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Abstract. Today, event logs contain vast amounts of data that can eas-
ily overwhelm a human. Therefore, the mining of frequent patterns from
event logs is an important system and network management task. This
paper discusses the properties of event log data, analyses the suitability
of popular mining algorithms for processing event log data, and proposes
an efficient algorithm for mining frequent patterns from event logs.

1 Introduction

Event logging and log files are playing an increasingly important role in sys-
tem and network administration (e.g., see [1]), and the mining of frequent pat-
terns from event logs is an important system and network management task
[2][3][4][5][6][7]. Recently proposed mining algorithms have often been variants
of the Apriori algorithm [2][3][4][7], and they have been mainly designed for de-
tecting frequent event type patterns [2][3][4][5][7]. The algorithms assume that
each event from the event log has two attributes – time of event occurrence and
event type. There are several ways for defining the frequent event type pattern,
with two definitions being most common. In the case of the first definition (e.g.,
see [7]), the algorithm views the event log as a set of overlapping windows, where
each window contains events from a time frame of t seconds (the window size t is
given by the user). A certain combination of event types is considered a frequent
pattern if this combination is present at least in s windows, where the thresh-
old s is specified by the user. In the case of the second definition (e.g., see [5]),
the algorithm assumes that the event log has been divided into non-overlapping
slices according to some criteria (e.g., events from the same slice were all issued
by the same host). A certain combination of event types is considered a frequent
pattern if this combination is present at least in s slices (the threshold s is given
by the user). Although the use of this definition requires more elaborate pre-
processing of the event log, it also eliminates the noise that could appear when
events from different slices are mixed. In the rest of this paper, we will employ
the second approach for defining the frequent event type pattern.
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Events in windows or slices are usually ordered in occurrence time ascend-
ing order. The order of events in windows or slices is often taken into account
during the mining, since this could reveal causal relations between event types –
e.g., instead of an unordered set {DeviceDown, FanFailure} the algorithm out-
puts a sequence FanFailure → DeviceDown. However, as pointed out in [7],
the mining of unordered frequent event type sets is equally important. Due to
network latencies, events from remote nodes might arrive and be written to the
log in the order that differs from their actual occurrence order. Even if events
are timestamped by the sender, system clocks of network nodes are not always
synchronized, making it impossible to restore the original order of events. Also,
in many cases the occurrence order of events from the same window or slice is
not pre-determined (e.g., since events are not causally related). In the remainder
of this paper, we will not consider the order of events in a slice important.

Note that it is often difficult to mine patterns of event types from raw event
logs, since messages in raw event logs rarely contain explicit event type codes
(e.g., see [1]). Fortunately, it is possible to derive event types from event log
lines, since very often the events of the same type correspond to a certain line
pattern. For example, the lines Router myrouter1 interface 192.168.13.1 down,
Router myrouter2 interface 10.10.10.12 down, and Router myrouter5 interface
192.168.22.5 down represent the event type ”Router interface down”, and corre-
spond to the line pattern Router * interface * down. Thus, the mining of frequent
line patterns is an important preprocessing technique, but can be very useful for
other purposes as well, e.g., for building event log models [8].

Let I = {i1, ..., in} be a set of items. If X ⊆ I, X is called an itemset,
and if |X| = k, X is also called a k-itemset. A transaction is a tuple T =
(tid, X) where tid is a transaction identifier and X is an itemset. A transaction
database D is a set of transactions, and the cover of an itemset X is the set of
identifiers of transactions that contain X : cover(X) = {tid | (tid, Y ) ∈ D, X ⊆
Y }. The support of an itemset X is defined as the number of elements in its cover:
supp(X) = |cover(X)|. The task of mining frequent itemsets is formulated as
follows – given the transaction database D and the support threshold s, find all
itemsets with the support s or higher (each such set is called a frequent itemset).

When the event log has been divided into m slices (numbered from 1 to m),
then we can view the set of all possible event types as the set of items I, and each
slice can be considered a transaction with its tid between 1 and m. If the ith
slice is Si = {E1, ..., Ek}, where Ej = (tj , ej) is an event from Si, ej is the type
of Ej , and tj is the occurrence time of Ej , then the transaction corresponding
to Si is (i,∪k

j=1{ej}). When we inspect a raw event log at the word level, each
line pattern consists of fixed words and wildcards, e.g., Router * interface *
down. Note that instead of considering entire such pattern we can just consider
the fixed words together with their positions, e.g., {(Router, 1), (interface, 3),
(down, 5)} [8]. Similarly, if the ith line from a raw event log has k words, it can
be viewed as a transaction with identifier i and k word-position pairs as items.

If we view event logs as transaction databases in the ways described above,
we can formulate the task of mining frequent event type patterns or frequent line
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Fig. 1. A sample transaction database and an itemset trie

patterns as the task of mining frequent itemsets. We will use this formulation in
the rest of this paper, and also use the term pattern to denote an itemset.

In this paper, we propose an efficient algorithm for mining frequent patterns
from event logs that can be employed for mining line and event type patterns.
The rest of the paper is organized as follows: section 2 discusses related work on
frequent itemset mining, section 3 presents the properties of event log data and
the analysis of existing mining algorithms, section 4 describes a novel algorithm
for mining frequent patterns from event logs, section 5 discusses the performance
and implementation of the algorithm, and section 6 concludes the paper.

2 Frequent Itemset Mining

The frequent itemset mining problem has received a lot of attention during the
past decade, and a number of mining algorithms have been developed. For the
sake of efficient implementation, most algorithms order the items according to
certain criteria, and use this ordering for representing itemsets. In the rest of
this paper, we assume that if X = {x1, ..., xk} is an itemset, then x1 < ... < xk.

The first algorithm developed for mining frequent itemsets was Apriori [9]
which works in a breadth-first manner – discovered frequent k -itemsets are used
to form candidate k+1-itemsets, and frequent k+1-itemsets are found from the
set of candidates. Recently, an efficient trie (prefix tree) data structure has been
proposed for the candidate support counting [10][11]. Each edge in the itemset
trie is labeled with the name of a certain item, and when the Apriori algorithm
terminates, non-root nodes of the trie represent all frequent itemsets. If the path
from the root node to a non-root node N is x1, ..., xk, N identifies the frequent
itemset X = {x1, ..., xk} and contains a counter that equals to supp(X). In
the remainder of this paper, we will use notations node(x1, ..., xk) and node(X)
for N, and also, we will always use the term path to denote a path that starts
from the root node. Figure 1 depicts a sample transaction database and an
itemset trie (the support threshold is 2 and items are ordered in lexicographic
order).
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As its first step, the Apriori algorithm detects frequent 1-itemsets and cre-
ates nodes for them. Since every subset of a frequent itemset must also be fre-
quent,the nodes for candidate k+1-itemsets are generated as follows – for each
node node(x1, ..., xk) at depth k all its siblings will be inspected. If xk < yk for
the sibling node(x1, ..., xk−1, yk), then the candidate node node(x1, ..., xk, yk)
will be inserted into the trie with its counter set to zero. In order to find fre-
quent k+1-itemsets, the algorithm traverses the itemset trie for each transaction
(tid, Y ) ∈ D, and increments the counter in node(X) if X ⊆ Y, |X| = k + 1. Af-
ter the database pass, the algorithm removes nodes for infrequent candidate
itemsets.

Although the Apriori algorithm works well when frequent itemsets contain
relatively few items (e.g., 4–5), its performance starts to deteriorate when the
size of frequent itemsets increases [12][13]. In order to produce a frequent itemset
{x1, ..., xk}, the algorithm must first produce its 2k − 2 subsets that are also
frequent, and when the database contains frequent k -itemsets for larger values
of k (e.g., 30–40), the number of nodes in the itemset trie could be very large. As
a result, the runtime cost of the repeated traversal of the trie will be prohibitive,
and the trie will consume large amounts of memory.

In recent past, several algorithms have been proposed that explore the search
space in a depth-first manner, and that are reportedly by an order of a magni-
tude faster than Apriori. The most prominent depth-first algorithms for mining
frequent itemsets are Eclat [12] and FP-growth [13]. An important assump-
tion made by Eclat and FP-growth is that the transaction database fits into
main memory. At each step of the depth-first search, the algorithms are look-
ing for frequent k -itemsets {p1, ..., pk−1, x}, where the prefix P = {p1, ..., pk−1}
is a previously detected frequent k -1-itemset. When looking for these itemsets,
the algorithms extract from the database the data describing transactions that
contain the itemset P, and search only this part of the database. If frequent
k -itemsets were found, one such itemset is chosen for the prefix of the next step,
otherwise the new prefix is found by backtracking. Since the database is kept in
main memory using data structures that facilitate the fast extraction of data,
Eclat and FP-growth can explore the search space faster than Apriori.

The main difference between the Eclat and FP-growth algorithm is how the
transaction database is stored in memory. Eclat keeps item covers in memory,
while FP-growth saves all transactions into FP-tree which is a tree-like data
structure. Each non-root node of the FP-tree contains a counter and is labeled
with the name of a certain frequent item (frequent 1-itemset). In order to build
the FP-tree, the FP-growth algorithm first detects frequent items and orders
them in support ascending order. Frequent items of each transaction are then
saved into FP-tree in reverse order as a path, by incrementing counters in exist-
ing nodes of the path and creating missing nodes with counters set to 1. In that
way, nodes closer to the root node correspond to more frequent items, and are
more likely to be shared by many transactions, yielding a smaller FP-tree [13].

Unfortunately, Eclat and FP-growth can’t be employed for larger transaction
databases which don’t fit into main memory. Although some techniques have
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been proposed for solving this problem (e.g., the partitioning of the database),
these techniques are often infeasible [14]. In the next section we will show that
this problem is also relevant for event log data sets.

3 The Properties of Event Log Data

The nature of data in the transaction database plays an important role when de-
signing an efficient mining algorithm. When conducting experiments with event
log data sets, we discovered that they have several important properties. Ta-
ble 1 presents eight sample data sets that we used during our experiments.
The first five data sets (named openview, mailserver, fileserver, webserver, and
ibankserver, respectively) are raw event logs from different domains: HP Open-
View event log file, mail server log file, file and print server log file, web server
log file, and Internet banking server log file. We used these event logs for fre-
quent line pattern mining experiments. The rest of the data sets (named websess,
ibanksess, and snort) were obtained from raw event logs by arranging events into
slices, and we used them during our experiments of mining frequent event type
patterns. In websess data set each slice reflects a user visit to the web server,
with event types corresponding to accessed URLs. In ibanksess data set a slice
corresponds to a user session in the Internet bank, where each event type is
a certain banking transaction type. The snort data set was obtained from the
Snort IDS alert log, and each slice reflects an attack from a certain IP address
against a certain server, with event types corresponding to Snort rule IDs.

Table 1. The properties of event log data

Data set name # of # of Items that Items that occur Max. frequent
transactions items occur ten at least once per itemset size

times or less 1,000 transactions (supp. 0.1%)

openview 1,835,679 1,739,185 1,582,970 1,242 65
mailserver 7,657,148 1,700,840 1,472,296 627 15
fileserver 7,935,958 11,893,846 11,716,395 817 118
webserver 16,252,925 4,273,082 3,421,834 396 24
ibankserver 14,733,696 2,008,418 1,419,138 304 11
websess 217,027 22,544 17,673 341 21
ibanksess 689,885 454 140 110 12
snort 95,044 554 476 45 7

Firstly, it is evident from Table 1 that the number of items in the transac-
tion database can be quite large, especially when we mine frequent line patterns
from raw event logs. However, only few items are relatively frequent (occur at
least once per 1,000 transactions), and also, most items appear only few times in
the data set. Secondly, Table 1 also indicates that frequent itemsets may contain
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many items (the table presents figures for the support threshold of 0.1%), which
means that Apriori is not always adequate for processing event log data.

The third important property of event log data is that there are often strong
correlations between frequent items in transactions. If items are event types,
such strong correlations often exist because of causal relations between event
types (e.g., when the PortScan event appears, the TrafficAnomaly event also
appears), or because of distinct patterns in the user behavior (e.g., if the web
page A is accessed, the web page B is also accessed). In the case of raw event
logs where items are word-position pairs, this effect is usually caused by the
message formatting with a certain format string before the message is logged,
e.g., sprintf(message, ”Connection from %s port %d”, ip, port). When events of
the same type are logged many times, constant parts of the format string will
become frequent items which occur together many times in the data set. There
could also be strong correlations between items corresponding to variable parts
of the format string, e.g., between user names and workstation IP addresses.

In order to assess how well the Apriori, Eclat, and FP-growth algorithms
are suited for mining frequent patterns from event logs, we conducted several
experiments on data sets from Table 1 with support thresholds of 1% and 0.1%
(during all our experiments presented in this paper, we used Apriori, Eclat,
and FP-growth implementations by Bart Goethals [15]). In order to reduce the
memory consumption of the algorithms, we removed very infrequent items (with
the support below 0.01%) from all data sets, and as a result, the number of
items was below 7,000 in all cases. A Linux workstation with 1.5 GHz Pentium 4
processor, 512 MB of main memory, and 1 GB of swap space was used during
the experiments. Our experiments revealed that when the transaction database
is larger, depth-first algorithms could face difficulties when they attempt to load
it into main memory (see Table 2).

Table 2 suggests that Eclat is unsuitable for mining frequent patterns from
larger event logs, even when infrequent items have been filtered out previously
and the algorithm has to load only few thousand item covers into memory. With
fileserver and ibankserver data sets the Eclat algorithm did run out ofphysi-
cal memory, and was able to continue only because of sufficient swap space;

Table 2. The size of the memory-resident database

Data set name Eclat 1% FP-growth 1% Eclat 0.1% FP-growth 0.1%

openview 359.2 MB 2.8 MB 370.7 MB 5.7 MB
mailserver 263.3 MB 2.9 MB 280.5 MB 10.8 MB
fileserver 1009.1 MB 4.0 MB 1024.4 MB 8.6 MB
webserver Out of VM 64.0 MB Out of VM 249.9 MB
ibankserver 657.5 MB 37.2 MB 678.0 MB 77.5 MB
websess 5.7 MB 2.4 MB 6.0 MB 9.8 MB
ibanksess 17.5 MB 3.3 MB 17.6 MB 10.6 MB
snort 2.9 MB 2.2 MB 2.9 MB 2.2 MB
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with webserver data set, the algorithm terminated abnormally after consuming
all available virtual memory. Based on these findings, we removed Eclat from
further testing. Table 2 also suggests that the FP-growth algorithm is more con-
venient in terms of memory consumption. The reason for this is that the FP-tree
data structure is efficient for storing transactions when strong correlations ex-
ist between frequent items in transactions. If many such correlations exist, the
number of different frequent item combinations in transactions is generally quite
small, and consequently relatively few different paths will be saved to FP-tree.
However, it should be noted that for larger data sets the FP-tree could never-
theless be rather large, especially when the support threshold is lower (e.g., for
the webserver data set the FP-tree consumed about 250 MB of memory when
the support threshold was set to 0.1%).

We also tested the Apriori algorithm and verified that in terms of performance
it is inferior to FP-growth – for example, when the support threshold was set
to 1%, Apriori was 11.5 times slower on mailserver data set, and 9.5 times
slower on ibankserver data set. However, on openview and fileserver data sets
(which contain frequent itemsets with a large number of items) both algorithms
performed poorly, and were unable to complete within 24 hours.

The experiment results indicate that all tested algorithms are not entirely
suitable for mining frequent patterns from event logs. In the next section we will
present an efficient mining algorithm that attempts to address the shortcomings
of existing algorithms.

4 A Frequent Pattern Mining Algorithm for Event Logs

In this section we will present an efficient algorithm for mining frequent patterns
from event logs. It combines the features of previously discussed algorithms, tak-
ing also into account the properties of event log data. Since depth-first Eclat and
FP-growth algorithms are inherently dependent on the amount of main memory,
our algorithm works in a breadth-first manner and employs the itemset trie data
structure (see section 2). In order to avoid inherent weaknesses of Apriori, the
algorithm uses several techniques for speeding up its work and reducing its mem-
ory consumption. These techniques are described in the following subsections.

4.1 Mining Frequent Items

The mining of frequent items is the first step of any breadth-first algorithm which
creates a base for further mining. In order to detect frequent items, the algorithm
must make a pass over the data set and count how many times each item occurs
in the data set, keeping item counters in main memory. Unfortunately, because
the number of items can be very large (see section 3), the memory cost of the
item counting is often quite high [8].

In order to solve this problem, our algorithm first estimates which items need
not to be counted. Before the counting, the algorithm makes an extra pass over
the data set and builds the item summary vector. The item summary vector is
made up of m counters (numbered from 0 to m-1) with each counter initialized to
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zero. During the pass over the data set, a fast hashing function is applied to each
item. The function returns integer values from 0 to m-1, and each time the value
i is calculated for an item, the ith counter in the vector will be incremented.
Since efficient hashing functions are uniform [16], each counter in the vector will
correspond roughly to n/m items, where n is the number of different items in
the data set. If items i1, ..., ik are all items that hash to the value i, and the items
i1, ..., ik occur t1, ..., tk times, respectively, then the value of the ith counter in
the vector equals to the sum

∑k
j=1 tj .

After the summary vector has been constructed, the algorithm starts counting
the items, ignoring the items for which counter values in the summary vector
are below the support threshold (no such item can be frequent, since its support
does not exceed its counter value). Since most items appear only few times in
the data set (see section 3), many counter values will never cross the support
threshold. Experiment results presented in [8] indicate that even the use of a
relatively small vector (e.g., 100 KB) dramatically reduces the memory cost of
the item counting.

4.2 Cache Tree

Eclat and FP-growth algorithms are fast not only because of their depth-first
search strategy, but also because they load the transaction database from disk (or
other secondary storage device) into main memory. In addition, the algorithms
don’t attempt to store each transaction as a separate record in memory, but
rather employ efficient data structures that facilitate data compression (e.g., the
FP-tree). As a result, the memory-resident database is much smaller than the
original database, and a scan of the database will take much less time.

Although recent Apriori implementations have employed a prefix tree for
keeping the database in memory [10][11], this technique can’t be used for data
sets which don’t fit into main memory. As a solution, we propose to store most
frequently used transaction data in the cache tree. Let D be the transaction
database and F the set of all frequent items. We say that a set of frequent items
X ⊆ F corresponds to m transactions if |{(tid, Y ) | (tid, Y ) ∈ D, Y ∩F = X}| =
m. Cache tree is a memory-resident tree data structure which is guaranteed to
contain all sets of frequent items that correspond to c or more transactions,
where the value of c is given by the user. Each edge in the cache tree is labeled
with the name of a certain frequent item, and each node contains a counter. If
the set of frequent items X = {x1, ..., xk} corresponds to m transactions and is
stored to the cache tree, it will be saved as a path x1, ..., xk, and the counter in
the tree node node(x1, ..., xk) will be set to m. This representation of data allows
the algorithm to speed up its work by a considerable margin, since instead of
processing m transactions from disk (or other secondary storage device), it has
to process just one memory-resident itemset X that does not contain infrequent
(and thus irrelevant) items.

In order to create the cache tree, the algorithm has to detect which sets of
frequent items correspond to at least c transactions. Note that if the algorithm
simply counts the occurrence times of sets, all sets would end up being in main
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memory together with their occurrence counters (as if c = 0). For solving this
problem, the algorithm uses the summary vector technique presented in section
4.1 – for each transaction (tid, Y ) ∈ D it finds the set X = Y ∩ F , hashes X to
an integer value, and increments the corresponding counter in the transaction
summary vector. After the summary vector has been constructed, the algorithm
makes another pass over the data, finds the set X for each transaction, and
calculates the hash value for it. If the hash value is i and the ith counter in
the vector is smaller than c, the itemset X is saved to the out-of-cache file as a
separate record, otherwise the itemset X is saved into the cache tree (the counter
in node(X) is incremented, or set to 1 if the node didn’t exist previously).

In that way, the transaction data that would be most frequently used during
the mining are guaranteed to be in main memory, and the representation of this
data allows the algorithm to further speed up its work. On the other hand, the
algorithm does not depend on the amount of main memory available, since the
amount of data stored in the cache tree is controlled by the user.

4.3 Reducing the Size of the Itemset Trie

As discussed in section 2, the Apriori algorithm is not well suited for processing
data sets which contain frequent k -itemsets for larger values of k, since the
itemset trie could become very large, making the runtime and memory cost of the
algorithm prohibitive. In order to narrow the search space of mining algorithms,
several recent papers have proposed the mining of closed frequent itemsets only.
An itemset X is closed if X has no superset with the same support. Although
it is possible to derive all frequent itemsets from closed frequent itemsets, this
task has a quadratic time complexity.

In this subsection, we will present a technique for reducing the size of the
itemset trie, so that the trie would still represent all frequent itemsets. When
there are many strong correlations between frequent items in transactions, many
parts of the Apriori itemset trie are likely to contain information that is already
present in other parts. The proposed reduction technique will enable the algo-
rithm to develop only those trie branches that contain unique information.

Let F = {f1, ..., fn} be the set of all frequent items. We call the set dep(fi) =
{fj | fi �= fj , cover({fi}) ⊆ cover({fj})} the dependency set of fi, and say that
an item fi has m dependencies if |dep(fi)| = m. A dependency prefix of the item
fi is the set pr(fi) = {fj | fj ∈ dep(fi), fj < fi}. A dependency prefix of the
itemset {fi1 , ..., fik

} is the set pr({fi1 , ..., fik
}) = ∪k

j=1pr(fij ).
Note that the dependency prefix of the itemset has two important properties:

(1) if pr({fi1 , ..., fik
})⊆{fi1 , ..., fik

}, then pr({fi1 , ..., fik−1}) ⊆ {fi1 , ..., fik−1},
(2) if pr(X) ⊆ X, then supp(X \ pr(X)) = supp(X) (this follows from the
transitivity property – if a, b, c ∈ F , a ∈ pr(b), and b ∈ pr(c), then a ∈ pr(c)).

The technique for reducing the size of the itemset trie can be summarized
as follows – if the itemset does not contain its dependency prefix, don’t create
a node in the trie for that itemset. As its first step, the algorithm creates the
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root node, detects frequent items, and finds their dependency sets. If no frequent
items were found, the algorithm terminates. Otherwise, it creates nodes only for
these frequent items which have empty dependency prefixes, attaching the nodes
to the root node. From then on, the algorithm will build the trie layer by layer. If
the current depth of the trie is k, the next layer of nodes is created by processing
the itemsets previously saved to the cache tree and the out-of-cache file. If the
itemset {x1, ..., xm} was read from the cache tree, i is set to the counter value
from the cache tree node node({x1, ..., xm}), otherwise i is set to 1. Then the
itemset is processed by traversing the itemset trie recursively, starting from the
root node (in the rest of this paper, this procedure is called ProcItemset):

1. If the current node is at depth d, d < k, let l := k + 1 − d. If m < l, return;
otherwise, if there is an edge with the label x1 from the current node, follow
that edge and process the itemset {x2, ..., xm} recursively for the new node.

2. If the current node is at depth k, the path leading to the current node is
y1, ..., yk, and pr(x1) ⊆ {y1, ..., yk}, check whether there is an edge with the
label x1 from the current node to a candidate node. If the edge exists, add
i to the counter in the candidate node; if the edge does not exist, create the
candidate node node(y1, ..., yk, x1) in the trie with the counter value i.

3. If m > 1, process the itemset {x2, ..., xm} recursively for the current node.

After the data pass, the algorithm removes candidate nodes with counter
values below the support threshold, and terminates if all candidate nodes were
removed.

When the algorithm has completed its work, each non-root node in the trie
represents a frequent itemset which contains its dependency prefix, and also, if X
is a frequent itemset which contains its dependency prefix, the node node(X) is
present in the trie (this follows from the first property of the itemset dependency
prefix). Although the trie is often much smaller than the Apriori itemset trie,
all frequent itemsets can be easily derived from its nodes. For node(X) that
represents the frequent itemset X, derived itemsets are {X \ Y | Y ⊆ pr(X)},
with each itemset having the same support as X (this follows from the second
property of the itemset dependency prefix). Also, if V is a frequent itemset, there
exists a unique node node(W ) in the trie for deriving V, where W = V ∪ pr(V ).

The algorithm can be optimized in several ways. The first optimization con-
cerns the frequent item ordering. For the Apriori algorithm, a popular choice
has been to order items in support ascending order [10][11]. We propose to order
frequent items in dependency ascending order, i.e., in the order that satisfies the
following condition – if fi < fj , then |dep({fi})| ≤ |dep({fj})|. This ordering
increases the likelihood that the dependency prefix of an item contains all ele-
ments from the dependency set of the item, and thus increases the effectiveness
of the trie reduction technique. The second optimization comes from the observa-
tion that when frequent items have very few dependencies, our algorithm could
produce much more candidate nodes than Apriori. Fortunately, candidates can
still be generated within our framework in Apriori fashion – if the trie reduction
technique was not applied at node N for reducing the number of its child nodes,
and node M is a child of N, then the siblings of M contain all necessary nodes
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for the creation of candidate child nodes for M. After we have augmented our
algorithm with the Apriori-like candidate generation, its final version can be
summarized as follows:

1. Make a pass over the database, detect frequent items, and order them in
lexicographic order (if the number of items is very large, an optional pass
described in section 4.1 can be made for filtering out irrelevant items). If no
frequent items were found, terminate.

2. Make a pass over the database, in order to calculate dependency sets for
frequent items and to build the transaction summary vector.

3. Reorder frequent items in dependency ascending order and find their depen-
dency prefixes.

4. Make a pass over the database, in order to create the cache tree and the
out-of-cache file.

5. Create the root node of the itemset trie and attach nodes for frequent items
with empty dependency prefixes to the root node. If all frequent items have
empty dependency prefixes, set the APR-flag in the root node.

6. Let k := 1.
7. Check all nodes in the trie at depth k. If the parent of a node N has the APR-

flag set, generate candidate child nodes for the node N in Apriori fashion
(node counters are set to zero), and set the APR-flag in the node N.

8. Build the next layer of nodes in the trie using the ProcItemset procedure
with the following modification – if the APR-flag is set in a node at depth
k, don’t attach any additional candidate nodes to that node.

9. Remove the candidate nodes (nodes at depth k+1) with counter values below
the support threshold. If all candidate nodes were removed, output frequent
itemsets and terminate.

10. Find the nodes at depth k for which the trie reduction technique was not
applied during step 8 (during calls to the ProcItemset procedure) for reducing
the number of their child nodes, and set the APR-flag in these nodes. Then
let k := k + 1 and go to step 7.

It is easy to see that the Apriori algorithm is a special case of our algorithm
– if frequent items have no dependencies at all, our algorithm is identical to
Apriori. Otherwise, the algorithm will employ the trie reduction technique as
much as possible, avoiding to develop trie branches that would contain redundant
information. If the trie reduction technique is not applicable for certain branches
any more, the algorithm will switch to Apriori-like behavior for these branches.

Figure 2 depicts a sample reduced itemset trie for the same transaction
database as presented in Fig. 1 (the support threshold is 2). The reduced item-
set trie in Fig. 2 is obtained as follows – first the set of frequent items is found,
yielding F = {a, b, c, d}. Then dependency sets are calculated for frequent items:
dep(d) = {b, c}, dep(c) = dep(a) = {b}, dep(b) = ∅. After ordering frequent items
in dependency ascending order b < c < a < d, their dependency prefixes are:
pr(b) = ∅, pr(c) = pr(a) = {b}, pr(d) = {b, c}. Only the node node(b) can be
attached to the root node, since b is the only item with an empty dependency
prefix. Also, although the itemset {b, d} is frequent, the node node(b, d) will not
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Fig. 2. A sample transaction database and a reduced itemset trie

be inserted into the trie, since the set {b} does not contain the item c from the
dependency prefix of d. Altogether, there are 11 frequent itemsets – the node
node(b) represents one itemset {b} with support 5, the node node(b, c) represents
two itemsets {b, c} and {c} with support 4, the node node(b, c, a) represents two
itemsets {b, c, a} and {c, a} with support 3 (but does not represent {a}, since
{b, c, a} \ pr({b, c, a}) = {c, a}!), the node node(b, c, d) represents four itemsets
{b, c, d}, {b, d}, {c, d}, and {d} with support 2, and the node node(b, a) represents
two itemsets {b, a} and {a} with support 4.

In the next section we will discuss the performance and implementation issues
of our algorithm.

5 Performance and Implementation

In order to measure the performance of our algorithm, we decided to compare it
with the FP-growth algorithm, because experiment results presented in section
3 suggest that FP-growth is much better suited for mining patterns from event
logs than Eclat and Apriori. Also, we wanted to verify whether our algorithm
that uses the breadth-first approach is able to compete with a fast depth-first
algorithm. We conducted our experiments on a Linux workstation with 1.5 GHz
Pentium 4 processor and 512 MB of memory. For the sake of fair performance
comparison, we configured our algorithm to load the entire transaction database
into main memory for all data sets. The results of our experiments are presented
in Table 3, Table 4, and Table 5.

First, the experiment results indicate that the trie reduction technique is
rather effective for event log data sets, and often significantly smaller itemset
trie is produced than in the case of Apriori (if there are m frequent itemsets, the
number of nodes in the Apriori itemset trie is m+1). As a result, the algorithm
consumes much less memory and is much faster than Apriori, since the repeated
traversal of a smaller trie takes much less time. The results also indicate that our
algorithm performs quite well when compared to FP-growth, and outperforms it
in several cases. The only exceptions are webserver data set, and websess data
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Table 3. The performance comparison of algorithms for the 1% support threshold

Data set name # of frequent # of nodes in Max. size of Runtime of Runtime of
itemsets the reduced trie freq. itemset our algorithm FP-growth

openview > 264 2,257,548 65 469 s > 24 hours
mailserver 11,359 559 13 113 s 165 s
fileserver ≈ 257 135,721 57 449 s > 24 hours
webserver 14,083,903 39,816 20 1286 s 845 s
ibankserver 18,403 4,499 10 289 s 455 s
websess 80 81 6 3 s 2 s
ibanksess 3,181 1,186 10 10 s 10 s
snort 33 34 4 2 s 1 s

Table 4. The performance comparison of algorithms for the 0.5% support threshold

Data set name # of frequent # of nodes in Max. size of Runtime of Runtime of
itemsets the reduced trie freq. itemset our algorithm FP-growth

openview > 264 3,161,081 65 601 s > 24 hours
mailserver 50,863 1,927 14 113 s 174 s
fileserver > 264 275,525 87 489 s > 24 hours
webserver 38,735,679 84,679 21 2229 s 855 s
ibankserver 53,105 11,430 11 307 s 495 s
websess 280 281 6 3 s 3 s
ibanksess 6,279 2,229 10 10 s 10 s
snort 42 43 4 2 s 1 s

Table 5. The performance comparison of algorithms for the 0.1% support threshold

Data set name # of frequent # of nodes in Max. size of Runtime of Runtime of
itemsets the reduced trie freq. itemset our algorithm FP-growth

openview > 264 7,897,598 65 3395 s > 24 hours
mailserver 302,505 8,997 15 117 s 192 s
fileserver > 264 2,235,271 118 834 s > 24 hours
webserver 319,646,847 443,625 24 8738 s 949 s
ibankserver 328,391 71,229 11 375 s 518 s
websess 2,346,654 1,076,663 21 329 s 17 s
ibanksess 41,103 12,826 12 15 s 12 s
snort 214 121 7 2 s 1 s

set for the 0.1% support threshold. When we investigated these cases in more
detail, we discovered that with a lower support threshold there are quite many
different combinations of frequent items present in the transactions of these data
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sets, and therefore our algorithm will also generate many candidate nodes, most
of which corresponding to infrequent itemsets.

On the other hand, the results suggest that our algorithm is superior to FP-
growth when the data set contains frequent itemsets with a large number of
items and frequent items have many dependencies – for example, on openview
and fileserver data sets our algorithm is much faster. The reason for the poor
performance of FP-growth is as follows – when the data set contains many
frequent k -itemsets for larger values of k, the total number of frequent itemsets
is very large, and since FP-growth must visit each frequent itemset during its
work, its runtime cost is simply too high. This raises an interesting question –
can the FP-growth algorithm be augmented with the same technique that our
algorithm uses, i.e., if the frequent itemset P does not contain its dependency
prefix, the algorithm will not search for frequent itemsets that begin with P.
Unfortunately, when frequent items are ordered in dependency ascending order,
frequent items of transactions will be saved to FP-tree in dependency descending
(reverse) order, because the FP-growth algorithm processes the FP-tree in a
bottom-up manner [13]. Since items with more dependencies tend to be less
frequent, the FP-tree nodes closer to the root node are less likely to be shared
by many transactions, and the resulting FP-tree is highly inefficient in terms
of memory consumption. When conducting experiments with data sets from
Table 1, we found that the FP-tree did not fit into main memory in several cases.

We have developed a mining tool called LogHound that implements our algo-
rithm. The tool can be employed for mining frequent line patterns from raw event
logs, but also for mining frequent event type patterns. LogHound has several op-
tions for preprocessing input data with the help of regular expressions. In order
to limit the number of patterns reported to the end user, it has also an option to
output only those patterns that correspond to closed frequent itemsets. Figure
3 depicts some sample patterns that have been discovered with LogHound.

Fig. 3. Sample frequent patterns detected with LogHound
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LogHound is written is C, and has been tested on Linux and Solaris plat-
forms. It is distributed under the terms of GNU GPL, and is available at
http://kodu.neti.ee/˜risto/loghound/.

6 Conclusion

In this paper, we presented an efficient breadth-first frequent itemset mining
algorithm for mining frequent patterns from event logs. The algorithm combines
the features of well-known breadth-first and depth-first algorithms, and also
takes into account the special properties of event log data. The experiment results
indicate that our algorithm is suitable for processing event log data, and is in
many occasions more efficient than well-known depth-first algorithms.
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