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Abstract. Voxel-based nonrigid image registration can be formulated
as an optimisation problem whose goal is to minimise a cost function,
consisting of a first term that characterises the similarity between both
images and a second term that regularises the transformation and/or
penalties improbable or impossible deformations. Within this paper, we
extend previous works on nonrigid image registration by the introduction
of a new penalty term that expresses the local rigidity of the deformation.
A necessary and sufficient condition for the transformation to be locally
rigid at a particular location is that its Jacobian matrix JT at this lo-
cation is orthogonal, satisfying the orthogonality condition JTJT

T = 1.
So we define the penalty term as the weighted integral of the Frobe-
nius norm of JTJT

T − 1 integrated over the overlap of the images to be
registered. We fit the implementation of the penalty term in a multidi-
mensional, continuous and differentiable B-spline deformation framework
and analytically determine the derivative of the similarity criterion and
the penalty term with respect to the deformation parameters. We show
results of the impact of the proposed rigidity constraint on artificial and
clinical images demonstrating local shape preservation with the proposed
constraint.

1 Introduction

Image registration is a common task in medical image processing. The problem
of registration arises whenever medical images, e.g. acquired from different scan-
ners, at different time points or pre- and post contrast, need to be combined for
analysis or visualisation. For applications were a rigid or affine transformation
is appropriate, several fast, robust and accurate algorithms have been reported
and validated [1]. However, in many cases the images to be registered show local
differences, e.g. due to intra-subject tissue changes over time or inter-subject
morphological differences, such that overall affine registration is insufficient and
non-rigid image matching is required for accurate local image alignment. Voxel-
based nonrigid image registration can be formulated as an optimisation problem
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whose goal is to minimise a cost function, consisting of a first term that char-
acterises the similarity between both images and a second term that regularises
the transformation and/or penalties improbable or impossible deformations. The
first term is the driving force behind the registration process and aims to max-
imise the similarity between the two images. The second term, which is often
referred to as the regularisation or penalty term, constrains the transformation
between the source and target images to avoid impossible or improbable trans-
formations.

In current literature, the penalty term is often expressed as a global energy
term that imposes deformation smoothness by modelling the deforming image
as a thin plate [2] or membrane [3]. However, in some applications there is a
need to explicitly impose the constraint that some structures in the images to
be registered should be treated as rigid objects that do not deform and can
only be displaced between both images without changing shape. This is the case
for instance with bony structures or contrast-enhancing lesions in intra-subject
registration of pre- and post contrast images, e.g. for CT subtraction angiogra-
phy. Several authors have presented different approaches for incorporating local
rigidity constraints in non-rigid image registration. Tanner et al. [4] proposed
a solution that locally couples the control points of a B-spline free-form de-
formation field such as to make the transformation rigid within the specified
image region of interest. Little et al. [5] incorporate independent rigid objects
in a modified thin-plate spline nonrigid registration. Both approaches require
explicit identification of the rigid structures prior to or during registration. Also,
they enforce the considered structures to be totally rigid, even in cases where
they actually might have deformed slightly. Rohlfing et al. [6] proposed a penalty
term that imposes local tissue incompressibility and volume preservation overall
in the image without need for segmentation, by constraining the local Jacobian
determinant to be close to unity everywhere in the image.

In this paper, we extend the approach of Rohlfing et al. [6] and propose a new
penalty term that punishes transformations that are not locally equivalent to a
rigid transformation by imposing the local Jacobian matrix to be orthogonal.
Local rigidity is controlled by a spatially varying weight factor that depends on
tissue type, such that the proposed rigidity constraint can be tuned locally and
tailored to the problem at hand.

2 Methods

2.1 Transformation Model

To register a floating image F to a reference image R we need to determine the
optimal set of parameters φι for the transformation T(Φ) = [Tx, Ty, Tz] such that
F ′(xr) = F (T(xr; Φ)) is in correspondence with R. For the nonrigid transforma-
tion T, we use an independent implementation of the B-spline model introduced
by Rueckert et al. [2]. The transformation model is a multilevel formulation of
a free-form deformation based on tensor product B-splines of degree d (order
d + 1). Usually, d is chosen to be 3 for cubic B-splines. The transformation T is
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defined by a control point grid Φ, i.e. a lattice of uniformly spaced control points
φi,j,k, where −1 ≤ i ≤ nx − 1, −1 ≤ j ≤ ny − 1, −1 ≤ i ≤ nz − 1. The constant
spacing between the control points in the x, y and z direction is denoted by
δx, δy, δz. At any position x = (x, y, z) the deformation is computed from the
positions of the surrounding (d+1)× (d+1)× (d+1) neighbourhood of control
points

T(x) = x +
d∑

l=0

d∑

m=0

d∑

n=0

Bd
l (u)Bd

m(v)Bd
n(w)φi+l,j+m,k+n. (1)

Here, i, j and k denote the index of the control point cell containing x = (x, y, z),
and u, v and w are the relative positions of x, y and z inside that cell in three
dimensions, e.g. i = �x/δx� − 1 and u = x/δx − (i + 1). The functions Bd

n are
the B-splines of degree d. The parameters φι of the transformation T are the
coordinates of the control points φi,j,k = φι = [φι,x, φι,y, φι,z].

2.2 Cost Function

The proposed cost function E consists of a similarity measure Es and a penalty
energy Ep, each weighted with a weight factor

Ec = ωsEs + ωpEp. (2)

The similarity measure Es is the driving force behind the registration process
and aims to maximise the similarity between the two images, whereas the penalty
term Ep tries to discourage certain improbable or impossible transformations.
The main contribution of this article is the introduction of a new penalty term
(and it’s derivative) that constrains the transformation between the source and
target image to locally rigid transformations.

Similarity Measure. We use mutual information of corresponding voxel inten-
sities [7,8] as the similarity measure. To improve the smoothness of the similarity
measure and to make the criterion derivable, we construct the joint histogram
using Parzen windowing as proposed by Thévenaz et al. [9]

∀r ∈ BR, f ∈ BF :

p(r, f ; Φ) =
∑

xi∈(R∩F ′)

w

(
f − IF (T(xi; Φ))

εf

)
· w

(
r − IR(xi)

εr

)
(3)

p(f ; Φ) =
∑

r∈BR

p(r, f ; Φ), p(r) =
∑

f∈BF

p(r, f ; Φ) (4)

with Bf and Br the number of bins and using the dth degree B-spline as window
function w. From the joint histogram, we can calculate the mutual information,
which we will use as similarity measure

Es = I(R, F ; Φ) =
∑

r∈BR

∑

f∈BF

p(r, f ; Φ) log
(

p(r, f ; Φ)
p(r) · p(f ; Φ)

)
. (5)
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Penalty Term. The main contribution of this paper is the introduction of
a local rigidity constraint penalty term, based on the Jacobian matrix. In a
small neighbourhood of the point x, the non-rigid transformation T can be
approximated by means of the Jacobian matrix JT(x), which is the local first
order or affine approximation to T(x).

JT(x; Φ) =





∂Tx(x;Φ)
∂x

∂Tx(x;Φ)
∂y

∂Tx(x;Φ)
∂z

∂Ty(x;Φ)
∂x

∂Ty(x;Φ)
∂y

∂Ty(x;Φ)
∂z

∂Tz(x;Φ)
∂x

∂Tz(x;Φ)
∂y

∂Tz(x;Φ)
∂z



 (6)

where

JT
T =





∂T
∂x

∂T
∂y

∂T
∂z



 = 1 +
d∑

l,m,n=0





1
δx

dBd
l (u)
du Bd

m(v)Bd
n(w)

1
δy

Bd
l (u)dBd

m(v)
dv Bd

n(w)
1
δz

Bd
l (u)Bd

m(v)dBd
n(w)
dw



φi+l,j+m,k+n. (7)

Using the B-spline derivative properties, dBd(u)/du can be computed analyti-
cally [10] as

dBd(u)
du

= Bd−1(u + 1/2) − Bd−1(u − 1/2). (8)

To obtain a locally rigid transformation, a necessary and sufficient condi-
tion is that JT is an orthogonal matrix, satisfying the orthogonality condition
JTJT

T = 1. This condition constrains the deformation to be either a rigid ro-
tation (det(JT) = 1) or a rotoinversion (det(JT) = −1). Since both kinds of
transformations form separated subsets and as we initiate T with the identity
matrix, we assume we will not reach any rotoinversion. Therefore, we define the
rigidity penalty term as the integral of the Frobenius norm of JTJT

T − 1 in-
tegrated over the overlap of the reference and the transformed floating image.
Alternatively, one could multiply the orthogonality condition with det(JT).

As different structures in the images may have different deformation proper-
ties and thus do not need to deform similarly, a local weight term w(x) is added.
This weight can be intensity based, e.g. w(x) is a function of F (T(x; Φ)), or
based upon a prior segmentation of the floating or reference image. Finally, the
total penalty term is given by

Ep =
∫

R∩F ′
w(x)

∥∥JTJT
T − 1

∥∥
F

dx. (9)

Similar to Rohlfing et al. [6], we compute the penalty term as a discrete
approximation to the continuous integral calculated over the set of sampled
voxels contained in R ∩ F ′.

2.3 Optimization

We use an optimization method similar to Rueckert et al. [2] and Rohlfing et
al. [6]: the gradient ∂Ec/∂φι = ωs∂Es/∂φι + ωp∂Ep/∂φι of the cost function
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(2) is computed, and next a simple line search (Van Wijngaarden–Dekker–Brent
Method [11]) is performed along the direction of maximal descent. This proce-
dure is repeated until the cost function cannot be improved any further, after
which the algorithm continuous to a finer resolution (either by refining the de-
formation mesh or the image resolution).

Instead of using a finite-difference approximation to the derivative like in
[6], we perform an analytical calculation of the derivative with respect to the
transformation parameters Φ (see Thévenaz et al. [9] for more details). The
derivative of the mutual information is given by

∂Es

∂φι
=

∂I(R, F ; Φ)
∂φι

=
∑

r∈R

∑

f∈F

∂p(r, f ; Φ)
∂φι

· log
(

p(r, f ; Φ)
p(f ; Φ)

)
. (10)

using the fact that

∑

r∈R

∑

f∈F

∂p(r, f ; Φ)
∂φι

=
∑

f∈F

∂p(f ; Φ)
∂φι

= 0 (11)

The Frobenius norm of the matrix A is ‖A‖F =
√∑

i,j(Ai,j)2, such that the
derivative of the penalty term with respect to a deformation parameter is given
by

∂Ep(T)
∂φι,κ

= −
∫

R∩F ′
w(x)

∑
i,j

[
JTJT

T − 1
]
ij

[
∂JT
∂φι,κ

JT
T + JT

∂JT
∂φι,κ

T
]

ij∥∥JTJT
T − 1

∥∥
F

dx(12)

where

∂JT

∂φι,κ

T

=





∂2T
∂φι,κ∂x

∂2T
∂φι,κ∂y

∂2T
∂φι,κ∂z



 =





1
δx

dBd
l (u)
du Bd

m(v)Bd
n(w)

1
δy

Bd
l (u)dBd

m(v)
dv Bd

n(w)
1
δz

Bd
l (u)Bd

m(v)dBd
n(w)
dw



 eκ (13)

for κ = x, y, z and with eκ the unit vector along coordinate axis κ. We see that
the non-zero element of e.g. ∂2T

∂φι,κ∂x is the same over all components of φι and
independent of its value, allowing for an efficient precalculation of its values.

3 Experiments

To indicate the feasibility and usefulness of the proposed approach, we applied
it to three different data sets (figure 1). The first data set consists of artificial
images, roughly depicting a vessel containing calcified regions. Although the ves-
sel changes shape between the floating and the reference image, the shape of the
calcified regions and bony structures is supposed to remain constant. Therefore,
we chose a weight function w(x) = 1 for high-intense regions and w(x) = 0
otherwise. As can be seen from the results, the shape of the rigid structures is
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(i)

(ii)

(iii)

(iv)

(v)

(vi)

(a) (b) (c) (d) (e)

Fig. 1. Validation data sets. From top to bottom: artificial CTA slice, detail of clini-
cal CTA slice, detail of clinical PET scan. Rows (i), (iii) and (v) display the reference
images and the registration results without the penalty term, rows (ii), (iv) and (vi) dis-
play the floating images and the registration results with the penalty term. The columns
contain (a) the reference and floating image, (b) the registered images (reference image
subtracted from registered floating image in (iii) and (iv)) , (c) the unweighted penalty
term, (d) the obtained deformation grid, and (e) the local weight function w(x). The
penalty term and deformation field images are overlaid with the edges of the registered
image.
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preserved better using the proposed penalty term then without. E.g., the bigger
calcifications at the top of the image are more elongated, whereas the smaller
calcifications at the bottom are slightly compressed. This is confirmed by the
images in column (d), that show a high non-rigidity factor in the unconstrained
case, and almost no deformation in the constrained case.

The second example (figure 1, rows (iii) and (iv)) shows a detail of a regis-
tered computed tomography angiography (CTA) slice. We chose a weight factor
that increases linear with intensity in the high-intense regions, and is zero oth-
erwise. As can be seen in column (c), an unconstrained registration causes local
shape deformations in the calcified or bony regions. When we use the approach
proposed in this article, the deformation is locally rigid in the selected struc-
tures. As expected, this has a positive influence on the artifacts in the difference
images (column (b)).

The third data set we applied the algorithm to consists of full body PET
images, acquired at different time points during treatment. As we want to study
the evolution of the lesion over time, we do not want the non-rigid registration to
locally deform it. The results of the registration are shown in figure 1, rows (v-vi).
We used a weight function similar to the previous case, preventing the lesions to
change shape. Close observation of column (b) shows that in the unconstrained
case, the lower left region did slightly shrink while the lower middle lesion did
grow.

4 Discussion

A new local rigidity penalty term for non-rigid image registration is proposed,
modelling the weighted local rigidity of the transformation. This penalty term is
useful for the registration of images where certain structures can not or should
not change shape. Its applicability is shown on three example data sets.

The introduction of the local weight factor enables the deformation to pre-
serve the shape in selected regions while still allowing the deformation to non-
rigidly align both images. The determination of the weight factor necessitates
some kind of segmentation, labelled or statistical, of at least one of the images.
Several approaches for this segmentation are possible, ranging from simple inten-
sity thresholding as in the samples shown here, over the use of a more advanced
segmentation algorithm like e.g. level-set segmentation, to a joint segmenta-
tion/registration approach, where in each iteration the segmentation is updated
based on the current registration and vice versa.

In future research, we will validate our registration method on different kinds
of images in two and three dimensions, investigate the influence of the weight
factors and compare the rigidity constraint with other constraints, especially the
volume preserving constraint introduced by Rohlfing et al. [6]. However, because
usually no ground truth exists giving the correct deformation field, the validation
of nonrigid registration algorithms is difficult and an active area of research. A
promising validation method was recently introduced by Schnabel et al. [12],
using a biomechanical model to simulate non-rigid deformations.
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9. Thévenaz, P., Unser, M.: Optimization of mutual information for multiresolution
image registration. IEEE Trans. Med. Imag. 9 (2000) 2083–2099

10. Unser, M.: Splines: A perfect fit for signal and image processing. IEEE Signal
Processing Mag. 16 (1999) 22–38

11. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C: The Art of Scientific Computing. Cambridge University Press (1992)

12. Schnabel, J.A., Tanner, C., Castellano-Smith, A.D., Leach, M.O., Hayes, C., De-
genhard, A., Hose, R., Hill, D.L.G., Hawkes, D.J.: Validation of non-rigid regis-
tration using finite element methods. In Insana, M.F., Leahy, R.M., eds.: XVIIth
International Conference on Information Processing in Medical Imaging (IPMI’01).
Volume 2082 of Lecture Notes in Computer Science., Springer Verlag (2001) 344–
357


	Introduction
	Methods
	Transformation Model
	Cost Function
	Optimization

	Experiments
	Discussion



