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Abstract. Training sets of images for object recognition are the pillars
on which classifiers base their performances. We have built a frame-
work to support the entire process of image and textual retrieval from
search engines, which, giving an input keyword, performs a statistical
and a semantic analysis and automatically builds a training set. We
have focused our attention on textual information and we have explored,
with several experiments, three different approaches to automatically dis-
criminate between positive and negative images: keyword position, tag
frequency and semantic analysis. We present the best results for each
approach.
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1 Introduction

The process of automatically building a training set of images for object recog-
nition given a class name is a recent challenge originated from the Semantic
Robot Vision Challenge [1]. The idea is to mine on-line repositories of images
and use them to support image classifiers in object recognition tasks [2]. Given
this strategy, the goal is to exploit search engines and retrieve images that can
be used to feed a training set for a specific class.

The problem falls under the topic of Image Retrieval (IR): given a certain
query in a form of a keyword or an image, the system should present images
related to the query. Two main strategies have been deployed to tackle such
problem: content-based image retrieval (CBIR) [3] and tag/keyword-based image
retrieval (TBIR)[4].

CBIR leverages on the concept of visual similarity between the querying
image and the retrieved ones using elementary visual features such as color and
shape, through a matching of their properties, while TBIR tries to overcome the
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limitations presented by the CBIR system through the exploitation of the textual
information conveyed with images, applying document retrieval techniques to
boost the retrieval performances. Nevertheless TBIR performances are influenced
by the availability and quality of the textual information users supply with
images. In fact, while manually annotating images, users often misuse tags or
provide incomplete textual descriptions of the image content [5-7].

The use of the textual information conveyed with images in the process of
image retrieval or image classification is not a novel strategy, there have been
several works that explore how the textual information can be used, among
them [8-11]. Recent approaches explore the use of tags completion either by
mining extra textual information obtained from Internet or by using content
image analysis to fill the gap[6,12].

In the present work we propose a framework that helps to automate the
entire process of training data set construction. The main idea is to use textual
information that comes along with images on the web to fully automate the
training set generation. To achieve this, we assume that the user annotation
process is not always reliable since users are not experts and may annotate
images with different purposes. Even though users upload images in a social
context where other users can use collaborative tagging to annotate images, tags
are not validated and so the subjectivity elements are not removed. Moreover,
since users are non expert, they tend to use ambiguous and inappropriate tags
to describe images content. The main idea is to explore how statistical and
semantic analysis of textual information can help to fully automate the training
set construction. In particular, we employ statistical and semantic analysis to
filter the textual information, pruning noisy tags and retaining only those that
are highly correlated with the content of an image, thus discriminating positive
from negative images'. We use statistical measures such as frequency and tags
distribution, as well as WordNet and semantic distances between tags to evaluate
their correlation and explore their contribution in the discriminative process.
Our starting assumption is that, by incrementally injecting semantic techniques
into the analysis of textual annotation, performances rise and, to validate such
assumption, a set of experiments are presented.

The rest of the paper is structured as follows: Section 2 describes the chal-
lenges of the image retrieval task and provides an overview of works in the
area. The method we propose is introduced in Section 3. Sections 4 discusses
the experimental setup and evaluation method, while the evaluation results are
presented in Section 5. Finally, conclusions and directions for future work are
presented in Section 6.

! We consider as positive those images in which the prominence of the object pre-
sented in the image indicates that the image fully represents it. On the contrary, we
consider as negative those images where the target object is absent or only partially
present/visible, as indicated in the list in section 4.
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2 Related Work

Annotation is a widely used technique to characterize objects portrayed in images
by adding textual tags. The textual tags associated with images have been shown
to be useful, improving the access to photo repositories both using temporal [13]
and geographical information [14]. One of the popular online tag-based photo
sharing repositories is Flickr, allowing users to freely assign one or more chosen
keywords for an image for personal organization or retrieval purposes. In other
words, it allows users to perform tagging, that is the act of adding words to
images, describing the semantics of the visual contents. Users are thus implic-
itly encouraged to add more keywords, creating relatively large amounts of rich
descriptions of objects presented in images. However, the textual tags associated
with images are often noisy and unreliable, posing a number of difficulties when
dealing with IR.

A number of approaches have been proposed to measure the reliability of the
textual tags accompanying images [15-17]. In [17], the authors present a Flickr
distance to measure the correlation between different concepts obtained from
Flickr. Given a pair of concepts (e.g., car-dog), the algorithm tries to compute the
semantic distance between them using square root of Jensen-Shennon divergence.
The authors rely on the scores by considering the higher score distance as an
indication of high relatedness of a pair of concepts. Related researches have been
also focused on investigating which objects people observe most in an image,
which they annotate or tag first, and what influence them in choosing words to
describe objects depicted in images.

Spain and Perona [15] study the idea of “importance” of objects in an image and
conclude that important objects are most likely to be tagged first by humans when
asked to describe the contents of an image. The authors develop a statistical model
validating the notion of dominant object in an image, demonstrating that one can
foresee a set of prominent keywords based on the visual cues through regression.
A work that is closely related to ours is presented by Hwang and Grauman [18].
They introduce an unsupervised learning method for IR that uncovers the implicit
information about the object importance in an image, exploiting a list of keyword
tags provided by humans. The proposed method is able to disclose the relationship
between human tendencies in tagging images (e.g., words order in the tag list) and
the relative importance of objects in an image.

Traditional techniques rely on features extracted from visual contents with
visual category models learnt directly from image repositories that require no
manual supervision [8-11]. The intuition behind the approach proposed in [9]
is to learn object categories from just a few training images in an incremental
manner, using a generative probabilistic model. Similarly, Li-Jia Li and Fei-Fei
Li [10] propose an incremental learning framework, capable of automatically col-
lecting large image datasets. The authors build a database from a sample of seed
images and use the database to filter out newly crawling images by eliminating
irrelevant examples.

Fergus et al. [11] introduce a method able to learn object categories by their
name, exploiting the raw images automatically downloaded from the Google
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image search engine. The introduced approach is able to incorporate spatial
information in translation and scale invariant style, possessing the ability to
tackle the high intra-category variability and isolate irrelevant images produced
by the search engine.

Vijayanarasimhan and Grauman [19] propose an unsupervised approach to
learn visual categories by their names using a collection of images pooled from
keyword-based search engines. The main goal underneath the proposed approach
is to harvest multiple images, by translating the query names into several lan-
guages and crawling the search engines for images using those translated queries.
The false positive categories are collected from random sample images found in
categories that have different names from the category of interest.

We are working on a challenge that is: given the textual tags provided by
humans and associated with images, we want to automatically build a good
training set by discriminating images as either related or unrelated to a targeted
object.

3 Method

In this paper our goal is to take advantage of the textual tags available with
images to automatically select the most representative of an object category for
training a classifier, without looking at the nature of the objects therein. To
do so, we exploit both semantic analysis and pure statistical approaches. These
considerations lead us to focus on three main features:

— keyword position, to capture an image as related or unrelated on the basis
of a keyword (i.e., object class name) position in a tag list;

— semantic analysis, to measure the semantic relatedness by means of seman-
tic distance measures;

— tag frequency, to count the frequency of usage of each tag from a list
describing the object class.

Figure 1 presents a schematic representation of our framework. A detailed
description of the procedure is provided in the subsequent subsections.

Image Search Ground-Truth Main Features Dataset

o X
Engine Dataget Construction

e Poton -
Classification Positive
Images

Flickr

: Images and Analysi Semantical
Repository Tags o Analysis
Negative
Images
Tag
Frequency

Fig. 1. A schematic representation of our framework.
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3.1 Keyword Position

The textual tags given in a tag list and associated with an image describing its
content could reasonably help us to derive important and valuable information
about the nature of the depicted objects. However, the order in which the textual
tags are placed in a tag list is most likely to be influenced by the objects position
and size in the visual content [20]. Therefore, it is reasonable to claim that the
first textual tags in the list are mostly representing the objects in the center of
an image. Taking this keypoint into account, we use this feature to develop 5
different strategies which follow the same algorithmic structure:

Algorithm 1. Keyword Position

Data: a Keyword (i.e.,the object class name) and
T={t;|] V Image i€ Keyword, 3 tag—list t; }
Result: A partition of the Images € Keyword in:
Image-P = {i,|i € Images which are usable to build a training dataset}
Image-N = {i,|i € Images which are outliers}
1 Initialization;
2 foreach i € Images do
3 tags <« load t;;
4 clean(tags)tags, < extract the first n tags from tags;
5 if “keyword” € tags, then
6 | Image-P «— i;
7 else
8 L Image-N « i;

Algorithm 1 is designed to demonstrate the systematic workflow of the key-
word position feature. Given a tag list comprising a number of textual tags and
corresponding to a particular image, the algorithm tries to search for the key-
word through the list in the first n positions. The algorithm then labels the
image as positive (reliable) if it is related to the class name or negative (outlier)
otherwise. It is noteworthy that the clean operation provided in the algorithm
is used to remove words with less than three characters, empty strings and non-
alphabetic texts. It also splits long sentences into single words, when they are
separated by the “_” symbol.

3.2 Semantic Analysis

To define the semantic relatedness or its inverse of the object class characterized
by a keyword to the textual tags being used, semantic distance must be mea-
sured. Therefore we propose to apply two different standard semantic distance
measures: WordNet and Jiang and Conrath [20]. First we adopt the WordNet
distance [21]. WordNet is a large-scale lexical database that organizes English
terms and their syntactic roles into synsets. Synsets are interlinked by means
of conceptual-semantic and a variety of lexical relations. We choose WordNet
due to the fact that it is the first attempt to organize a great amount of con-
cepts according to semantic relations and a hierarchy. Since WordNet provides
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a lexical relationship between concepts, it is beneficial to semantically measure
relatedness of the object class to its related tags by their lexical relationship,
such as meronymy (parthood, e.g. bus-wheels) or hypernym (generalization, e.g.
bus-vehicle) and so on.

Secondly, we apply the distance measure proposed by Jiang and Conrath
n [20]. They formulate their approach in the form of conditional probability of
reaching an item of a child synset given an item of one of its parent sysnsets.

We use this feature and run several experiments according to the following
algorithmic structure:

Algorithm 2. Semantic Analysis

Data: a Keyword (i.e., the object class name) and
T={t V Image i€ Keyword, 3 tag—Ilist t; }
Result: A partition of the Images € Keyword in:
Image-P = {i,|i € Images which are usable to build a training dataset}
Image-N = {i,|i € Images which are outliers}
1 Initialization;
2 foreach i € Images do
3 tags < load t;;
4 clean(tags);
5 score; < sum or mean of the distance values of the tags;
6 if if score; > a Threshold T then
7 ‘ Image-P « 1;
8 else
9 | Image-N — i;

Algorithm 2 is developed to clearly illustrate how we apply the semantic
analysis feature to measure the semantic relatedness or its inverse of the object
class to its textual tags. As already mentioned above, we adopt two different
distance measures: WordNet and Jiang and Conrath. The algorithm takes the
object class (represented by a keyword) and each image’s tag list, then computes
the distance of the keyword to every single textual tag in the tag list, yielding a
score for each. If the algorithm finds no semantic distance between the keyword
and a textual tag, it discards the tag. The algorithm therefore labels an image
as positive (reliable) if its score is equal or above a threshold 7; otherwise it
labels it as negative (outlier). The threshold value 7 changes with respect to the
experiment (see Section 4).

3.3 Tag Frequency

To understand which are the most frequently used tags (words) that describe
images related to a certain object class, we compute the frequency values of
all the single tag(; ;) as their occurrences probability. The idea is to perform a
selection based on the utility of the words used to describe the object depicted
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in an image. The frequency value of a single tag(; ;) is computed as follows:

O — tagg.j)
ZN“”‘”“ length(tag;) ’

i=1

Feq(tagg,j) =

where tag; ;) is the jth tag of the tag list associated to image i, and O — tagz)
is the total number of a tag; ;) occurrences. In particular, if a given frequency
value of a single tag(; ;) is relatively high, it means that many images of the
considered object class require it into their descriptions. In other words, it is
natural to think that if we are looking at an image of a “car”, we highly expect
to observe higher frequency values for tags like “wheel” or “driver” than “pizza”
or “pencil”.

We use this feature to develop 12 different strategies which follow the same
algorithmic structure:

Algorithm 3. Tag Frequency

Data: a Keyword (i.e., the object class name) and
T={t;] V Image i€ Keyword, 3 tag—list t; }
Result: A partition of the Images € Keyword in:
Image-P = {i,|i € Images which are usable to build a training dataset}
Image-N = {i,|i € Images which are outliers}
1 Initialization;
2 foreach i € Images do
3 tags < load t;;
4 clean(tags);
5 score; «— sum or mean of the frequency values of the tags;
6 if if score; > a Threshold T then
7 ‘ Image-P « 1;
8 else
9 | Image-N — i;

Algorithm 3 uses frequency values to determine if a given image is related
to the object class. To do this, it combines the frequency values of each tag; j
to produce a score. Then, it labels an image ¢ as positive (reliable) if its score
is equal or above a threshold 7; otherwise it labels it as negative (outlier). The
threshold value 7 changes with respect to the experiment (see Section 4).

4 Experiments

We devote this section to demonstrate the systematic workflow of our framework.
Firstly, we pool images for a set of 21 object classes taken from the standard
Caltech1012, using Flickr online photo sharing®. Each class contains 400 images

2 http://www.vision.caltech.edu/Image_Datasets/Caltech101
3 https://www.flickr.com/
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as well as their corresponding tag lists (tag;). For simplicity, the number of
crawled images has been defined in order to minimize the computational time
of downloading images and managing their tags during the experiments. The
effective number of classes have been normalized to 16, avoiding the classes
that are composed by a bi-gram (i.e., two words). The remaining classes are:
accordian, bonsai, euphonium, face, laptop, menorah, nautilus, pagoda, panda,
piano, pyramid, revolver, starfish, sunflower, umbrella, watch. Since there are
400 images and 400 tag lists per class, the dataset is composed of 6400 images
and 6400 tag lists.

To generate the ground-truth for our experiment in a more effective and
efficient way, we build a graphical user interface (GUI) that allows us to manually
label an image as positive or as negative with respect to the object class. For
reliable manual classification, some guidelines are defined and adopted. If the
following guidelines are satisfied, then an image is labeled as negative; otherwise
as positive:

— an image is completely unrelated with the object specified by the category
it belongs to;

— an image contains irrelevant parts of the object, that is, parts that alone are
not sufficient to make the category object identifiable;

— an image contains only internal parts of the category object (like a cockpit
of an airplane or an engine of a car);

— an image is a drawing or a caricature of the category object.

For each single feature we run several different experiments based on different
strategies. Each strategy differs from the others with regard to the method used
to compute the threshold. This produces different results in determining if a
given tag list is associated to a positive or negative image.

Referring to the algorithms described in the subsection 3.1, 3.2, 3.3, we give
a brief explanation of the strategies associated to the threshold which produces
the best discrimination results:

Feature 1: Based on experiments performances, we obtain the best result when
searching if a keyword is found in the first three positions in the tag list. Sur-
prisingly, this feature does not involve any cleaning mechanism of textual tags
in the tag list (it avoids the step number 4 of algorithm 1). However, the feature
takes the textual tags as they are provided by Flickr. At this point one may ask
why using contaminated textual tags in a tag list is, unexpectedly, producing
better results than the cleaned version. The answer lays in the “filtering” mecha-
nism of the textual tags. Cleaning the tag list tag; implies producing more single
words (tag;) since the tag sentences are split. This increases the probabilities
of finding the right match with the keyword, therefore a higher number of tags
labeled as positive. This has been confirmed by the number of false positives
generated using the other strategies, which is widely higher than the number
of false positives produced by the strategy just described. To provide a better
understanding of what happens if we do not perform any tag cleaning on the tag
list, we present the following example: given the tag list relative to a negative
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image of the panda class: “zoo_atlanta”, “taishan”, “giant_panda”, the keyword
would not be matched since the substring matching is not performed. Therefore,
the image is labeled as negative. This results change if we clean the tag list
by splitting the sentences into single words. The cleaned tag list becomes: zoo,
atlanta, taishan, giant, panda. In this case, the keyword would match with the
5t tag and therefore the image is now labeled as positive.

Feature 2: This feature uses two different measures: the standard semantic
distance provided by WordNet, and the distance proposed by Jiang and Conrath
in [20]. To select the one which produces the best results, we use both metrics to
run the 12 strategies. We used these two distances since they are widely adopted
in literature. The comparison results are shown in figure 2 .

0.7
—Feat.2 = WNet Dist.

=== Feat.2 = Jian and Conrath [20] Dist.

0.7 b

precision percentages

0.35 I I 1 I
2 4 6 8 10 12

Fig. 2. Summary results obtained by using WordNet and Jiang and Conrath dis-
tances in [20] in all the strategies. WordNet distance is outperforming in average in
all of the strategies. We compute the precision rate for each strategy (a,b,...,0) as:
#TruePositive/ (#TruePositive + # FalsePositive).

Using WordNet distance as shown in figure 2, we observe constant increase in
the average performances of all strategies. Therefore, in the following description
we are mainly referring to the WordNet distance. The strategy based on the
WordNet distance, which gives the best results, uses the following criteria to
split the images set: defining the scores; as the mean of the distances between
the considered tags and the keyword:

scores; = mean(Distance(tag; jy — keyword))

positive  if mean(scores;) > T

Feat2(scores;) = {negative otherwise

The best result is obtained using this strategy when the threshold is set to
T = median(scoresy), where the scores; is the vector of all the scores;.
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Feature 3: The strategy based on the tag frequency feature, which produces
the best results, compared with the other strategies, uses the following criteria
to split the images set: defines the scores; as the sum of the frequency values of
the considered tags with respect to the keyword:

Nimages

scores; = Z FQ(tag(uj))

i=1

positive  if mean(scores;) > T

Feat3(scores;) = {negative Otherwise

We reach the best results when the threshold is set to 7 = mean(scoresy),
where the scoresy is the vector of all the scores;.

5 Performances Evaluations

To assess the reliability of the experimental performances of the features
described beforehand, we select n images labeled as positives from all the strate-
gies and from Flickr. Hence, we count the true positives and the false positives
that have been generated by the strategies and by Flickr (in this case, the false
positives are the ones we manually label as negatives). Since the main goal of
this framework is to generate a reliable dataset of images, for this reason, all of
our strategies tend to produce more negative than positive labels. This behavior
allows to minimize the number of the false positive labels generated during the
experiments. Since not all strategies produce the same number of positive labels,
to avoid the problem of getting some Null values, we fix n = min(P — labels)
of each feature. The selection of the n labels has been done randomly for Flickr,
while for our strategies the first n are considered. To ensure the consistency of
Flickr performances, we average the results produced after 10 random selections.

Table 1 displays the percentage values of the performances obtained using
Flickr and our best strategies. The column #P — labels contains the different n
values used for each class. The column GT — Positives presents the number of
true positives within the ground-truth.

To make the performances reported in the table more comparable, we recal-
culate the precision percentages by fixing n = 50 positive labels* per class. Also
in this case, the selection of the 50 labels has been done randomly for Flickr,
while for our strategies it is referred to the first n. In figure 3, we provide the
average values of each strategy for all the classes with n = 50.

In this last case, an exception is done for the “euphonium” category, since it
is composed by just 9 positive images also in the ground-truth.

At this point, one may be skeptical about the reliability of our strategies, since
we are estimating their performances by considering only 50 images against the
400 downloaded. Therefore, if we observe how the performances change when we
consider all the available positive labels shown in table 1, we are more confident

4 This parameter has been set by considering the lowest common number of labels.
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Table 1. Precision results obtained using all the features for 16 classes. Flickr provides
the number of correct positive labels from the n images downloaded from the Flickr
repository. Feat is an abbreviation for feature, where Feat.! refers to keyword position,
Feat.2 refers to semantic analysis, and Feat.3 refers to tag frequency.

‘ Classes ‘# P- labels‘GT-Positives‘Flickr‘Feat.l‘Feat.2‘Feat.3‘

watch 218 386 /400 | 94.95| 95.87 | 96.79 | 96.79
sunflower 178 379 /400 |93.26 | 97.19 | 96.63 | 96.63
bonsai 119 362 /400 | 90.76 | 90.76 | 92.44 | 88.24
panda 182 359 /400 | 89.56 | 90.11 | 32.31 | 97.25
laptop 171 359 /400 | 88.30 | 92.98 | 93.57 | 87.72
pyramid 203 250 / 400 | 65.02 | 60.10 | 64.04 | 64.04
starfish 170 211 / 400 | 49.41 | 60.00 | 56.47 | 53.53
piano 50 105 / 400 | 37.50 | 58.33 | 37.50 | 70.83
umbrella 175 164 / 400 37.14 | 41.14 | 41.71 | 44.00
menorah 148 146 / 400 | 34.46 | 33.78 | 29.73 | 35.81
accordion 158 118 / 400 31.01 | 29.75 | 31.65 | 28.48
pagoda 167 114 / 400 29.94 | 32.34 | 34.13 | 38.32
face 135 120 / 400 28.15 | 31.11 | 25.19 | 27.41
revolver 127 110 / 400 26.77 | 38.58 | 42.52 | 31.50
nautilus 163 67 / 400 17.79 | 22.09 | 25.15 | 17.79
euphonium 8 9 / 400 0 62.5 0 0

80

75 3

70 b

62.18 %

£
s
5
265
o
e
o

60~

95.50 %

51.38%

50— B _-7

Flickr Feat.1 Feat.2 Feat.3
Approaches

Fig. 3. Summary of results of all the features by fixing n = 50. The highest precision
is given using feat.1 (i.e., keyword position).

on our results. Indeed, if we calculate the average of the positive labels consid-
ered in the last case, we can observe (see table 2) that the performances remain
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constant when setting n # 50. The overall performance of our strategies still out-
performs Flickr. In particular, using keyword position, the average performance
obtained is encouragingly good (about 11% higher than Flickr). This informa-
tion is further enriched since it provides us with a more reliable percentage value
than the ones provided by the results of n = 50.

Table 2. The average performance of all the features when n = 50 and n # 50

# P- labels|Flickr|Feat.1|Feat.2|Feat.3
# 50 50.87 | 61.18 | 56.62 | 55.50
=50 50.87 | 62.18 | 56.62 | 55.50

6 Conclusions

We have presented a framework to support the entire process of image and
textual retrieval from search engines that, given an input keyword, performs
a statistical and a semantic analysis and automatically builds a training set.
We have conducted several experiments to validate our assumptions about the
analysis of textual information and the evaluation that we have provided on
three investigated methods have shown that the position of tags, their order,
is relevant. We have investigated the semantic aspects by using semantic dis-
tance. Unfortunately, the results achieved show modest benefit for the adopted
semantic features. However, the methods suggested are currently under contin-
uous experimentation and need to bee further investigated. In particular, we
consider for future work to explore the use of different search engines such as
Google®, ImageNet®, InstaGram” or Pinterest 2 to check if they are interchange-
able or can be combined to improve performances. We plan also to extend and
investigate other semantic features related to ontological relationships of textual
information and combine them with the aim of creating a waterfall model which
combines different strategies.

Acknowledgements. This research was supported by the VISCOSO project
financed by the Autonomous Province of Trento through the “Team 20117 funding
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