation of information between neurons. Their most simple implementation is a switch that injects a
fixed amount of current into the membrane of neurons; more faithful implementations use a handful of transistors to add the temporal dynamics of the
post-synaptic current'66. The information is transmitted through excitatory or inhibitory connections, to increase or decrease the activity in the
receiving neuron.

Plasticity is the mechanism that modifies the behaviour of neural computation and synaptic transmission depending on the state of the synapses and
the input activity. It supports adaptation and learning. A number of circuits implement short-time (in the order of tens of milliseconds) activity-
dependent plasticity, such as Short-Term Depression (STD)'®7 and Short-Term Facilitation (STF)168, or Spike Frequency Adaptation (SFA)'6%, useful to
enhance changes in the transmitted information and filter constant activity. Long-term (in the order of seconds) plasticity driven by the coincident
activation of connected neurons supports Hebbian types of learning!70-175, Progress in nanoscale technologies#6176-178 is contributing to the dictionary
of hardware plasticity primitives, towards dense integration. Within long-term plasticity, multiple temporal scales in the learning synapses increase the
memory capacity of networks using discrete and bound states!’®. Very long-term plasticity (in the order of days) supports homoeostatic regulation of
the overall network activity. This is kept within functional ranges in the face of long-term modifications of the network or changes in the input stimuli'4.
Neural oscillators are found in neural cortex and rely on two mutually connected neural populations to support feature binding and motor coordination
through the generation of rhythmic activity. A specific instance of neural oscillators are Central Pattern Generator (CPG). These rely on neurons SFA
and are capable of generating a rich set of complex movements and switching behaviours supporting walking, swimming, and flying!00,
Delay/Temporal measurement circuits take inspiration from the insect brain, where motion is computed as the time to travel of a stimulus from one
sensing element to the neighbour'80. This type of computational primitive is useful for motion estimation and obstacle avoidance88.
Cooperative-competitive networks rely on networks of neurons that are recurrently connected. Functionally, they process information in a way that
takes into account the context and the relative activation of different units. Recurrent inhibition to an excitatory population helps improving the
selectivity of neurons to a specific feature, as neurons with similar selectivity reinforce each other’s response and inhibit the response of other neurons

properties.

that are tuned to different features34181. Relational networks use recurrent connectivity to express relative dependencies between variables, for
example to compute the error between a measured signal and its target value’8.
Actuators move and control parts of the body, to achieve a desired action. Different types of actuators exist in robotics that rely on different physical

Modulation (PWM) to Pulse Frequency Modulation
(PFM)80-82, Furthermore, the end-to-end neuromorphic robotic
system could benefit from substituting the current basic
methods used in robotics (e.g. Model Predictive Control
(MPC), Proportional Integral Derivative (PID)) with more
biologically plausible ones (e.g. motorneuron - Golgi - muscle
spindle architectures®3) that can be directly implemented by the
spiking neural network circuits present on neuromorphic
processors. The drawback of this approach, however, lies in
the limited resolution and noisy computing substrate used in
these processors, as well as in the lack of an established control
theory that uses the linear and non-linear operators present in
spiking neural networks (e.g. integration, adaptation, rectifica-
tion). The proposed biologically inspired control strategies
would probably benefit from the use of bio-inspired actuators,
such as tendons*¥, agonist-antagonist muscles®4, soft
actuators®®>. While offering more compliant behaviour, these
introduce non-linearities that are harder to control with
traditional approaches, but match the intrinsic properties of
biological actuation, driven by networks of neurons and
synapses.

Computational primitives for intelligent perception and
behaviour. In addition to the adoption of neuromorphic sen-
sors, the implementation of fully end-to-end neuromorphic
sensorimotor systems requires fundamental changes in the way
signals are processed and computation is carried out. In parti-
cular, it requires replacing the processing that is typically done
using standard computing platforms, such as microcontrollers,
DSPs, or FPGA devices, with computational primitives that can

be implemented using neuromorphic processing systems. That
is to say, computational primitives implemented by populations
of spiking neurons that act on the signals obtained from both
internal and external sensors, that learn to predict their statis-
tics, that process and transform the continuous streams of
sensory inputs into discrete symbols, and that represent internal
states and goals. By supporting these computational primitives
in the neuromorphic hardware substrate, such an architecture
would be capable of carrying out sensing, planning and pre-
diction. It would be able to produce state-dependent decisions
and motor commands to drive robots and generate autonomous
behaviour. This approach would allow the integration of mul-
tiple neuromorphic sensory-processing systems distributed and
embedded in the robot body, closing the loop between sensing
and action in real-time, with adaptive, low-latency, and low
power consumption features.

Realising a hardware substrate that emulates the physics or
biological neural processing systems and using it to implement
these computational primitives can be considered as a way to
implement embodied intelligence. In this respect one could
consider these hardware computational primitives as “elements of
cognition”80, that could bridge the research done on embodied
neuromorphic intelligence with that of cognitive robotics®’.

Several examples of neuromorphic processing systems that
support the implementation of brain-inspired computational
primitives by emulating the dynamics of real neurons for signal
processing and computation have already been proposed#2:69:88,
Rather than using serial, bit-precise, clocked, time-multiplexed
representations, these systems make use of massively parallel in-
memory computing analogue circuits. Recently, there has also
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been substantial progress in developing large-scale brain-inspired
computing technologies that follow this parallel in-memory
computing strategy, in which silicon circuits can be slowed down
to the time-scales relevant for robotic applications®®7189, By
implementing computational primitives through the dynamics of
multiple parallel arrays of neuromorphic analogue circuits, it is
possible to bypass the need to use clocked, time-multiplexed
circuits that decouple physical time from processing time, and to
avoid the infamous von Neumann bottleneck problem?”-8:%,
which requires to shuffle data back and forth at very high clock-
rates from external memory to the time-multiplexed processing
unit. Although the neuromorphic approach significantly reduces
power consumption, it requires circuits and processing elements
that can integrate information over temporal scales that are well
matched to those of the signals that are being sensed. For
example, the control of robotic joint movements, the sensing of
voice commands, or tracking of visual targets or human gestures
would require the synapse and neural circuits to have time
constants in the range of 5ms to 500 ms. In addition to the
technological challenge of implementing compact and reliable
circuit elements that can have such long-lasting memory traces,
there is an important theoretical challenge for understanding how
to use such non-linear dynamical systems to carry out desired
state-dependent computations. Unlike conventional computing
approaches, the equivalent of a “compiler” tool that allows the
mapping of a desired complex computation or behaviour into a
“machine-code”-level configuration of basic computing units
such as dynamic synapses or Integrate-and-Fire neurons is still
lacking. One way to tackle this challenge, is to identify a set of
brain-inspired neural primitives that are compatible with the
features and limitations of the neuromorphic circuits used to
implement them1291-94 and that can be combined and composed
in a modular way to achieve the desired high-level computational
primitive functionality. Box 4 lists a proposed dictionary of such
primitives.

In addition, the computational requirements of robotic systems
have to treat also sensors and actuators as computational primitives
that shape the encoding of the sensory signal and of the movements
depending on their physical shape (e.g. composite eyes, versus
retina-like foveated or uniform vision sensors, brushless and DC-
motors versus soft actuators), location (e.g. binocular versus
monocular vision, non-uniform distribution of tactile sensors and
location of the motor with respect to the body part that has to be
moved) and local computation (e.g. feature extraction in sensors or
low-level closed-loop control).

Based on the required outcome, neural circuits can be
endowed with additional properties that implement useful
non-linearities, such as Spike Frequency Adaptation (SFA)
or refractory period settings. These building blocks can be
further combined to produce computational primitives such
as soft WTA networks®>~9%, neural oscillators!?, or state-
dependent computing networks”>12101 to recognise or generate
sequences of actions®78102-107" By combining these with
sensing and actuation neural primitives, they can produce
rich behaviour useful in robotics.

WTA networks. WTA networks represent a common “canonical”
circuit motive, found throughout multiple parts of the
neocortex! 98109 Theoretical studies have shown that such net-
works provide elementary units of computation that can stabilise
and de-noise the neuronal dynamics!08110.111 Thege features have
been validated with neuromorphic SNN implementations to gen-
erate robust behaviour in closed sensorimotor loops?7-101:112-114,
WTA networks composed of # units can be used to represent n
valued variables, with population coding. In this way it is possible

to couple multiple WTA networks among each other and imple-
ment networks of relations among different variables! 1>116 (e.g. to
represent the relationship between a given motor command value
and the desired joint angle’8). As WTA networks can create sus-
tained activation to keep a neuronal state active even after the input
to the network is removed, they provide a model of working
memory!00:102117.118 "WTA dynamics create stable attractors are
computationally equivalent to DNF that enable behaviour learning
in a closed sensorimotor loop in which the sensory input changes
continually as the agent generates action. In order to learn a
mapping between a sensory state and its consequences, or a pre-
condition and an action, the sensory state before the action needs
to be stored in a neuronal representation. This can be achieved by
creating a reverberating activation in a neuronal population that
can be sustained for the duration of the action even if the initial
input ceases. The sustained activity can be used to update sen-
sorimotor mappings when a rewarding or punishing signal is
obtained®®!1%, Finally, these attractor-based representations can
bridge the neuron circuit dynamics with the robot behavioural time
scales in a robust way®!18120, and be exploited to develop more
complex embedded neuromorphic intelligent systems. However, to
reach this goal, it is necessary to develop higher-level control
strategies and theoretical frameworks that are compatible with
mixed signal neuromorphic hardware, which have composition-
ality and modularity properties.

State-dependent intelligent processing. State-dependent intel-
ligent processing is a computational framework that can
support the development of more complex neuromorphic
intelligent systems. In biology, real neural networks perform
state-dependent computations using WTA-type working
memory structures maintained by recurrent excitation and
modulated by feedback inhibition!21-126, Specifically, model-
ling studies of state-dependent processing in cortical networks
have shown how coupled WTA networks can reproduce the
computational properties of Finite State Machines
(FSMs)101,123,127 Ay FSM is an abstract computing machine
that can be in only one of its n possible states, and that can
transition between states upon receiving an appropriate
external input. True FSMs can be robustly implemented in
digital computers that can rely on bit-precise encoding.
However, their corresponding neural implementations built
using neuromorphic SNN architectures, are affected by noise
and variability, very much like their biological counterparts.
In addition to exploiting the stabilising properties of WTA
networks, the solution that neuromorphic engineers found to
implement robust and reliable FSM state-dependent proces-
sing with noisy silicon neuron circuits is to resort to dis-
inhibition mechanisms analogous to the ones found in many
brain areas!28:129, These hardware state-dependent processing
SNNs have been denoted as Neural State Machines
(NSMs)10L105 " They represent a primitive structure for
implementing state-dependent and context-dependent com-
putation in spiking neural networks. Multiple NSMs can
interact with each other in a modular way and can be used as
building blocks to construct complex cognitive computations
in neuromorphic agents!0>130,

Neuromorphic sensors, computational substrates and actuators
are combined to build autonomous agents endowed with
embodied intelligence, by means of brain-like asynchronous,
digital communication. Existing agents range from monolithic
implementations - whereby sensor is directly connected to a
neuromorphic computing device - to modular implementations,
where distributed sensors and processing devices are connected
by means of a middleware abstraction layer, trading off
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Box 5 ] Call for actions

Call for the neuromorphic community To favour the uptake and the building of a larger community of users and stakeholders of embodied
neuromorphic intelligence, the neuromorphic community should focus on the design of modular and reusable sensing and computing modules. The
standardisation of a common communication protocol, as described in Box 2, has already enabled sharing of modules and systems. Open-source
implementations of algorithms and dataset-sharing will promote the growth of the field. A milestone on this path will be the definition of a suite of
benchmarks that can be used to quantitatively compare the features and benefits of different neuromorphic systems, as described in Box 6.

Call for the computational neuroscience community Neuromorphic circuits need to convert sensory signals into address-events for further processing.
The computational neuroscience community has a unigue opportunity to inspire and educate neuromorphic engineers by pointing out the principles and
strategies that the nervous system uses to convert analogue inputs to spikes and encode sensory signals. Tight collaboration with the neuroscience
community will lead to important improvements in neuromorphic sensing circuits®’:'82. Similarly, this community can provide useful insights for
designing recurrent Spiking Neural Networks (SNNs) composed of noisy and inhomogeneous circuits to carry out signal processing and
computation!®3-185_ |n this respect, it will be important to link specific neuroscience observations to their most basic computational role in order to
isolate the basic mechanisms that are sufficient to implement a given functionality. The hardware implementation will then reproduce such a reduced
“minimalist” model, where features, complexity, detail, and diversity have corresponding computational functions.

Call for the material science community Emerging memory technologies hold great promises for improving conventional computing architectures,
However, they also represent an important opportunity for designing new types of solid-state nano-scale devices that could directly emulate the physics
of real synapses, and therefore provide the computing substrate for implementing the principles of neural computation more efficiently. The material
science community should therefore attempt to embrace and exploit the non-linear physics of these devices to optimise the design of embodied
neuromorphic computing architectures®4,

Call for the computer science community Similar to how computers use a hierarchy of levels of abstraction to manage the definition of complex
operations, computer science can leverage on the notions and tools developed so far to define new methods for combining neural computational
primitives, as those described in Box 4, to achieve intelligent functionalities'8. A challenge that lays ahead is also how to formalise computation using
non-linear dynamics, stochastic, and probabilistic methods, including embodiment in the robotic platform.

Call for the soft robotics community As the neuromorphic approach is a good fit for complex systems where the control is non-trivial, it is a perfect
match to soft robotics. There is a need for undefined, providing use cases to the neuromorphic community. The resulting perceptive and cognitive
functions - implemented using neuromorphic computational substrates - must be embedded on robots, where the morphology of the platform can
influence the way sensory signals are acquired (e.g. through a different placement of the sensors) and the way actions are executed (e.g. different kinds
of locomotion, rigid versus soft actuation, etc.). Neuromorphic engineering, thanks to its ability to implement adaptive circuits and systems for solving

non-linear control systems, can offer a solution to the complex control of soft robots.

compactness and task-specific implementations with flexibility.
Both approaches would benefit from the standardisation of the
communication protocol (discussed in Box 2).

Outlook

Embodied neuromorphic intelligent agents are on their way. They
promise to interact more smoothly with the environment and
with humans by incorporating brain-inspired computing meth-
ods. They are being designed to take autonomous decisions and
execute corresponding actions in a way that takes into account
many different sources of information, reducing uncertainty and
ambiguity from perception, and continuously learning and
adapting to changing conditions.

In general, the overall system design of traditional robotics
and even current neuromorphic approaches is still far from any
biological inspiration. A real breakthrough in the field will
happen if the whole system design is based on biological
computational principles, with a tight interplay between the
estimation of the surroundings and the robot’s own state, and
decision making, planning and action. Scaling to more complex
tasks is still an open challenge and requires further develop-
ment of perception and behaviour, and further co-design of
computational primitives that can be naturally mapped onto
neuromorphic computing platforms and supported by the
physics of its electronic components. At the system level, there
is still a lack of understanding on how to integrate all sensing
and computing components in a coherent system that forms a
stable perception useful for behaviour. Additionally, the field is
lacking a notion of how to exploit the intricate non-linear
properties of biological neural processing systems, for example
to integrate adaptation and learning at different temporal
scales. This is both on the theory/algorithmic level and on the
hardware level, where novel technologies could be exploited, for
such requirements.

The roadmap towards the success of neuromorphic intelligent
agents encompasses the growth of the neuromorphic community
with a cross-fertilisation with other research communities, as
discussed in Box 5, Box 6.

The characteristics of neuromorphic computing technology
so far have been demonstrated by proof of concept applica-
tions. It nevertheless holds the promise to enable the con-
struction of power-efficient and compact intelligent robotic
systems, capable of perceiving, acting, and learning in chal-
lenging real-world environments. A number of issues need to
be addressed before this technology is mature to solve complex
robotic tasks and can enter mainstream robotics. In the short
term, it will be imperative to develop user-friendly tools for
the integration and programming of neuromorphic devices to
enable a large community of users and the adoption of the
neuromorphic approach by roboticists. The path to follow can
be similar to the one adopted by robotics, with open source
platforms and development of user-friendly middleware.
Similarly, the community should rely on a common set of
guiding principles for the development of intelligence using
neural primitives. New information and signal processing
theories should be developed following these principles also
for the design of asynchronous, event-based processing in
neuromorphic hardware and neuronal encoding circuits. This
should be done with the cross-fertilisation of the neuro-
morphic community with computational neuroscience and
information theory; furthermore interaction with materials
and (soft-)robotics communities will better define the appli-
cation domain and the specific problems for which neuro-
morphic approaches can make a difference. Eventually, the
application of a neuromorphic approach to robotics will find
solutions that are applicable in other domains, such as smart
spaces, automotive, prosthetics, rehabilitation, and brain-
machine interfaces, where different types of signals may need
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Box 6 | Data sets and benchmarks

The definition of benchmark tasks and data sets that are appropriate for evaluating the performance of the different neuromorphic processors and
behaving systems is a difficult and challenging endeavour that has not been fully solved yet'8”. While most existing datasets, developed mainly by the
machine learning community, rely on large collections of static data, neuromorphic datasets should take into account the different spatial and temporal
representations used by neuromorphic systems. There have been indeed attempts at creating novel datasets useful for benchmarking event-based
processing algorithms and methods'88-192, However, these data sets are useful only for comparing a very limited set of systems and approaches.
Specific benchmarks for evaluating spatio-temporal abilities of neuromorphic systems will need to go beyond the standard figures of merit from
machine learning. To validate and compare the vast spectrum of brain-inspired neuromorphic behaving systems it will be necessary to define multiple
sets of benchmarks that can be used to evaluate the performance of the system from end-to-end, for complex tasks. Examples of computations that
should be evaluated include spatio-temporal pattern recognition, prediction, attention, decision making, memory, language, and spatial perception, as
well as regression, clustering, and dimensionality reduction. Taken individually, these tasks are common to some of the problems being tackled by the
machine learning community. But the neuromorphic systems should include also how the performance changes as a function of the resources used.
Unlike machine learning, neuromorphic systems are designed to minimise memory and power consumption. So the benchmark figures of merit should
include also the savings in power consumption (e.g. for autonomous robots), the reduction in volume and weight (e.g. for drones), the reduction in
latency and response time, the maximisation of robustness to noise and changes in both the input signals and system'’s internal state. Memory and time
are also important dimensions to consider for these benchmarks. Given that neuromorphic systems use “in-memory computing” and do not have
access to external memory banks for accessing information at arbitrary times, benchmarks need to evaluate how well neuromorphic systems can
operate in tasks in which the system is required to associate signals that are being perceived in the present with data that was measured seconds,
minutes, or even hours before. The development of appropriate tasks to assess the memory performance of neuromorphic systems for appropriately
producing the desired behaviour is a challenge in itself. Once the task is defined, the benchmark will need to take into account also the other robustness,
latency, or power figures of merit discussed above. Standard figures of merit currently used to evaluate conventional processors and computing
systems, such as accuracy, floating point operation per second (FLOPS), tera operations per second (TOPS) or multiply and accumulate (MAC)
operations per second are not appropriate in this case. It will be important to converge on a set of figures of merit that can be used and accepted by the
neuromorphic community at large.

to be interpreted, to make behavioural decisions and generate subthreshold CMOS circuits, and their computational relevance in
actions in real-time. supporting cognitive functions.
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