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Abstract Most current machine learning systems for medical decision support do
not produce any indication of how reliable each of their predictions is. However, an
indication of this kind is highly desirable especially in the medical field. This paper
deals with this problem by applying a recently developed technique for assigning
confidence measures to predictions, called conformal prediction, to the problem of
acute abdominal pain diagnosis. The data used consist of a large number of hospital
records of patients who suffered acute abdominal pain. Each record is described
by 33 symptoms and is assigned to one of nine diagnostic groups. The proposed
method is based on Neural Networks and for each patient it can produce either the
most likely diagnosis together with an associated confidence measure, or the set of
all possible diagnoses needed to satisfy a given level of confidence.

1 Introduction

Machine learning techniques have been applied successfully to many medical de-
cision support problems [7, 8] and many good results have been achieved. The re-
sulting systems learn to predict the diagnosis of a new patient based on past history
of patients with known diagnoses. Most such systems produce as their prediction
only the most likely diagnosis of the new patient, without giving any confidence
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information in this prediction. This is a major disadvantage, as measures of confi-
dence are of paramount importance in a medical setting [6]. Confidence measures
are an indication of how likely each prediction is of being correct. In the ideal case,
a confidence of 99% or higher for all examples in a set, means that the percentage
of erroneous predictions in that set will not exceed 1%; when this is true we say that
the confidence measures are well calibrated.

Conformal prediction (CP) [24] is a recently developed technique, which can
be used for obtaining confidence measures. Conformal predictors are built on top
of traditional machine learning algorithms, called underlying algorithms, and com-
plement the predictions of these algorithms with measures of confidence. Different
variants of CPs are described in [11, 15, 16, 17, 18, 21, 22, 23]. The results reported
in these papers show that not only the confidence values output by CPs are useful in
practice, but also their accuracy is comparable to, and sometimes even better than,
that of traditional machine learning algorithms.

Of course other approaches that can be used for deriving some kind of confidence
information do exist. One can apply the theory of Probably Approximately Correct
learning (PAC theory) to an algorithm in order to obtain upper bounds on the prob-
ability of its error with respect to some confidence level. These bounds though, are
usually very week [12] and as a result not very useful in practice. Another alter-
native is the use of Bayesian methods which can give strong confidence bounds.
Bayesian methods however, require some a priori assumptions about the distribu-
tion generating the data and if these are violated their outputs can become quite
misleading [10].

In this paper we apply CP to the problem of acute abdominal pain diagnosis.
This is a relatively popular problem in medical decision support, see e.g. [2, 3, 5,
9, 13, 20, 25], due to the poor discrimination between the diseases that cause acute
abdominal pain, which results in high diagnostic error rates [25]. Wrong diagnoses
may result in unnecessary emergency abdominal operations, or in complications,
such as perforation of the appendix.

The CP we use is based on Neural Networks (NNs). NNs have not only been
successfully applied to many medical problems [1, 4, 8, 19], but they are also one of
the most popular machine learning techniques for almost any type of application. In
order to use NN as the underlying algorithm of a CP, we follow a modified version
of the original CP approach called Inductive Conformal Prediction (ICP) [14]. ICP
is based on the same general idea as CP but, as its name suggests, it replaces the
transductive inference used in the original approach with inductive inference. ICP
was first proposed in [16, 17] in an effort to overcome the computational inefficiency
problem of CPs. As demonstrated in [18] this computational inefficiency problem
renders the original CP approach highly unsuitable for use with NNs; and in extend
any other method that requires long training times.

The rest of this paper is structured as follows. In section 2 we summarise the
general idea behind CP and its inductive version ICP, while in section 3 we detail
the Neural Network ICP method. Section 4 gives an analysis of the data used in this
study and section 5 describes our experiments and lists and discusses their results.
Finally, section 6 gives our conclusions and the future directions of this work.



Confidence Predictions for the Diagnosis of Acute Abdominal Pain 177

2 Conformal Prediction

In this section we give a brief description of the idea behind CP, for more details
see [24]. We are given a training set {z,...,z } of examples, where each z; € Z is
a pair (x;,y;); x; € IR? is the vector of attributes for example i and y; € {Y1,...,Y.}
is the classification of that example. We are also given a new unclassified exam-
ple x;4; and our task is to state something about our confidence in each possible
classification of x; 1.

CP is based on measuring how likely it is for each extended set of examples

{(x17y1)7'"?(xlvyl)7(xl+17Yj)} : .] = 1,...,C, (1)

to have been generated independently from the same probability distribution. First
we measure how strange, or non-conforming, each example in (1) is for the rest
of the examples in the same set. We use what is called a non-conformity measure
which is based on a traditional machine learning algorithm, called the underlying
algorithm of the CP. This measure assigns a numerical score ¢; to each example
(xi,y;) indicating how different it is from all other examples in (1). In effect we
train the underlying algorithm using (1) as training set and we measure the degree
of disagreement between its prediction for x; and the actual label y;; in the case of
x;4+1 we use the assumed label Y; in the place of y; .

The non-conformity score Ocl( y 1) of (x;41,Y;) on its own does not really give us
any information, it is just a numeric value. However, we can find out how unusual

(x141,Y) is according to our non-conformity measure by comparing a; y 1) with all

other non-conformity scores. This comparison can be performed with the function

;)

#li=1,...,l14+1: 06>
{ 2ol

[+1

p(x1,1)5- 0, (), (K41, Y5)) =

We call the output of this function, which lies between 7 1 and 1, the p-value of Y},
also denoted as p(Y;), as that is the only part of (1) we were not given. An important
property of (2) is that Vo € [0, 1] and for all probability distributions P on Z,

PI(Geryn)s s (e, yien)) s pOit) < 8} < 83 3)

for a proof see [12]. As a result, if the p-value of a given label is under some very
low threshold, say 0.05, this would mean that this label is highly unlikely as such
sequences will only be generated at most 5% of the time by any i.i.d. process.

After calculating the p-value of every possible label Y;, as described above, we
are able to exclude all labels that have a p-value under some very low threshold
(or significance level) & and have at most 8 chance of being wrong. Consequently,
given a confidence level 1 — 6 a CP outputs the set

{¥;: p(¥;) > 6}. )
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Alternatively the CP can predict the most likely classification together with a con-
fidence and a credibility measure in this prediction. In this case it predicts the clas-
sification with the largest p-value, outputs one minus the second largest p-value as
confidence to this prediction and as credibility it outputs the p-value of the predicted
classification, i.e. the largest p-value.

2.1 Inductive Conformal Prediction

The original CP technique requires training the underlying algorithm once for each
possible classification of every new test example. This means that if our problem
has 9 possible classifications and we have to classify 2000 test examples, as is the
case in this study, the training process will be repeated 9 x 2000 = 18000 times.
This makes it very computationally inefficient especially for algorithms that require
long training times such as Neural Networks.

Inductive Conformal Predictors (ICPs) are based on the same general idea de-
scribed above, but follow a different approach which allows them to train their un-
derlying algorithm just once. This is achieved by splitting the training set (of size /)
into two smaller sets, the proper training set with m < [ examples and the calibra-
tion set with g := | —m examples. The proper training set is used for training the
underlying algorithm and only the examples in the calibration set are used for cal-
culating the p-value of each possible classification of the new test example. More
specifically, we calculate the p-value of each possible classification Y; of x;,1 as

;)

#li=m+1,....m+q,l+1:0>
o =2 e linz 0} )
g+1
where 0,11, . .., Ontq are the non-conformity scores of the examples in the calibra-

. ;) . .
tion set and oy, is the non-conformity score of (x;11,Y;).

3 Neural Networks Inductive Conformal Predictor

In this section we analyse the Neural Networks ICP (NN-ICP) algorithm. We first
describe the typical output encoding for Neural Networks (NNs) and then, based on
this description, we define two non-conformity measures for NNs. Finally, we detail
the complete NN-ICP algorithm.
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3.1 Non-conformity Measures

Typically the output layer of a classification NN consists of ¢ units, each represent-
ing one of the c possible classifications of the problem at hand; thus each label is
encoded into c target outputs. To explicitly describe this encoding consider the label,
yi =Y, of a training example i, where ¥, € {Y},...,Y.}. The resulting target outputs
for y; will be

f.t

o les

where

i 17 lfJ =u,
t, = .
J 0, otherwise,

for j =1,2,...,c. In the same manner we will denote the actual outputs of the NN
for an example i as ' '
0,0

According to this encoding the higher the output o', (which corresponds to the
example’s true classification) the more conforming the example, and the higher the
other outputs the less conforming the example. In fact, the most important of all
other outputs is the one with the maximum value max;—p ..+, olj, since that is the
one which might be very near or even higher than of,. So a natural non-conformity
measure for an example z; = (x;,y;) where y; =Y, would be defined as

;= max o —o 6
et LW ©)

or as ,

Max;—i e j4u 0

J=1cj
o = —— I (7)
oyt

where the parameter ¥ > 0 in the second definition enables us to adjust the sensitivity
of our measure to small changes of o], depending on the data in question. We added
this parameter in order to gain control over which category of outputs will be more
important in determining the resulting non-conformity scores; by increasing y one
reduces the importance of o}, and consequently increases the importance of all other
outputs.

3.2 The Algorithm

We can now use the non-conformity measure (6) or (7) to compute the non-
conformity score of each example in the calibration set and each test set pair
(X1+¢,Yy). These can then be fed into the p-value function (5), giving us the p-value
for each classification Y,,. The exact steps the Neural Networks ICP follows for a
training set {zj,...,z} and a test set {x;41,...,x/4,} are:
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e Split the training set into the proper training set with m < [ examples and the
calibration set with q := [ —m examples.
Use the proper training set to train the Neural Network.
For each example z,,+; = (Xp4¢, Y+t )t = 1,...,q in the calibration set:

— supply the input pattern x,,, to the trained network to obtain the output values

m-+t m-t
o, ...,0 and

— calculate the non-conformity score 0, of the pair (xp+;,ym+:) by applying
(6) or (7) to these values.

e For each test pattern x4, g =1,...,1:
— supply the input pattern x;.,, to the trained network to obtain the output values
i I+g
01+g, AL
— consider each possible classification Y, u = 1,...,c and:

. Y,
compute the non-conformity score 0y = al( +‘;,)

applying (6) or (7) to the outputs of the network,
calculate the p-value p(Y,) of the pair (x;,,,Y,) by applying (5) to the non-

conformity scores of the calibration examples and (xl(f;,):

of the pair (x;,4,Y,) by

#li=m+1,.m+ql+tga>al}
B g+1

p(Ya) )
predict the classification with the largest p-value (in case of a tie choose
the one with the smallest non-conformity score) and output one minus the
second largest p-value as confidence to this prediction and the p-value of
the output classification as its credibility,

or given a confidence level 1 — 6 output the prediction set (4).

4 Acute Abdominal Pain Data

The acute abdominal pain database used in this study was originally used in [5],
where a more detailed description of the data can be found. The data consist of 6387
records of patients who were admitted to hospital suffering from acute abdominal
pain. During the examination of each patient 33 symptoms were recorded, each of
which had a number of different discrete values. For example, one of the symptoms
is “Progress of Pain” which has the possible values: “Getting Better”, “No Change”,
“Getting Worse”. In total there are 135 values describing the 33 symptoms. These
values compose the attribute vector for each patient in the form of 135 binary at-
tributes that indicate the absence (0) or presence (1) of the corresponding value. It
is worth to mention that there are symptoms which have more than one value or no
value at all in many of the records.

There are nine diseases or diagnostic groups in which the patients were allocated
according to all information after their initial examination, including the results of
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Table 1 Data distribution.
APP DIV PPU NAP CHO INO PAN RCO DYS Total

Training Set 585 108 88 1941 372 290 65 326 612 4387
Test Set 259 35 42 894 200 127 31 147 265 2000

Total 844 143 130 2835 572 417 96 473 877 6387

surgical operations. These are: Appendicitis (APP), Diverticulitis (DIV), Perforated
Peptic Ulcer (PPU), Non-specific Abdominal Pain (NAP), Cholesistitis (CHO), In-
testinal Obstruction (INO), Pancreatitis (PAN), Renal Colic (RCO) and Dyspepsia
(DYS). NAP is not actually a diagnostic group, it is a residual group in which all
patients that did not belong to one of the other groups were placed.

The data are divided into a training set consisting of 4387 examples and a test
set consisting of 2000 examples. These are the same training and test sets as in [5].
Table 1 reports the number of examples that belong to each diagnostic group.

5 Experiments and Results

The NN used in our experiments was a 2-layer fully connected feed-forward net-
work, with sigmoid hidden units and softmax output units. It consisted of 135 input,
35 hidden and 9 output units. The number of hidden units was selected by following
a cross validation scheme on the training set and trying out the values: 20, 25, 30,
35, 40, 45, 50, 55, 60. More specifically, the training set was split into five parts
of almost equal size and five sets of experiments were performed, each time us-
ing one of these parts for evaluating the NNs trained on the examples in the other
four parts. For each of the five test parts, a further 10-fold cross validation process
was performed to divide the examples into training and validation sets, so as to use
the validation examples for determining when to stop the training process. Training
was performed with the backpropagation algorithm minimizing a cross-entropy loss
function.

The results reported here were obtained by following a 10-fold cross validation
procedure on the training set in order to divide it into training and validation exam-
ples. To create the calibration set of the ICP, 299 examples were removed from the
training set before generating the 10 splits. This experiment was repeated 10 times
with random permutations of the training examples. Here we report the mean values
of all 100 runs.

Table 2 reports the accuracy of the NN-ICP and original NN methods and com-
pares them to that of the Simple Bayes, Proper Bayes and CART methods as re-
ported in [5]. Additionally it compares them to the accuracy of the preliminary di-
agnoses of the hospital physicians, also reported in [5]. Both the original NN and
NN-ICP outperform the other three methods and are almost as accurate as the hos-
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Table 2 Predictive Accuracy of NN-ICP Compared to Other Methods.

Method Correct Diagnoses (%)
Neural Networks ICP 75.74
Original Neural Networks 75.87

Simple Bayes 74

Proper Bayes 65
Classification Tree (CART) 65
Physicians (preliminary diagnoses) 76

pital physicians. As was expected the original NN performs slightly better than the
ICP due to the removal of the calibration examples from the training set, however
the difference between the two is negligible. This is a very small price to pay con-
sidering the advantage of obtaining a confidence measure for each prediction.

Table 3 lists the results of the NN-ICP when producing set predictions for the
99%, 95%, 90% and 80% confidence levels. More specifically it reports the per-
centage of examples for which the set output by the ICP consisted of only one label,
of more than one label or was empty. It also reports in the last column the per-
centage of errors made by the ICP, i.e. the percentage of sets that did not include
the true classification of the example. The values reported here reflect the difficulty
in discriminating between the 9 diseases. Nevertheless, the set predictions output
by the NN-ICP can be very useful in practice since they pinpoint the cases where
more attention must be given and the diagnostic groups that should be considered
for each one. Bearing in mind the difficulty of the task and the 76% accuracy of the
preliminary diagnoses of physicians, achieving a 95% of accuracy by considering
more than one possible diagnosis for only about half the patients is arguably a good
result.

Table 3 NN-ICP Set Prediction Results.

Non-conformity | Confidence | Only one More than No

Measure Level label (%) | one label (%) | label (%) | Errors (%)
99% 23.76 76.24 0.00 0.95

95% 46.62 53.38 0.00 4.10

© 90% 62.38 37.62 0.00 8.59

80% 82.22 17.78 0.00 16.94

99% 25.80 74.20 0.00 0.95

95% 47.58 5242 0.00 3.75

) 90% 65.32 34.68 0.00 8.11

80% 87.32 12.38 0.30 17.23
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6 Conclusions and Future Work

We have presented the application of a recently developed technique, called Con-
formal Prediction, to the problem of acute abdominal pain diagnosis. Unlike most
conventional algorithms, our approach produces confidence measures in its predic-
tions which are provably valid under the general i.i.d. assumption. Our experiments
demonstrate that the Neural Networks ICP is very successful at this very difficult
task, since its predictions are almost as accurate as the preliminary diagnoses of
hospital physicians and its confidence measures are well calibrated and practically
useful. The set predictions produced by NN-ICP identify the cases that require more
attention as well as the most likely diagnoses of these cases.

One undesirable aspect of the data used in this study is the huge difference in the
number of examples that belong to each class. For this reason, in the future we plan
to repeat our experiments with an artificially balanced version of the training set
created by performing random resampling of the training examples. Additionally,
our directions for future research include further experimentation with other datasets
for acute abdominal pain and with more non-conformity measures based on other
popular algorithms such as support vector machines, decision trees and evolutionary
techniques.
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