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Abstract We introduce a sinusoidal image model con-
sisting of an oriented sinusoid plus a residual component.
The model parameters are derived from the circular har-
monic vector, a representation of local image structure
consisting of the responses to the higher-order Riesz trans-
forms of an isotropic wavelet. The vector is split into
sinusoidal and residual components. The sinusoidal compo-
nent gives a phase-based description of the dominant local
linear symmetry, with improved orientation estimation com-
pared to previous sinusoidalmodels. The residual component
describes the remaining parts of the local structure, from
which a complex-valued representation of intrinsic dimen-
sion is derived. The usefulness of the model is demonstrated
for corner and junction detection and parameter-driven image
reconstruction.

Keywords Riesz transform · Steerable wavelets · Feature
detection · Sinusoidal model

1 Introduction

Often the first step of image analysis is to obtain a descrip-
tion of the local image structure, from which detection or
parametrisation of low-level features, such as line, edges,
corners and junctions, can be made. Methods vary accord-
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ing the structural information obtained, and their robustness
to image changes such as noise, illumination, contrast and
rotation.

Phase-based representations are useful as they describe
lines and edges in the one signal model [32,33,38,55]. The
signal model is that of a sinusoid, where amplitude describes
feature strength separately to phase, which describes fea-
ture type, such as line or edge. To obtain these parameters
a set of symmetric (even) and anti-symmetric (odd) filters
are required. This can consist of a pair of filters related by
the Hilbert transform, such as in [14], or two or more filters
related by the Riesz transform [10,50,53,57]. Depending on
the method, an estimate of the orientation of the main axis
of linear symmetry is also obtained.

One such method is the monogenic signal [10], which
estimates orientation using the 1st-order Riesz transform
(RT). However, the orientation estimate is poor near the
centre of symmetric structures, such as lines, in the pres-
ence of noise. In this paper we propose a model of local
image structure consisting of an oriented sinusoid plus a
residual component, which is derived from higher-order RT
responses. Using higher-order RTs improves the estima-
tion of amplitude, phase and orientation, while the residual
component is useful in that it describes the remainder of
the local image structure that is not well-modelled by a
sinusoid.

The structure of the paper is as follows: In Sect. 2 we
review current sinusoidal image models and introduce the
RT, then in Sect. 3 the proposed model is described. In
Sect. 4 we introduce the circular harmonic vector as a pri-
mary descriptor of local image structure. It consists of the
responses to the higher-order RTs of an isotropic wavelet.
We show how to estimate the parameters of a general
image model by splitting the vector into model and residual
parts.
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Table 1 Mathematical notation used in this paper

Notation Description

f (z) 2D image

fS(z) 2D sinusoidal image

A Sinusoid amplitude

φ Sinusoid phase

θ Sinusoid orientation

Rn n-th order complex RT

f Circular harmonic (CH) vector of wavelet
coefficients at a point in an image

fS CH vector at a point in a sinusoidal image

ε Residual CH vector

fe Even sinusoidal wavelet CH vector

fo Odd sinusoidal wavelet CH vector

W CH vector weighting matrix

Sθ CH vector rotation matrix

N Maximum RT order in the CH vector

d Complex intrinsic dimension measure

γ Intrinsic dimension angle

In Sect. 5 this method is used to solve for the sinusoidal
model specifically, by creating wavelets that match a purely
sinusoidal image. The effect of increasing the number of
RT orders and their weighting is also discussed. In Sect. 6
both the sinusoidal and the residual components are used
to create a complex-valued intrinsic dimension representa-
tion, from which a robust corner and junction detector is
obtained. Finally, in Sect. 7 the usefulness of the approach
is demonstrated for model-driven image reconstruction and
wavelet-based denoising.

A number of different functions and variables are used
throughout the paper, the most important of which are listed
in Table 1 as a reference for the reader.

2 Related Signal Models

In 1D, the analytic signal consists of a signal and its Hilbert
transform. It is represented as a complex exponential,

f A(x) = f (x) + iH f (x) (1)

= A(x)eiφ(x), (2)

from which the original signal is modelled as a sinusoid,
f (x) = A(x) cos(φ(x)), where A(x) is the amplitude and
φ(x) is the phase. Typically the response is localised by
convolution with an isotropic band-pass filter centred at
the frequency (scale) of interest. The combination of fil-
ter and its Hilbert transform is referred to as a quadrature
filter.

The isotropic part of the quadrature filter is an even (sym-
metric) function and thus has a high response at locally
symmetric parts of the signal, such as roof edges and peaks.
TheHilbert transformedpart is an odd (anti-symmetric) func-
tion and thus has a high response at locally anti-symmetric
parts, such as step edges. It has been shown that the sinu-
soid amplitude is high at locations of each of these features,
and that the phase can be used to discriminate their type
[32,33,38,55].

In 2D, lines and edges are analogous to peaks and steps
in 1D, therefore a sinusoidal model of these features would
also be useful. One approach is to use a 2D quadrature fil-
ter, consisting of an even (or odd) directional filter and its
Hilbert transform along the directional axis. However, there
is an additional complexity in that the axis of filter symme-
try should match that of the local signal structure. Rotated
copies of quadrature filter at discrete orientations can be
used as an approximation. Alternatively, the filter can be
constructed from a steerable basis from which any direc-
tional response can be synthesised [14,39,46]. However, for
these filters the Hilbert transformed part is an approximation
[14].

2.1 Monogenic Signal

Other approaches have focussed on extending the 1Danalytic
signal to 2D images. However, early attempts applied the
Hilbert transform along discrete orientations, and therefore
varied with rotations [5,15,49]. The first rotationally invari-
ant extensions [10,22] used the Riesz transform (RT) instead
of the Hilbert transform to generate the required quadrature
filters.

Of these, the monogenic signal models local image struc-
ture as a single 2D oriented sinusoid [10]. Assuming a local
coordinate system where the point of interest is located at
z = 0, the monogenic signal model is

fS(z) = A cos(〈z, o〉 + φ) (3)

with parameters: amplitude, A, phase, φ, and orientation, θ .
The parameters are obtained using the 0th and 1st-order 2D
complex RT, Rn , according to

A =
∣
∣
∣R0 f + i|R1 f |

∣
∣
∣ , (4)

φ = arg(R0 f + i|R1 f |), (5)

θ = arg(R1 f ), (6)

where A ∈ R
+, φ ∈ [0, π) and θ ∈ [0, 2π) [10].

Figure 1 shows the monogenic signal model of the House
image, localised using a Cauchy filter [44] with centre wave-
length 8 pixels and bandwidth factor a = 2 [4]. As is
observed for the analytic signal, the amplitude is high at the
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(a) (b)

(c) (d)

Fig. 1 House image (a) and its sinusoidal model amplitude (b), phase
(c) and orientation (d) given by the monogenic signal.

locations of strong image features [10]. The phase value is
a measure of the local symmetry independent of amplitude;
phase values near 0 or φ indicate an even structure, such as
a line, and phase values near ±π/2 indicate an odd struc-
ture, such as an edge. The orientation parameter describes
the main axis of symmetry of the local structure [10]. The
monogenic signal has been applied to diverse problems such
as optical flow measurement [8], image registration [29] and
segmentation [1].

However, care must be taken when interpreting themodel.
Firstly, the 0th-order RT responds to both even and isometric
structures, meaning that blobs, which would not be consid-
ered sinusoid-like, also give a large response. Secondly, the
0th-order operator is isotropic, therefore orientation is only
calculated from the 1st-order RT, which only responds to
odd structures. Thus the orientation estimate is poor near the
centre of even features in the presence of noise [7]. This is
noticeable in Fig. 1d as discontinuities along some features.

2.2 Higher-Order Signals

The poor orientation estimate around even structures is a
drawback of using the monogenic signal in practical appli-
cations. Two solutions that have been proposed are to average
the phase vector near even structures [7], or to include

higher-order RT responses using an expanded signal model
[7,11,57,58].

The n-th order complex RT is given by [53,54,57]

Rn f (z)
F←→ einφ f̂ (ω, φ), (7)

where ω and φ are the radial and angular co-ordinates of
the frequency spectrum, respectively. The 0th-order RT,R0,
is the identity operator. The complex embedding allows for
easy rotation of the impulse response by multiplying by a
complex exponential [51] as

Rn{δ}(Rθz) = e−inθR{δ}(z), (8)

where Rθ is a matrix that rotates the image axes by θ . Like
theHilbert transform, theRT has an infinite impulse response
and requires the entire image to compute. To construct a
more localised operator, we can combine the RT with an
isotropic band-pass filter with enough vanishing moments
[51], resulting in a spherical quadrature filter (SQF) [7,10].

Similar to the Hilbert transform in 1D, the RT of a sinu-
soidal signal is equivalent to a phase shift. Consider an image
given by the addition of K 2D sinusoidal images,

f (z) =
K

∑

k=1

Ak cos(w〈z, ok〉 + φk), (9)

where o = [cos θ, sin θ ] is the orientation vector with θ ∈
[0, π), A ∈ R

+ is the amplitude, andφ ∈ [0, 2π) is the phase
of the sinusoid. It has been shown by means of the Radon
transform [10,57] that the n-th order RT of this signal at the
point of interest, z = 0, is

Rn f =
{∑

k Akeinθk cos(φk), n is even,
∑

k Akeinθk i sin(φk), n is odd.
(10)

These higher-orderRT responses givemore estimates of sinu-
soid parameters, albeit with the orientation range reduced to
2π/n for RT order n. Therefore, to estimate orientation from
even structures, RTs orders from 2 or above must be used.

Sinusoidal image models derived from these higher-
order responses include the structure multi-vector [7,11],
2D analytic signal [58] and the signal multi-vector [57]. The
structuremulti-vectormodel consists of two sinusoids at right
angles,

f (z) =
2

∑

k=1

Ak cos(〈z, ok〉 + φk), (11)

where θ2 = θ1 + π/2, and is calculated using the 0th to
3rd-order RTs.

The 2D analytic signal model consists of two sinusoids
with the same phase,
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f (z) =
2

∑

k=1

Ak cos(〈z, ok〉 + φ), (12)

and is calculated using the 0th to 2nd-order RTs.
The signal multi-vector model consists of two sinusoids

without restriction,

f (z) =
2

∑

k=1

Ak cos(〈z, ok〉 + φk), (13)

and is calculated using the 0th to 3rd-order RTs.
In the case of the structure multi-vector and signal multi-

vector, including higher-order RTs leads to more orthogonal
responses than model parameters (responses to RT orders
above zero are complex, and therefore have two dimensions).
The structure multi-vector deals with this by projecting the
RT responses on to four basis functions, from which the
model parameters are calculated, while the signal multi-
vector projects onto six [57]. Expanding themodel to include
extra sinusoids also makes use of the extra information from
higher-order responses.

Problems exist with the 2D analytic signal and signal
multi-vector solutions. For the 2D analytic signal, when
|R2 f | > |R0 f |, (60) in [57] gives a complex value for the
apex angle, θ1−θ2, violating themodel. This occurs at image
structures with a higher 2nd-order RT response, such as
saddles. For the signal multi-vector, an image structure con-
sisting of two equal amplitude sinusoids with phases {0, π}
and opposite orientations {−θ, θ} gives R0 f = R1 f =
R3 f = 0 andR2 f = 2A(ei2θ +e−i2θ ) = 2A cos(2θ). Thus
R2 f is real valued and themodel parameters cannot be found
due to having more unknowns than knowns. The addition of
the 4th-order RT response may be required. Furthermore,
the method of calculating orientation given by (130-131) in
[57] uses only odd-order RT responses, and thus again the
orientation estimate will be poor near even structures in the
presence of noise. In contrast, the structure multi-vector uses
the 2nd-order RT in the orientation estimation and thus does
resolve this problem. However, the maximum order RT used
is still limited to three.

Other approaches that explicitly use RTs include the
monogenic curvature signal [60] and the boundary tensor
[19] but these do not use a sinusoidal model. A phase-based
representation can be obtained using the monogenic curvelet
transform [50]; however, it uses the 1st-order RT of an even
filter at discrete orientations.

3 Proposed Model

Each of the higher-order sinusoidal models previously
described are limited in the number of RT orders used. Fur-

thermore, the 2D analytic signal and signal multi-vector do
not improve on the orientation estimation of the monogenic
signal. Addressing this problem was the original motiva-
tion behind this work. Specifically, we wished to obtain a
robust phase-invariant orientation estimate from any number
of higher-order RT responses. Preliminary attempts can be
found in our earlier work [24,26].

To achieve this, we have previously proposed a multi-
sinusoidal image model that consists of multiple oriented
sinusoids with differing amplitude, phase and orientation
parameters plus a residual component [28]. Local image
structure at a point of interest, z = 0, is modelled by

f (z) =
K

∑

k=1

Ak cos(〈z, ok〉 + φk)
︸ ︷︷ ︸

fS(z)

+ fε(z), (14)

where fS(z) is a single sinusoidal model component with
amplitude A, phase φ and orientation θ such that o =
[cos θ, sin θ ], and fε(z) is a residual component. In this
paper, we shall restrict the model to a single sinusoid, that
is, K = 1, and multiple sinusoids will be discussed in future
work. The model is

f (z) = A cos(〈z, o〉 + φ)
︸ ︷︷ ︸

fS(z)

+ fε(z). (15)

Adding the residual component allows for the inclusion of
higher-order RT responses up to any order, as it then becomes
possible to choosemodel parameters that satisfy the RT sinu-
soidal response equations,

Rn f =
{

Aeinθ cos(φ) + Rn fε, n is even,

Aeinθ i sin(φ) + Rn fε, n is odd,
(16)

for arbitrary images.
The task now is to choose appropriate values of ampli-

tude, phase and orientation. To do this we shall minimise the
local energy of the residual component so that the sinusoidal
model explains as much of the local image structure as pos-
sible. In the next section, we describe a method of finding
the parameters of a general image model from a vector of
higher-order RT responses. The method can then be applied
to the sinusoidal image model.

4 Circular Harmonic Wavelets

The RT has properties of steerability, translation invariance,
scale-invariance and inner-product preservation [10,51]. Of
particular relevance is that the RT is norm-preserving,
‖R f ‖ = ‖ f ‖, and invertible, R−n{Rn f }(z) = f (z), if
f (z) has zero mean. These properties allow the generation
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of monogenic wavelets [17,36] in multiple dimensions [54]
and for colour images [48], as well as monogenic versions of
existing quadrature wavelets that give a directional decom-
position into amplitude and phase components [50].

The higher-order RT can also be used to construct 2D
steerable wavelet frames [51,52]. These consist of a set of
wavelets constructed from the linear combination of higher-
order RTs of a suitable primary isotropic wavelet frame. The
wavelets can be rotated, shifted and linearly combined to con-
struct an image. Apart from the strong mathematical basis in
the literature, wavelets enable a multi-scale approach that
encompasses multi-scale filter banks, pyramidal decompo-
sitions and image reconstruction [18,51]. As such, we shall
formulate the sinusoidal model solution in this context.

Specifically, our approach is to treat the vector of 2D
steerable circular harmonic (CH) wavelet responses as the
primary descriptor of local image structure. Given a set
of wavelets that match the components of particular signal
model, we can split the CH vector into a model component
that describes the structures of interest, and a residual com-
ponent that describes the remainder. This general approach
is developed in this section.

4.1 2D Steerable Wavelets

A general framework for 2D steerable wavelet transforms is
laid out in [51]. Restating proposition 4.1 from [51], if h(ω) is
a radial frequency profile satisfying the following conditions:

h(ω) = 0, ∀ω > π, (17)
∑

i∈Z
|h(2iω)|2 = 1, (18)

dnh(ω)

dωn

∣
∣
∣
∣
ω=0

= 0, for n = 0, . . . , N , (19)

then the isotropic wavelet mother wavelet ψ with spec-
trum ψ̂(ω) = h(‖ω‖) generates a tight wavelet frame of
L2(R

2) whose basis functions, ψi,k = ψi (z − 2ik) with
ψi (z) = 2−2iψ(z/2i ), are isotropic with vanishing moments
up to order N . Given a primary isotropic wavelet frame
{ψi,k}i∈Z,k∈Z2 that satisfies the above conditions, the higher-
order RT can be used create a steerable wavelet frame
{ψ(m)

i,k }m∈N+
M ,i∈Z,k∈Z2 of L2(R

2) by [51]

ψ
(m)
i,k =

∑

|n|∈NN

um,nRnψi,k, (20)

whereUM,N is a complex-valued shapingmatrix of sizeM×
(2N + 1), M ≥ 1. Note, N

+
M means the set of integers from

1 to M , NM is the set from 0 to M .
Of the three conditions, the second results in an energy-

preserving partition of the frequency spectrum, creating a

tight wavelet frame that gives exact image reconstruction.
Scaling by 2i allows for sub-sampling to create pyramidal
decompositions, although alternative partitions that are more
narrowly spaced can be used, such as in [17]. The third condi-
tion requires the primarywavelet to have at least N vanishing
moments to account for the singularity of the RT at the ori-
gin, and thus for the wavelets to have sufficient spatial decay
[51,56]. If reconstruction or pyramidal decompositions are
not of interest, the second condition can be abandoned, and
an image can be analysed using an isotropic filter bank that
preferably satisfies the third condition.

4.2 Circular Harmonic Vector

Details of various shaping matrices that generate tight
wavelet frames are given in [51]. In particular, it is shown
that a pyramidal decomposition with exact reconstruction is
possible for directional wavelets, using a frame consisting of
2N + 1 equiangular copies of the wavelet, or N + 1 copies
over the half circle if the wavelet is linearly symmetric along
some axis. However, rather than using a specific wavelet,
our approach starts with the circular harmonic (CH) wavelet
frame, which is a basis for other 2D steerable wavelet frames.

TheCH frame, {ψn
i,k}|n|∈NN ,i∈Z,k∈Z2 , consists of wavelets

given by the −N -th to N -th order RTs of a primary isotropic
wavelet (U = I2N+1 [51]), and are also known as CH func-
tions [18]. The CH frame is similar to the set of SQFs
constructed from an isotropic band-pass filter [7,10] used
for image analysis in our previous work [25]. Each wavelet
is given by

ψn
i,k = Rnψi,k. (21)

The CH wavelets have equal norm with frame bounds of
2N + 1.

Figure 2 shows an example of these wavelets generated
using the 0th- to 3rd-order RTs. It can be seen that the num-
ber of axes of symmetry increases with RT order. Thus the
0th-order wavelet would respond to isotropic structures, the

ψ0 ψ1 ψ2 ψ3

Re

Im

Fig. 2 Real and imaginary parts of the 0th- to 3rd-order circular har-
monic wavelets
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1st-order wavelet to odd structures such as edges, the 2nd-
order wavelet to even structures such as lines, and so on.
Importantly, each wavelet is orthogonal and has an increas-
ingly complex structure. Correlation with the set of wavelets
thus gives a set of independent responses that describe the
local image structure.

With this in mind, we propose a novel approach to local
image representation. We collect the −N -th to N -th order
CH responses into a vector, which shall be referred to as a
CH vector. Applying the CH wavelet frame to an image f ∈
L2(R

2), the CH vector of correlation coefficients (responses
to the CH wavelets) at each scale and location is given by

fi,k =
[〈

f, ψ−N
i,k

〉

, ...,
〈

f, ψN
i,k

〉]T
. (22)

It is proposed that the CH vector is a local descriptor of
image structure:

1. The amplitude of then-th component, |(fi,k)n|, represents
the magnitude of the n-th order rotational symmetry of
the local image structure.

2. The argument of the n-th component, arg((fi,k)n), repre-
sents the orientation offset of the n-th order symmetry.

3. The magnitude of the entire vector, ‖fi,k‖, is a measure
of local energy.

4. The scale of the basis wavelet, i , indicates the size of the
local structure.

5. The CH wavelets are a basis for other 2D steerable
wavelets and thus the vector of responses for a partic-
ular frame is UH fi,k.

6. Rotation of the image causes a rotation of the CH vec-
tor components (8). For a rotation of the image axes
by θ , the CH vector becomes S−θ fi,k where Sθ =
diag[eiNθ , ..., e−iNθ ] is a diagonal rotation matrix.

CHwavelets as a local descriptor have also been investigated
in [18] and used for tasks such as edge enhancement and
pattern recognition [35].

Because the CH frame bounds are 2N +1, to obtain exact
reconstruction (frame bounds = 1) the CH vector coefficients
must be weighted. Given a real-valued diagonal weight-
ing matrix W = diag[w−N , ..., wN ] where w−n = wn

and
∑

|n|∈NN
w2
n = 1, the set of weighted CH wavelets

{wnψ
n
i,k}|n|∈NN ,i∈Z,k∈Z2 will have a frame bound of 1. Exact

reconstruction is then possible using theweighted CHvector,
Wf , by

f (z) =
∑

i,k

∑

|n|∈NN

(Wfi,k)nwnψ
n
i,k. (23)

4.3 Comparing CH Vectors

Weighting each order differently also allows us to control
how each order contributes to the magnitude of the CH
vector, ‖Wf‖, which is a measure of local energy. For exam-
ple, for N = 1 with weights w = [1/√2, 1/2, 1/

√
2], the

CH vector is equivalent to the monogenic signal vector in
[10], where the odd and even orders are equally weighted.
The normalised weighted CH vector, Wf/‖Wf‖, gives an
illumination-invariant description of the local image struc-
ture.

Onemaywish to compare different image structures using
their corresponding CH vectors. A simple measure is the
distance between the vectors,

d(Wf,Wg) = ‖Wf − Wg‖. (24)

However, the distance varies with the magnitude of the vec-
tors, a measure of feature strength. It is often desirable to
compare structures by feature shape alone, so to introduce
illumination invariance we may normalise the vectors,

dnorm(Wf,Wg) =
∥
∥
∥
∥

Wf
‖Wf‖ − Wg

‖Wg‖
∥
∥
∥
∥

, (25)

or use the angle difference between them,

γ = cos−1 〈Wf,Wg〉
‖Wf‖‖gW‖ . (26)

4.4 Solving Models

Consider a general image model given by the linear com-
bination of a set of M structures of interest, {um(z)}m∈NM ,
rotated to different orientations, plus a residual component,
fε(z). At a point of interest, z = 0, the model is

f (z) =
∑

m

λmum(Rθm z) + fε(z), (27)

where λm and θm are the amplitude and orientation parame-
ters that need to be found.

The wavelet, ψum , with CH vector Wum , that matches a
particular feature for a given weighting is described by the
normalised CH vector of that image structure. That is,

Wum = Wg/‖Wg‖, (28)

where g is the CH vector at the centre of the feature. Consider
the set of M 2D steerable wavelets, {ψ(m)}m∈NM , that match
the particular set of image structures we are interested in,
and let {Wum}m∈NM be the corresponding set of weighted
and normalised CH vectors. The local image structure CH
vector, Wf , can be written as the sum of individually scaled
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and rotated versions of each model wavelet CH vector, plus
the residual component,Wε. The relationship for a particular
scale i and location k is

Wf =
∑

m

λmSθmWum + Wε. (29)

Since we can reconstruct the image exactly from the CH
vector, it can be expressed as the sum of separate model and
residual reconstructions,

f (z) = fψ(z) + fε(z), (30)

where fψ(z) is the image synthesised from the model
wavelets,

fψ(z) =
∑

i,k

∑

m

∑

|n|∈NN

(λm)i,k(Sθi,kWum)n, wnψ
n
i,k, (31)

and fε(z) is the image synthesised from the residual compo-
nent,

fε(z) =
∑

i,k

∑

m

∑

|n|∈NN

(Wεi,k)nwnψ
n
i,k. (32)

The residual component is themissing part of the local image
structure that is not correlated with the model wavelets but is
needed for exact reconstruction of the image. By adding the
residual we can use arbitrary model wavelets and still have
exact reconstruction.

To solve the model, we choose values of λm and θm that
minimise the residual component at each scale and location,
such that the model wavelets explain as much of the image as
possible. Since the CH wavelets {ψn}|n|∈NN are orthogonal,
the L2-norm of the residual wavelet ψεi,k is proportional to
the l2-norm of the residual vector Wεi,k [51]. Therefore

‖ψε‖ ∝ ‖Wε‖ (33)

∝
∥
∥
∥
∥
∥
Wf −

∑

m

λmSθmWum

∥
∥
∥
∥
∥

. (34)

Letting λ = [λ1, ..., λM ] and θ = [θ1, ..., θM ], the linear
scale and rotation parameters that minimise the residual are
given by

λ, θ = argmin
λ,θ

∥
∥
∥
∥
∥
Wf −

∑

m

λmSθmWum

∥
∥
∥
∥
∥

. (35)

Finding an exact solution for the above equation is difficult
due to the multiple non-linear parts frommultiple orientation
parameters. If we constrain the problem such that all the
model CH vectors are linearly independent and each model
wavelet has the same orientation, only the single non-linear

part needs to be solved. For simplicity and without loss of
generality we drop the weighting matrixW, that isWf → f
and so on. Collecting all the normalised model CH vectors,
{um}m∈NM into the columns of a 2N + 1× M matrix U, the
problem is reduced to

λ, θ = argmin
λ,θ

‖f − SθUλ‖ (36)

= argmin
λ,θ

‖S−θ f − Uλ‖. (37)

By holding θ constant, this becomes the classic linear least-
squares problem. Using the properties ‖a‖2 = 〈a, a〉 = aHa
and (AB)H = BHAH , and since SθSH

θ = IN and S−θ = SH
θ ,

we have

min
λ,θ

‖S−θ f − Uλ‖ (38)

= min
λ,θ

− 2λHUHSH
θ f + λHUHUλ. (39)

At the minimum, the derivative with respect to λ will be
0, which gives

0 = −2UHSH
θ f + 2UHUλ, (40)

λ = (UHU)−1UHSH
θ f (41)

= U+SH
θ f, (42)

where U+ is the pseudo-inverse of U. If all the model CH
vectors are orthogonal aswell as normal,U+ = UH . To solve
for θ we substitute back into (39) to get

θ = min
θ

− 2λH
θ UHSH

θ f + λ − θHUHUλθ (43)

= min
θ

− 2fHSθ (U+)HUHSH
θ f (44)

+ fHSθ (U+)HUHUU+SH
θ f . (45)

Since UU+ is hermitian, (U+)HUH = (UU+)H = UU+
and U+U = IM and the above equation simplifies to

θ = max
θ

(UHSH
θ f)(U+SH

θ f). (46)

Letting λm(θ) = u+
mS

H
θ f and δm(θ) = umSH

θ f we arrive at

θ = max
θ

∑

m

δm(θ)λm(θ). (47)

When the model CH vectors are orthonormal, δm(θ) =
λm(θ). Both of these functions are trigonometric polynomi-
als with order 2N , that is

λm(θ) =
∑

|n|∈NN

wnūmnwn fn e
−inθ (48)
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and thus p(θ) = ∑

m δm(θ)λm(θ) is a trigonometric poly-
nomial with degree 4N . At the maximum, the derivative of
p(θ) equals 0, therefore finding the roots of p′(θ) gives us
4N candidate values for θ . Substituting back into p(θ) we
choose the value that gives the maximum, from which λm
can be calculated for each wavelet.

4.5 Summary

The CH vector is a descriptor of local image structure that
generalises previous signal vectors such as the monogenic
signal and signal multi-vector. The main advantage of the
proposed method is that we can design a set of arbitrary
wavelets to model a particular set of image structures, where
the wavelets do not necessarily form a frame, and yet still
have exact reconstruction with the addition of the residual
component. Furthermore, no structural information is lost;
the residual vector provides a description of the non-model
part of the local image structure,which can be used for further
analysis.

5 Sinusoidal Image Model

We shall now apply the CH vector method to finding the
amplitude, phase and orientation of the sinusoidal model.

5.1 Matched Wavelets

The proposed sinusoidal model of local image structure is
locally represented by an oriented sinusoid as

fS(z) = A cos(ω0 〈z, o〉 + φ), (49)

where o = [cos θ, sin θ ] and ω0 is the sinusoid frequency.
The first step is to find the wavelet that matches the sinu-

soid for a particular amplitude, A, phase, φ and orientation,
θ . Let {ψn}|n|≤N be the set of CH wavelets up to order N ,
generated from an isotropic wavelet ψ . For simplicity, let
the sinusoid frequency be located at the centre of the wavelet
passband h(ω) such that |h(ω0)| = 1. The value of the sinu-
soid CH vector fS at the origin is therefore given by

fSn = 〈

fS, ψ
n 〉 (50)

= R−n( fS ∗ ψ)(0) (51)

=
{

Ae−inθ cos(φ), n is even,

Ae−inθ i sin(φ), n is odd.
(52)

The sinusoidal image CH vector can be written as a function
of amplitude, phase and orientation,

fS(A, φ, θ) = ASθ cosφ se + ASθ sin φ so, (53)

where se and so are orthogonal CH vectors given by

sen = 1 if n even, 0 otherwise, (54)

son = −i if n odd, 0 otherwise. (55)

The vector se has only even orders and therefore represents
an even wavelet, while so has only odd orders and therefore
represents an odd wavelet. The sinusoidal image consists of
the linear combination of these two wavelets, rotated to the
same orientation.

We thus create two matched wavelets that correlate with
the even and odd parts of the signal. Setting orientation to 0,
the two matched wavelets for a given weighting matrix W
are

Wfe = Wse/
√

We, (56)

Wfo = Wso/
√

Wo, (57)

where We and Wo are the sum of the even and odd weights,
respectively,

We =
∑

n even,|n|∈NN

w2
n, (58)

Wo =
∑

n odd,|n|∈NN

w2
n . (59)

The model sinusoidal CH vector can thus be expressed as
the scaled and rotated sum of the model wavelets,

WfS(A, φ, θ) = λeSθWfe + λoSθWfo, (60)

where

λe = √

We A cosφ, (61)

λo = √

Wo A sin φ. (62)

An example of the two types ofmodelwavelets is shown in
Fig. 3, generated from a Simoncelli-type primary wavelet for
different values of N . The wavelets for N = 1 are the mono-
genic signal wavelets. As N increases the wavelets elongate
along the axis perpendicular to the sinusoid orientation.

5.2 Model Solution

The proposed sinusoidal model of an arbitrary image, f ,
with the point of interest located at z = 0, and localised by
an isotropic wavelet, ψi , is

( f ∗ ψi )(z) = A cos(〈z, o〉 + φ)
︸ ︷︷ ︸

fS

+ fε(z). (63)
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Phase N = 1 N = 3 N = 7 N = 13

even
φ = 0

odd
φ = π

2

Fig. 3 Sinusoidalmatchedwavelets for different N , even or odd phase,
and θ = π/3. Other phase values are obtained by a linear combination
of both wavelets. For N = 1 the even wavelet has no directionality

Using the sinusoidal model wavelets previously derived, we
may now write the image CH vector as the sum of model and
residual components,

Wf = WfS(A, φ, θ) + Wε (64)

= λeSθWfe + λoSθWfo + Wε. (65)

The model parameters are solved for by minimising the
residual, ‖Wε‖. Since themodel vectors are orthonormal and
have the same orientation the solution is given by the method
in Sect. 4.4. Orientation is thus

θ = max
θ

λe(θ)2 + λo(θ)2 (66)

where

λe(θ) = WfHe SH
θ Wf (67)

= 〈Wf,SθWfe〉 , (68)

λo(θ) = 〈Wf,SθWfo〉 . (69)

The function p(θ) = λe(θ)2 + λo(θ)2 is a trigonometric
polynomial with degree 4N . However, since fe only has non-
zero even orders, and fo only has non-zero odd orders, p(θ)

will only have non-zero even coefficients. Therefore it can
be written as a degree 2N trigonometric polynomial in 2θ .

p(2θ) = λe(θ)2 + λo(θ)2 (70)

Solving for θ thus gives estimates in the range [0, π). The
method used depends on the maximum order, N . When
N = 1, the only possible values for W where We = Wo

are w0 = 1/
√
2 and w1 = 1/2. The resulting wavelets are

the monogenic wavelets [51] and the sinusoidal model para-
meters can be derived analytically without root finding, as
follows:

A = √
2‖Wf‖, (71)

φ = arg( f0 + i | f1|), (72)

θ = − arg(−i f1), (73)

where φ ∈ [0, π) and θ ∈ [−π, π). Note that for a sinusoidal
model, a rotation of π radians is equivalent to a sign change
of the phase. For example, a sinusoid with parameters {φ =
π/2, θ = 0} is equivalent to one with {φ = −π/2, θ =
π}. Therefore two ranges for phase and orientation can be
used interchangeably for the model; one can either restrict
orientation to the half circle, or restrict phase to the half circle.

For larger N , finding the maximum typically involves
finding the roots of the derivative of p(2θ). The roots are
candidate values for the orientation which corresponds to the
maximum. For N = 2, the polynomial is fourth degree and
the roots can be solved for analytically using quartic solvers.
For larger orders a numerical solution is required in most
cases.

Once θ has been found, we have

A cosφ = λe(θ)√
We

, (74)

A sin φ = λo(θ)√
Wo

, (75)

and thus amplitude and phase are given by

A =
√

λe(θ)2

We
+ λo(θ)2

Wo
, (76)

φ = arg

(
λe(θ)√
We

+ i
λo(θ)√
Wo

)

, (77)

where A ∈ R
+ and φ ∈ [−π, π). Finally, the residual vector

is given by

Wε = Wf − WfS(A, φ, θ). (78)

We may synthesise the image separately from the model
and residual coefficients by

f (z) = fS(z) + fε(z), (79)

where

fS(z) =
∑

i,k

∑

|n|∈NN

(WfSi,k)nwnψ
n
i,k, (80)

fε(z) =
∑

i,k

∑

|n|∈NN

(Wεi,k)nwnψ
n
i,k. (81)

5.3 Example Solution

A pyramidal decomposition of the Pentagon image into four
scales plus a low-pass component is shown in Fig. 4. The
steerable wavelet frame was generated using a Simoncelli-
type isotropic wavelet [40] and the 0th to 7th-order RTs.

123



J Math Imaging Vis (2017) 57:138–163 147

(a) (b)

(c) (d)

(f)(e)

(g) (h) (i)

Fig. 4 Decomposition of a 512 × 512 pixel version of the Penta-
gon image into amplitude, phase, orientation and residual components
over four scales using a pyramidal Simoncelli-type wavelet frame and
N = 7. a Original image. b Isometric wavelet response (4 scales +

low-pass). c Amplitude. d Phase. e Orientation. f Norm of residual. g
Model Reconstruction for each scale. hModel reconstruction. i Resid-
ual reconstruction
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Each scale was sub-sampled by two, and the odd and even
orders were each equally weighted such that We = Wo (98).
The amplitude at each scale is high at the location of lin-
ear features, indicating that these are well described by the
sinusoidal model. The phase value describes the symmetry
of the local image structure, independently of the amplitude.
The orientation shows the main axis of symmetry regard-
less of the phase or amplitude values. The spilt of identity
property [10] of phase-based image representations is pre-
served.

The imagewas also reconstructed from themodel for each
scale (Fig. 4g), aswell as separately from themodel and resid-
ual components (Fig. 4h, i). Reconstruction from the model
acts as a wide-band rotation-invariant line and edge filter. In
contrast, the residual reconstruction contains features which
have multiple axes of symmetry, such as corners and junc-
tions, therefore these are not well-represented by a sinusoidal
model.

5.4 Choice of Basis Filter

Three choices must be made when applying the model:

– The primary isotropic basis filter, ψ(ω).
– The number of RT orders, N .
– The values for the weights, W.

To construct CH wavelet frames, the primary isotropic basis
filter must have at least N vanishing moments [51]. Wavelets
such as the Simoncelli, Papadakis and variance optimised
wavelets (VOW) [37] satisfy these conditions; however, they
contain discontinuities in the frequency domain that lead to a
slow decay in the spatial domain [56]. In contrast, the second
Meyer wavelet (Example 2, Sect. III C in [6]) is smooth and
may therefore be a better choice.

For filter banks, the basis filter should also have the
minimum number of vanishing moments and a smooth fre-
quency profile to ensure fast decay. The log-Gabor filter
[12] is often used for quadrature filters, as it is possible
to construct with a large bandwidth frequency response
and zero mean. In [4] it is shown that the difference-
of-Gaussian (DoG) and Cauchy (h(ω) = nc ωae−σω)
quadrature (Hilbert transform) filters are better for edge
detection [4]. However, the DoG filter has only one van-
ishing moment and a large minimum bandwidth, while the
number of vanishing moments of the Cauchy filter is depen-
dent on its bandwidth. The log-Gabor filter has infinite
vanishing moments and thus remains an suitable choice
for RT-derived filters. An extension on the log-Gabor filter
is,

h(ω) = exp

(

−
∣
∣
∣
∣

loga(ω/ω0)

a loga(σ )

∣
∣
∣
∣

)

, (82)

where increasing a gives amore compact frequency response
and shorter tail. The normal log-Gabor filter is given by
a = 2.

5.5 Effect of N

Higher-order CH wavelets have a higher order of rotational
symmetry. Therefore, increasing N increases the complexity
of the local signal structure that the CH vector can represent.
However, higher-order CHwavelets also have a larger spatial
extent, increasing the size of the local image patch under
consideration. This is because the magnitude of the radial
frequency response remains constant due to the RT.

Themodelwavelets thus also increase in sizewith increas-
ing N . An example of the two types of sinusoidal model
wavelets for different values of N is shown in Fig. 3. It shows
the even monogenic wavelet (N = 1) has no directionality,
hence the problemwith resolving orientation near even struc-
tures. As N increases, the wavelets become elongated along
the axis perpendicular to their orientation, becoming more
orientation selective due to a narrower angular profile but
only responding to longer linear features.

5.5.1 Noise

To quantify the effect of increasing N on sinusoidal model
accuracy, the amplitude, phase and orientation were calcu-
lated for a zero mean, 512× 512 pixel sinusoidal image with
different levels of additive white Gaussian noise. An all-pass
basis filter was used and the CH vector was weighted using
the phase-invariant equal weighting scheme (98). Figure 5
shows the mean error in estimated model parameters com-
pared to the phase of the sinusoid for a 3dB signal-to-noise
ratio (SNR). Increasing N decreased the average error for all
parameters. However, both the amplitude and phase errors
appear to reach a plateau around N = 13, afterwhich increas-
ing N gives little improvement. In contrast, the orientation
estimate is particularly improved, with a ten-times reduction
in error between N = 3 and N = 13. As expected, the ori-
entation error is high for the monogenic signal (N = 1) at
even locations, regardless of noise. For a SNR greater than
3dB, the errors vary proportionally with the noise standard
deviation.

5.5.2 Qualitative Image Results

The effect of increasing N for a natural image is shown in
Fig. 6. The sinusoidal model was calculated for the Penta-
gon image using a log-Gabor primary filter with wavelength
8 pixels, σ = 0.65, and N ∈ {1, 3, 7, 13, 21}. For the mono-
genic signal (N = 1), the amplitude is large and the phase
is the same for both isometric features (blobs) and lines, and
thus they cannot be differentiated from the model parameters
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Fig. 5 Average model error for a sinusoidal image with added
Gaussian noise (SNR: 3dB) for different N (shown in legend) com-
pared to the original image phase. The phase-invariant equal weighting
scheme was used. a Amplitude error. b Phase error. c Orientation error

alone. As N increases, the model becomes more selective for
longer linear features due to the increasing elongation of the
model wavelets. This is particularly noticeable going from
N = 7 to N = 21, as the roof edges are no longer broken up.
Blobs also have a reduced amplitude response; those in the
lower right quadrant of the image have almost disappeared
by N = 13 and instead the amplitude is large only at the loca-
tion of linear features. Likewise, the residual norm is large
at the location of corners and junctions which have multiple
linear symmetries.

The orientation estimate also becomes smoother with
increased N , and eventually larger features begin to dom-
inate. In contrast, the orientation of curved lines appear to
become more disjoint. The increased size of the wavelet, and
thus local image patch, means that curves are less well mod-
elled by a sinusoid at larger N . The residual norm images
confirm this, showing a larger magnitude for curved struc-
tures as N increases. Overall, less of the image is well
described by the sinusoidal model with larger N , and the
residual norm increases for most locations. This effect can
be seen in the separate reconstructions from the model and
residual components, with more of the structure identifiable

in the residual reconstruction. A qualitative assessment sug-
gests that, for this image, N = 7 provides a good balance
between the resolution of linear features and toomuch energy
in the residual component.

5.5.3 Computation Time

Polynomial root finding is computationally expensive for
large values of N , increasing the time to calculate the model
parameters. Table 2 shows the calculation times for the Pen-
tagon image and different values of N , implemented in
MATLAB on a single core of a 2.5 GHz Intel Core i7 proces-
sor. Calculating the model takes much longer than a typical
filtering operation, for example, 33.5 seconds for N = 7.
To speed up the process, the root finding can be split across
parallel cores, or a less accurate method used to estimate
the polynomial maximum. We have previously proposed a
quick approximation method in [25] and an updated version
is described in Appendix A. It is an iterative process that
makes q estimates of the orientation per order, and gives rea-
sonably accurate results with much lower computation time,
as shown in Table 2. For example, for N = 7 the orienta-
tion of 98% of the image can be estimated with better than 3
degrees accuracy in approximately 1.1 seconds.

For N = 2 the model parameters can be obtained analyti-
cally using a quartic solver, in under a second. Since N = 2 is
the minimum number of orders to estimate orientation from
both even and odd structures, it provides a good alternative
to using the monogenic signal when speed is important.

5.6 Choosing Weights

The weighting matrix scales each RT order in the image CH
vector, and therefore different weightings affect the CH vec-
tor magnitude and values of the model parameters for a given
image structure.We shall choose theweights to fit a particular
angular profile for the sinusoidal model.

The magnitude of the CH vector of a purely sinusoidal
image is

‖WfS(A, φ, θ)‖ (83)

= A‖ cosφWSθ se + sin φWSθ so‖ (84)

= A
√

cos2 φ We + sin2 φ Wo (85)

=
{

A
√
We, φ = 0, π

A
√
Wo, φ = ±π/2.

(86)

If We �= Wo the magnitude of the CH vector is affected by
the phase. If we choose We = Wo = 1/2, the odd and even
components are each weighted equally and the magnitude is
invariant to phase. That is,
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N Amplitude Phase Orientation Residual Norm Sinusoidal Recon. Residual Recon.

1

3

7

13

21

Fig. 6 Sinusoidal model parameters for the second scale of the Pentagon image for different values of N . Also shown is reconstruction from the
sinusoidal model and reconstruction from the residual component, using four scales and not including the low-pass response

‖WfS(A, φ, θ)‖ = A/
√
2. (87)

This is desirable as it preserves the invariance properties of
previous approaches, for example, themonogenic signal vec-
tor magnitude is invariant to phase.

The weighting also determines the angular response of the
model wavelets in the frequency domain, which is given by
the trigonometric polynomial

hu(θ) =
∑

|n|∈NN

wnune
−inθ , (88)

where Wu is the weighted model wavelet CH vector.
To pick the coefficients of W it is proposed to maximise

the energy of the angular response of the sinusoidal wavelets
inside of a window h(θ) by adapting the method described in
[42,43,51] for designing prolate spheroidal wavelets. Each

sinusoidal wavelet is 2nd-order rotationally symmetric or
anti-symmetric and therefore has its angular response con-
centrated at two points π radians apart. The same energy
window can be used for each. Let v(2θ) be a positive win-
dow function, symmetric at both θ = 0 and θ = π . That
is,

v(θ) = v(−θ), (89)

v(θ) = v(θ − π), (90)

and let u(θ) describe the angular response of a wavelet, u,
that is

u(θ) =
N

∑

n=−N

unune
−inθ . (91)
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Table 2 Orientation calculation setup and computation time (seconds)
for the MATLAB roots method (and quartic solver* for N = 2), ver-
sus our approximation method for q ∈ [1, . . . , 5], for the 512 × 512
Pentagon image

N Setup Roots* Quick method

q=1 q=2 q=3 q=4 q=5

2 0.3 0.4 0.1 0.2

(94) (94) (94) (94) (94)

3 0.4 18.9 0.2 0.3 0.6

(94) (96) (97) (97) (97)

5 0.7 24.2 0.2 0.4 0.8 2.8 19.1

(93) (97) (97) (98) (98)

7 0.8 33.5 0.3 0.6 1.1 3.0 19.1

(92) (96) (98) (98) (99)

9 1.4 44.3 0.4 0.7 1.1 3.0 18.4

(90) (96) (97) (98) (99)

11 1.4 57.9 0.4 0.8 1.4 3.3 19.0

(89) (95) (97) (98) (99)

13 1.6 73.6 0.5 1.0 1.6 3.6 19.2

(88) (94) (96) (97) (98)

Percentage of errors under 3 degrees is shown in parentheses

Then the energy within the window is given by [42,43,
51]

E[w] =
∫ π

−π

u(θ)2v(θ) dθ (92)

=
N

∑

n′=−N

N
∑

n=−N

ūn′un

∫ π

−π

v(θ) dθ (93)

= uHVu, (94)

where Vn,n′ = ∫ π

−π
v(θ) dθ since uHu = 1.

Two types of orthogonal symmetric functions that fit this
window are an even function with extrema of the same sign
at 0 and π , and an odd function with extrema of opposite
signs at 0 and π , where u(θ) = −u(θ − π). The eigenvec-
tors corresponding to the largest two eigenvalues of V thus
describe the even and odd wavelets in the sinusoidal model.
Let u1 and u2 be these eigenvectors. Each either has only odd
orders, or only even orders. The final weighting is given by
the absolute value of each order scaled by

√
2, since both are

of unit norm. That is,

wn = |u1n + u2n |√
2

, (95)

and thus ‖w‖ = 1 and the weighting matrix is therefore
W = diag(w).

A simple window function consists of two rectangular
functions with angular width B separated by π ,

v(θ) = rect

(
θ

B

)

+ rect

(
θ + π

B

)

. (96)

The values of V for this function are

Vn,n′ =

⎧

⎪⎨

⎪⎩

2B, n − n′ = 0,
2 sin(B(n−n′))

n−n′ , n − n′ is even,
0, n − n′ is odd,

(97)

where B is the width of the rectangle in radians. When B
approaches 0 the even components each become equally
weighted, as do the odd, so thatWe =Wo. This equal weight-
ing scheme is given by

wn =
{

1√
2(N+1)

if (N − n) is even,
1√
2N

if (N − n) is odd.
(98)

Figure 7 shows an example of the even and odd angular
profiles for different values of B and N = 7. For smaller B,
the angular response has a narrower peak but larger oscilla-
tions. For larger B, the response is smoother and wider, but
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Fig. 7 Angular response of odd and even sinusoidal model wavelets
(N = 7) for different window widths, B (shown in legend). a Even
wavelet (φ = 0). b Odd wavelet (φ = π/2)
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less orientation selective. To quantify the amount of oscilla-
tion, an experiment was performed tomeasure the ratio of the
energy under the side lobes to the total energy for different
values of N and B. The ratio was less than 0.1% (indicat-
ing small oscillations) when B > 5.64/N − 6.57/N 2. For
N = 7 this equals approximately 0.21π .

Repeating the noisy sinusoidal image experiment (Sect.
5.5.1) for different values of B we found the equal weight-
ing scheme (B � 0) gave the best results. This is likely due
the narrowness of the main lobe, and the even distribution
of noise energy in the side lobes negating their effect on the
response. However, in natural images the local structure can
havemultiple discrete elements. In that case, itmay be advan-
tageous to have smaller oscillations (higher value of B) so
that these extra parts interfere less with the main response.
Furthermore, if one wished to model using multiple sinu-
soids, a larger B would be helpful to reduce the correlation
between the model wavelets at different orientations.

6 Intrinsic Dimension

The advantage of a sinusoidal model is the parametrisation
of the local image structure into amplitude, phase and orien-
tation values which can be separately analysed. Deriving the
model startingwith theCHvector is different to other quadra-
ture filter type methods in that we are left with a residual
vector that describes the non-model part of the local image
structure. From the split into model and residual components
a representation of the local intrinsic dimension can be devel-
oped.

Intrinsic dimension described the linear symmetry of the
local image structure. Flat areas with constant intensity are
intrinsically 0D (i0D) as they can be described by a single
value. Linear features, such as lines and edges, are intrinsi-
cally 1D (i1D), as they vary along a single axis and can be
represented by a 1D function.More complex structures, such
as corners and junctions, have multiple symmetries and are
intrinsically 2D (i2D) [10,21,59,61]. The strict definition is,

f (x) ∈

⎧

⎪⎨

⎪⎩

{i0D} if f (z) = constant,

{i1D} if f (z) = f (〈z, o〉), o = [cos θ, sin θ ],
{i2D} otherwise.

(99)

However, typical images donot have perfectly linear struc-
tures and are often corrupted by noise, meaning that most
structures would be classified as i2D. Instead, a continuous
representation of intrinsic dimensionality is necessary, which
in turn requires a local structure descriptor that is able to dis-
criminate classes. A classic example is the structure tensor
[3,13] whose eigenvalues describe the strength of the local

symmetry along two main axes. If only one eigenvalue is
large, the local structure is i1D, if both are large it is i2D,
otherwise it is i0D. This the basis behind the popular Har-
ris corner detector [16]. In [9] a continuous representation
was introduced that plots the eigenvalues onto a bounded tri-
angle, whose barycentric co-ordinates give a probability of
belonging to each class. The representation can be applied
to the output of other descriptors that discriminate between
i1D and i2D structures.

A drawback of the structure tensor is that it is only com-
puted from 1st-order derivatives and therefore can have a
double response for roof edges (thick lines) [19]. A improve-
ment proposed was the boundary tensor [19], which gives
a boundary energy value consisting of line / edge (i1D)
and junction (i2D) energies, using the 0th- to 2nd-order
RTs. In fact, the boundary energy is equal to the square
of the CH vector norm for N = 2 with weighting w =√[1/2, 1, 1, 1, 1/2]/4. Likewise, the boundary tensor i1D
energy measure roughly corresponds to the energy of the
sinusoidal model vector, and the boundary tensor junction
energy to the energy of the residual vector for the same
weighting and N . The monogenic curvature tensor [47] uses
the same basis functions as the boundary tensor but adds
phase and curvature measurements to give a richer descrip-
tion of the local structure.

The sinusoidal model appeared more descriptive of i1D
structures and the residual component was higher around i2D
locations for larger N for the Pentagon image (Fig. 6). This
suggests that the model and residual components can be used
to discriminate between these classes. Therefore we shall use
the proposed sinusoidal model calculated using higher-order
RTs to develop a representation of intrinsic dimension.

6.1 Model Response

The first step is to determine the sinusoidal model response
to an i1D structure. Consider an image, f , that is locally i1D
at a point of interest centred at z = 0 when filtered by an
isotropic wavelet, ψ . The local structure can be represented
as 1D function,

( f ∗ ψ)(z) = fi1D(x), (100)

where x = 〈z, o〉 and o = [cos θ, sin θ ] with θ being the
orientation of symmetry. According to the Fourier slice the-
orem, the Fourier transform of the image patch will have all
non-zero coefficients concentrated along a line through the
origin. Therefore, the local image structure can be exactly
modelled as a sum of sinusoids

( f ∗ ψ)(z) =
∑

k

αk cos(ωk x + φk), (101)
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which can also be expressed as a single sinusoid,

( f ∗ ψ)(z) = A(x) cos (φ(x)) , (102)

which is equivalent to the analytic signal representation of
fi1D(x), with local amplitude, A, and phase, φ. It follows
that the overall RT responses are given by the sum of the RT
responses of the individual sinusoids, and thus

Rn( f ∗ ψ)(z) =
{

A(x)einθ cos(φ(x)) n is even,

A(x)einθ i sin(φ(x)) n is odd.
(103)

The magnitudes of all the even-order responses are equal,
as are all the odd-order responses. Let fi1D be the CH vec-
tor generated for this image structure at z = 0, using ψ as
the primary isotropic wavelet. The structure is completely
described by the sinusoidal model, that is,

fi1D = fS(A, φ, θ) (104)

= ASθ (cosφse + sin φso). (105)

It follows that the magnitude of the residual component is
zero,

min
A,φ,θ

‖ε‖ = min
A,φ,θ

‖fi1D − fS‖ (106)

= 0, (107)

which means that an i1D signal can be completely recon-
structed from the sinusoidal model wavelets rotated to the
same orientation.

6.2 Complex Exponential Representation

Since the sinusoidal model can completely represent an i1D
signal, it follows that the residual component represents the
other parts of the local image structure with a different shape
or orientation. The ratio of the residual vector norm to the
model vector norm is therefore ameasure ofwhere the overall
local structure lies on a i1D to i2D scale. Furthermore, it is
invariant to the magnitude of the local structure (CH vector
norm). We can represent this relationship in the form of a
complex exponential, d0, given by

d0 = ‖WfS‖ + i‖Wε‖ (108)

= ‖Wf‖eiγ0 , (109)

where γ0 = tan−1 ‖Wε‖
‖WfS‖ is the angle representing the ratio

between ‖Wε‖ and ‖WfS‖.
While it is possible to have a zero residual response, it

is not possible to have a zero sinusoidal model response,
as the model wavelets will always positively correlate with

some part of the local image structure. This means that the
upper bound of possible values of γ0 will always be less than
π/2, and can change according to the number of orders and
weighting scheme. For a purely sinusoidal signal, we have
Wf =WfS and ‖Wε‖ = 0, and therefore γ0 = 0 is the lower
bound.

By finding this upper bound, we can adjust γ0 so that
the range is always [0, π/2) regardless of weighting, and by
extension, N . Consider an image CH vector, f , that is zero
for every order except for n, and without loss of generality
let f|n| = 1. Calculating the sinusoidal signal model for a
weighting scheme, W, we obtain

‖WfS‖ =

⎧

⎪⎨

⎪⎩

2w2
n/

√
We n �= 0, even

2w2
n/

√
Wo n �= 0, odd

w2
n/

√
We n = 0.

(110)

Since ‖Wε‖ = √‖Wf‖2 − ‖WfS‖2,

γ =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

tan−1
√

We
2w2

n
− 1 n �= 0, even

tan−1
√

Wo
2w2

n
− 1 n �= 0, odd

tan−1
√

We
w2
n

− 1 n = 0.

(111)

The upper bound, γmax, is the maximum value of γ in the
above equation for all n. Note that as N increases, wn tends
to get smaller, and therefore γmax gets closer toπ/2. The new
intrinsic dimension representation is thus

d1 = ‖Wf‖eiγ1 (112)

where γ1 = γ0

γmax

π

2
. (113)

6.3 i2D Detection

The norm of the residual component is large around corners
and junctions (Fig. 6). Thus the next step is to use the i2D
part of the intrinsic dimension representation as a corner and
junction detector, in the sameway the junction energy is used
for the boundary tensor [19]. Theproposeddetectionmeasure
is thus the imaginary part of the intrinsic dimension:

deti2D(d) = Im{d} (114)

= ‖Wf‖ sin(γ ). (115)

However, common i2D features can have a large i1D com-
ponent. For example, a T junction will give a large sinusoid
amplitude representing the top bar that a Y junction will not.
The angle, γ1, will therefore be different at the centre of these
two junctions. To compensate we shall rescale γ1 using a sig-
moidal function so that the angle values are closer together.
The new representation is
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Image d1 d2 deti2D(d1) deti2D(d2)

Fig. 8 Intrinsic dimension representation and i2D detection measure
before and after rescaling γ1 for N = 7. In the 2nd and 3rd images,
brightness corresponds to ‖d‖ and colour to γ . The actual feature centre
is indicated by aplus; themaximumof the detectionmeasure is indicated
by an X

d2 = ‖Wf‖eiγ2 , (116)

where γ2 = π/2 × η(2γ /π, h, s) and η(x, h, s) is a sig-
moidal function given by the regularised incomplete gamma
function as

η(x, h, s) =
{

Iγ (x, s, s/h − s)) h ≤ 0.5,

1 − η(1 − x, 1 − h, s) h > 0.5,
(117)

with x ∈ [0, 1] and h ∈ [0, 1]. The gamma function was cho-
sen because the slope and position of the curve can be easily
manipulated and the output values cover the complete range
from 0 to 1. In the above equation, h roughly corresponds
to the halfway point, that is, for x = h, g(x, h, s) = 0.5.
Increasing the value of s increases the steepness of the slope
at the halfway point. The effect of rescaling γ1 for a che-
quer feature is shown in Fig. 8. The middle of the feature
is less i2D than the surrounding areas, resulting in an off-
centre detection. After rescaling γ1, the detection energy is
concentrated more towards the centre of the feature.

6.4 Corner and Junction Response

The intrinsic dimension representation, d2, was calculated
for 15 corner and junction features using N ∈ {2, 3, 7, 13},
and sigmoidal function parameters h = 1/3 and s = 2.4,
and is shown in Fig. 9. A depiction of intrinsic dimension
using the structure tensor is given for comparison, using the
largest eigenvalue as the i1D component, the smallest as the
i2D component, and γmax = π/4. The images are 128× 128
pixels in size, and were constructed from either line or wedge
segments radiating from the centre pixel, followed by some
Gaussian blurring. A log-Gabor filter with wavelength 32
pixels and σ = 0.6 was used to localise the model response,
and a Gaussian filter with σ = 6 was used for the struc-
ture tensor. Brightness is equal to ‖d2‖ which is the same as
the norm of the image CH vector. Colour describes γ2, with
blue indicating i1D and red indicating i2D. An iso-luminant
colour map from [20] was used to ensure correct perception.

N

Image 2 3 7 13 S

Fig. 9 Examples of image features alongwith their intrinsic dimension
representation for different N and the structure tensor (S). Brightness
represents magnitude, ‖d2‖, colour represents angle, γ2. Centre of the
feature is indicated by a plus, location of the detection point is indicated
by an X
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Fig. 10 Range of detection location errors (pixels) for the feature set in
Fig. 9 using the sinusoidal model method for different N (numbered),
compared to the boundary tensor (B) and the Harris corner detector
from the structure tensor (S). The large outlier for higher values of N
is due to the single line segment feature

The magnitude of response appears phase-invariant, as
both line and edge features have similar patterns of magni-
tude and intrinsic dimension angle. It can be observed that
for smaller N , both the magnitude and the extent of the i2D
region is concentrated more towards the centre of the fea-
tures, due to the smaller size of the wavelets. However, for
smaller N there are also regions of low magnitude near the
centre of features with more than two segments. This is par-
ticularly visible in the fifth and sixth images for N = 2. As
N increases, the magnitude becomes more uniform, showing
that a larger N is required for boundary estimation of com-
plex features. However, this also causes a smearing of the
magnitude response along the direction of line and edge seg-
ments, particularly noticeable in the seventh image as well
as in Fig. 4. Again this is due to the increased size of the
wavelets.

Apart for the single line segment image, detection posi-
tion improves with increasing N (Fig. 9). Figure 10 shows
the range of detection position errors for the same set of fea-
tures for different N , compared to those using the boundary
tensor junction energy and Harris corner detector from the
structure tensor. The filter sizes were the same as for Fig.
9. As N increases, the position error decreases, and appears
to plateau after about N = 11. Detecting the actual centre
of the i2D feature is important for methods that use steer-
able filters to find the orientation of component line or edge
segments, such as in [34] and our method in [27]. If the posi-
tion is off-centre, the calculated orientations can be affected.
Therefore, applying the proposed detection measure using
larger N should be useful for these methods.

6.5 Test Set Evaluation

To gauge the repeatability of the detector under different
image transformations, a grey-scale version of the test set
from [30] was used. This test set has seen popular use for the
evaluation of local descriptors and interest point detectors,
such as in [2,31,45]. It consists of eight subsets of images,
each with an original image and five or six transformed

images. The transforms are viewpoint change (subset: graf-
fiti, bricks), scale and rotation (subset: boat, bark), blur
(subset: bikes, trees), illumination (subset: cars) and JPEG
compression (subset: ubc).

The sinusoidal model was calculated over four scales
using a log-Gabor filter with σ = 0.6 and wavelength
of {4, 8, 16, 32} pixels. The i2D detection measure without
angle rescaling (113) was calculated for each scale and added
together to give a final detection score. Adding the scores
was found to give better results than choosing the maximum
from each scale. Candidate detection points were chosen as
the locations of the local maxima in a three pixel radius area.
Computational load was almost wholly taken up with calcu-
lating the sinusoidal model, and thus the time to calculate
the detections was approximately four times longer than that
given in Table 2 for each N .

The detections from the original image in each subsetwere
compared to each of the transformed images. Any points
that were not within the area common to each image were
discarded. Each detection point was considered matched if
there was a corresponding detection point in the transformed
image within a distance of three pixels. However multiple
correspondences were not allowed. Repeatability was calcu-
lated as the average of the fraction of matched points in the
first image and the fraction of matched points in the trans-
formed image, as in [2]. These values were then averaged for
each transformation type to give an overall score. The results
are shown in Fig. 11a–e. Different levels of white Gaussian
noise were also added to the original image from each subset
and the repeatability calculated. The results for the top 100
points averaged across all subsets is shown in Fig. 11f.

The repeatability varied with increasing N , the type of
transformation andnumber of points. For the viewpoint, scale
and rotation, and illumination subsets, themiddle range value
of N = 7 had the highest repeatability for smaller numbers of
points, whereas low range N values had the highest repeata-
bility for larger numbers of points. For the blur subsets, any
increase in N reduced the scores dramatically, and N = 2
gave the best results. In contrast, increasing N increased
repeatability consistently for the JPEG subset, for less than
300 points. This is due to the increased size of the wavelets
averaging out the block-like compression artefacts. Repeata-
bility increased with N for the noise experiment for the same
reason.

Using a value of N = 7 appears to give the best all-round
score. Qualitative analysis of the detection images revealed
that for larger values of N , detection of curved lines started to
increase, due to the lower correlation of these features with
the model wavelets because of their increased size. Using
N = 7 appears to be a good compromise between having
enough RT orders to discriminate more complex junctions
and corners from i1D features, yet having compact enough
model wavelets to follow the curved lines in the image sets.
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Fig. 11 Average i2D detection repeatability for different values of N (shown in legend) and number of detection points, evaluated for various
image transformations (a–e) and additive Gaussian noise (f) using the test set from [30]

We also found that if only one scale (wavelength = 8 pixels)
is used, repeatability remains generally the same except for a
slight decrease in the blur subset. This shows that performing
detection at a single scale is sufficient to capture most of the
interest points in the test set, and has the benefit of reducing
computation time.

Contour-based corner detectors along with the Harris-
Laplace [31] and Laplacian-of-Guassian [23] detectors were
tested in [2] on the same set of images. The results for N = 7
and 200 points were compared to that of the best detector
in each subset in [2]. For our detection method, repeatabil-
ity was approximately 20% better for the viewpoint subset,
15% better for the scale and rotation subset, same for the blur
and JPEG subsets, and 20% worse for the illumination sub-
set. The results are encouraging, and the detection method
warrants further investigation.

7 Model-Driven Reconstruction

The previous section showed how splitting the local image
structure into sinusoidal model and residual components can
be used to discriminate i1D and i2D features, and the CH
vector magnitude is a general boundary energy measure. The
phase the sinusoidal model allow us to differentiate the sym-
metry of i1D structures, while the orientation indicates the
direction of symmetry in a phase-invariant manner (Fig. 6).

One of the benefits of to using the RT is that the CH
wavelets form a 2D steerable wavelet frame, and thus the
image can be reconstructed from theCHvector. Furthermore,
reconstructing an image from only the sinusoidal model
components acts like a wide-band linear (i1D) filter, while
reconstructing from only the residual components filters for
i2D structures (Fig. 6). Modulating the model parameters

123



J Math Imaging Vis (2017) 57:138–163 157

(a) (b) (c)

Fig. 12 Retina image (a) with linear features in the first two scales (b) and all features enhanced (c) using the second Meyer wavelet and N = 7

beforehand can be used to perform various image process-
ing tasks. For example, in [17] brightness equalisation was
performed by setting the amplitude of the monogenic signal
to unity. In this section we shall demonstrate some useful
applications of the model and its wavelet embedded for lin-
ear feature enhancement, orientation separation and image
denoising.

7.1 Linear Feature Enhancement

Linear features can be enhanced by modulating the sinusoid
and residual components separately for each scale. For exam-
ple, theRetina image shown inFig. 12a has small i1D features
corresponding to blood vessels. To enhance these features,
the model components of the first and second scales were
amplified according to the intrinsic dimension angle of the
second scale, and the residual components were attenuated
(Fig. 12b). The formula applied was

Wf = 3 cos(γ1)WfS + 0.5Wε, (118)

with themodel calculated using the secondMeyerwavelet [6]
and N = 7 (Fig. 12b). Amplifying the model and attenuating
the residual enhances the i1D features without a correspond-
ing increase in noise. In contrast, simply amplifying the first
two scales by three (Fig. 12c) increases the noise in flat areas.
Adding the intrinsic dimension term further reduces noise,
as it ensures only model components in predominately i1D
locations are amplified. The images are shown clamped to
the original zero to 255 intensity range.

7.2 Orientation Separation

Selective reconstruction guided by the model parameters can
be used to isolate different parts of the image. In particular,
one can modulate the model component according to differ-

ence between the model orientation and a fixed orientation,
θfilter, by

Wf = |θ − θfilter|α WfS, (119)

where a higher value for α penalises off-axis model compo-
nents more. For example, the coral core x-ray image in Fig.
13a has both horizontal and vertical i1D features.An estimate
of the orientation of the horizontal features was obtained by
smoothing the sinusoidal model orientation at the second
scale with a 20 × 20 pixel median filter. This estimate was
used as θfilter in (119) with α = 16 to modulate the model
components of the first five scales of the image, from which
the image was reconstructed to isolate the horizontal com-
ponents (Fig. 13b). The same estimate plus π/2 radians was
also used to reconstruct the vertical components (Fig. 13c).
The process acts like a wide-band orientation-adaptive filter.

7.3 Denoising

As a final example, we demonstrate wavelet denoising using
an equiangular 2D steerable wavelet frame compared to
using the model and residual components. One of the state-
of-the-art approaches to wavelet-based image denoising is
the Bayesian least-squares—Gaussian scale mixture (BLS-
GSM)method [41]. This works bymodelling the coefficients
of each channel of a wavelet frame in a local area as the pro-
duce of a Gaussian random vector and a scalar multiplier.
The model is compared to noise statistics known beforehand
and the wavelet coefficients shrunk accordingly. BLS-GSM
can be used with a frame consisting of N +1 copies of either
an even or odd 2D steerable wavelet rotated around the half
circle at equiangular spacing [51].

The method cannot be used with the magnitude of the
model and residual components, as it assumes zero-mean
random vectors. Instead we propose to denoise the image
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(a) (b) (c)

Fig. 13 Coral image (a) reconstructed from horizontal components (b) and vertical components (c). Five scales of the second Meyer wavelet with
phase-invariant equal weighting and N = 7 were used

by shrinking the model and residual components separately,
thus reconstructing from a modified image CH vector given
by

Wfdenoisedi,k = ϕ(‖WfSi,k‖, δSi )WfSi,k (120)

+ ϕ(‖WfSi,k‖, δεi )Wεi,k, (121)

where ϕ is a smooth threshold function dependent on the
magnitude of the vector. It is given by

ϕ(x, δ) = x − xe−(x/δ)8 . (122)

There is a separate noise threshold for the sinusoidal com-
ponent, δSi , and the residual, δεi , for each scale. The value
depends on the type and magnitude of the noise, choice of
primary wavelet frame, CH vector weighting and number of
RT orders.

The values are calculated from the CH vector magnitude
and sinusoidal model magnitude distribution from a noisy
image. Assuming additive white Gaussian noise, let g be
a noisy image with standard deviation σ = 1. The image
CH vectors, Wgi,k, are calculated for a specific CH wavelet
frame, weighting scheme and number of RT orders. The
magnitude distribution of these vectors is the square root of
the weighted sum of Rayleigh random variables (Nakagami
distribution). Decomposing into model and residual vectors,
Wgi,k = WgSi,k+Wgεi,k ,we numerically estimate themean,
μi , and standard deviation, σi , of the image CH vector mag-
nitudes for each scale. We also calculate the mean μSi and
standard deviation σSi of the model CH vector magnitudes.

The model threshold chosen for a particular scale, i , and
Gaussian noise level, σnoise is then obtained as a function of
the model magnitude noise distribution, while the residual is
obtained from the CH vector magnitude distribution, as

δSi = σnoise(μi + Tσi ), (123)

δεi = σnoise(μSi + TσSi ), (124)

where T is the sole tuning parameter.
To incorporate information from the local area, rather than

just at a point, the n-th largest magnitude value in the local
area (ordinal filtering) is used in the shrinking function (121).
This ensures that that there must be a larger number of high
magnitude coefficients in the local area for the response to
be passed, and also that smaller coefficients in the vicinity of
larger ones are also passed more easily.

The proposed approach to denoising was compared BLS-
GSM for three 512 × 512 pixel test images. Five scale of
the VOW wavelets from [37] were used with N = 7 and
phase-invariant equal weighting. The approaches compared
were:

– BLS-GSM in a 3 × 3 pixel neighbourhood using the odd
sinusoidal wavelet at eight equiangular orientations.

– BLS-GSM in a 3 × 3 pixel neighbourhood using both
the odd and even sinusoidal wavelets at eight equiangular
orientations.

– Shrinking using thresholding of the CH vector magni-
tude.

– Shrinking using thresholding of the model and residual
components separately (121).

– Shrinking using thresholding of the model and resid-
ual components separately (121) and ordinal filtering by
choosing the third largest value in a 3 × 3 pixel neigh-
bourhood.

For shrinkage using the model, the tuning parameter, T ,
was varied and the best result selected. The best perform-
ing approach was BLS-GSM using both sinusoidal wavelets
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Table 3 Denoising
performance (PSNR) for three
images using BLS-GSM with
either an equiangular sinusoidal
pair wavelet frame or odd
sinusoidal wavelet frame, and
soft-thresholding of the model
and residual components, the
model and residual components
with ordinal filtering, or the CH
vector magnitude

σnoise / PSNR 15/24.61 25/20.17 50/14.15

Pentagon

BLS-GSM sinusoidal 30.88 28.50 25.85

BLS-GSM odd 30.81 28.46 25.81

Model/resid 30.66 (2.6) 28.27 (2.6) 25.68 (3.2)

Model/resid + ord. filt. 30.66 (2.8) 28.27 (3.0) 25.75 (3.4)

CH vector 30.09 (3.6) 27.94 (3.6) 25.50 (4.0)

Barbara

BLS-GSM sinusoidal 31.72 29.06 25.49

BLS-GSM odd 31.65 29.05 25.51

Model/resid 31.23 (2.8) 28.44 (2.6) 24.64 (2.8)

Model/resid + ord. filt. 31.32 (3.2) 28.59 (3.0) 24.77 (3.0)

CH vector 29.41 (4.0) 26.65 (3.8) 23.87 (3.6)

Boats

BLS-GSM sinusoidal 31.69 29.36 26.29

BLS-GSM odd 31.61 29.29 26.25

Model/resid 31.18 (2.8) 28.97 (2.8) 25.93 (3.2)

Model/resid + ord. filt. 31.18 (3.2) 29.01 (3.2) 26.01 (3.4)

CH vector 30.65 (4.0) 28.51 (3.8) 25.74 (4.0)

Tuning parameter, T , is shown in parentheses. Bold numbers show best denoising performance (PSNR) for
each image. Five scales of the VOW wavelet frame were used with N = 7 and phase-invariant equal
weighting

(Table 3). Of the CH vector approaches, denoising the model
and residual separately performedbetter than denoising using
the CH vector as a whole. Ordinal filtering further improved
the model results, and subsequent experiments found that
increasing the size of the filtering neighbourhood also
improved the score. Overall, this approach was within 0.51
dB of the results of the BLS-GSM method. The results are
encouraging, considering that only the two model and resid-
ual components are used, compared to eight or 16 channels
when using BLS-GSM with the odd or sinusoidal wavelets,
respectively. It shows that much of the information in an
image is represented by the sinusoidal model component.

The difference in performance between BLS-GSM using
the sinusoidal wavelet frame and shrinking the model and
residual wavelets is demonstrated for the Boats image in Fig.
14. The sinusoidal model approach appears to have lower
noise adjacent to linear features, such as the boat masts,
compared to BLS-GSMwith the wavelet frame. This may be
because thewavelets are steered to the best orientation for the
feature when using the sinusoidal model, whereas the feature
energy can be split between two wavelets with a fixed-angle
frame. Since ordinal filtering improves the results, a more
principled method of including neighbouring pixel informa-
tion may deliver further improvements. Another research
direction would be to include extra sinusoids in the model
to see if further splitting of the CH vector can improve per-
formance.

8 Conclusion

The CH vector describes the local image structure in terms
of its rotational symmetry. We have presented a method to
solve a general signal model by splitting the CH vector into
model components that represent structures of interest, and
a residual component. The method is useful for image analy-
sis, as it allows for the part of the local image structure that
is not well-represented by a model to also be investigated.
In the context of 2D steerable wavelets, it allows for exact
reconstruction of the image when the model wavelets do not
form a tight frame.

The CH vector method was used to derive the parameters
of a sinusoidal image model. The sinusoid part of the model
describes the strength (amplitude), symmetry (phase) andori-
entation of i1D features. Increasing the number of RT orders
improves the estimation of these parameters in the presence
of noise. The residual part of themodel describes i2D features
consisting of multiple symmetries. Both themodel and resid-
ual components were used to construct a complex-valued
representation of intrinsic dimension, which performs well
for detecting corners and junctions.

Many applications that use themonogenic signal for phase
and orientation estimation should be improved by using
the sinusoidal model derived from higher-order RTs. As a
minimum, adding the 2nd-order RT gives an estimation of
orientation from both odd and even structures, is quick to
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(a) (b)

(d)(c)

Fig. 14 Denoised images of the Boats image (a) with additive white
Gaussian noise (b) using BLS-GSM with a equiangular sinusoidal
wavelet frame (c) and soft-thresholding of the sinusoidal model and

residual components (d). Five scales of the VOW wavelet frame were
used with N = 7 and phase-invariant equal weighting

compute, as the model parameters can be found analytically
using quartic solvers, and also gives an intrinsic dimension
representation.

The CH vector can also be used to solve for other image
models. If the model components are not linearly indepen-
dent or have different orientations, an iterative process can
be used, whereby one component is initially solved using the
CH vector, and subsequent components are solved using the
residual vector. This is the subject of future investigation into
an image model consisting of multiple sinusoids.
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AppendixA:QuickTrigonometricPolynomialMax-
imum Estimation

A quick approximation method for locating the maximum of
a trigonometric polynomial is described below.
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Consider a trigonometric polynomial of degree 2N given
by

p(θ) =
∑

|n|∈NN

cne
inθ . (125)

The argument of n-th coefficient, cn , gives an estimate of θ

in the range [0, 2π/n), and therefore n possible estimates
for θ over the entire range [0, 2π), while the magnitude of
cn is the strength of each estimate. We can think of these as
representing n equiangular complex vectors for each positive
order, n, as

bnm = δ(n) |cn| exp
(

i
2πm + arg(cn)

n

)

, (126)

where m ∈ Nn−1 is the index of the estimate, and δ(n) is
a weighting function reflecting that higher orders are more
sensitive to orientation changes and are therefore better esti-
mates.

Next we choose one vector from each order and sum them
to give a combined vector,

vm =
N

∑

n=1

bnmn
, (127)

where m ∈ M(N ) and

M(N ) =
{

M (N )
n ∈ Nn−1 | n = [1, ..., N ]

}

(128)

is the set of all possible indices of the estimates up to order
N . There are thus N ! combinations we can create. Out of
these N ! we choose the vmN with the greatest magnitude. Its
argument is the final estimate for θ :

θ = arg vm, where m = max
m∈MN

|vm|. (129)

However, N ! possible combinations to search through be-
comes very large for large N , and defeats the purpose of a
quick algorithm.

Instead, we propose the following hybrid scheme. Firstly,
all combinations are calculated for each of the first q orders,
giving q! vectors, from which we choose the q vectors with
the largestmagnitude. For each of these q vectors, the vectors
for the next order are added and the combined vector with
the largest magnitude is kept. The number of vectors remains
at q. This is repeated for the remaining orders, giving q final
vectors, from which θ is chosen as the argument of the vec-
tor with largest magnitude. Using δ(n) = n2 for the order
weighting function was found to give good results.

The method was evaluated for solving the sinusoidal
image model. A histogram of the orientation error of the
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Fig. 15 Histogram of orientation errors using the quick approxima-
tion method for the Pentagon image with N = 7 and phase-invariant
equal weighting. a Error in θ for predominantly sinusoidal structures.
‖WfS‖ > ‖Wε‖. b Error in θ for predominantly non-sinusoidal struc-
tures ‖WfS‖ < ‖Wε‖

approximation method compared to root finding is shown in
Fig. 15. Orientation was calculated for the first scale of the
Pentagon image using N = 7, phase-invariant equal weight-
ing, and different values of q. The errors were split into two
classes depending on whether the local structure had a larger
sinusoidal model component (‖WfS‖ > ‖Wε‖) or larger
residual component. For the sinusoidal-like structures, over
half the errorswere below0.01degrees, and increasingq gave
only a marginal improvement in error. For non-sinusoidal
structures the errors were higher, but still mostly less than
3 degrees. Increasing q reduced the number of large errors
(above 30 degrees). These errors are due to structures that
can be modelled as two or more sinusoids of similar mag-
nitude, as this gives multiple similar value local maxima in
the orientation polynomial, p(2θ). If one is only interested
in analysing sinusoidal structures, then choosing q = 1 gives
fast and accurate results.

Computation time for the approximation method versus
MATLAB roots was calculated for the first scale of the Pen-
tagon image, for q from 1 to 5, N ranging from 2 to 13,
equally weighted CH vector, and using a single core of a
2.5Ghz Intel Core i7 processor. The results are shown in ear-
lier in Table 2 along with the percentage of errors under 3
degrees. The setup time required to perform the correlation
with the sinusoidal model vectors and square the polyno-
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mials λe(θ) and λo(θ) is also shown. The approximation
method is over 100 times faster for q = 1; however, jumping
from q = 4 to q = 5 results in a significant slow down.
The time complexity for the initial q estimates and the sub-
sequent search is O(q! + q

∑N
q+1 k) which makes q > 5

longer than theMATLABrootsmethod and therefore imprac-
tical. Choosing q = 3 is a good trade off between speed and
accuracy.
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