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Abstract
In this work, we apply the idea of composite matrices arising from group rings to derive
a number of different techniques for constructing self-dual codes over finite commutative
Frobenius rings. By applying these techniques over different alphabets, we construct best
known singly-even binary self-dual codes of lengths 80, 84 and 96 as well as doubly-even
binary self-dual codes of length 96 that were not known in the literature before.

Keywords Self-dual codes · Group rings · Codes over rings · Best known codes

Mathematics Subject Classification 94B0 · 16S34 · 15B10 · 15B33

1 Introduction

Self-dual codes form a family of widely studied linear codes which have many interesting
properties and are intimately connected with many mathematical structures such as designs,
lattices, modular forms and sphere packings. In recent history, much work has particularly
been invested in developing techniques to construct extremal and optimal binary self-dual
codes. The most famous of these techniques is quite possibly the pure double circulant
construction, which utilises a generator matrix of the formG = (In | A)where In is the n×n
identity matrix and A is an n× n circulant matrix. It follows that G is a generator matrix of a
self-dual [2n, n] code if and only if AAT = −In . This technique has since been generalised
by assuming a generator matrix of the form G = (In | σ(v)) where σ is an isomorphism
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from a group ring to the ring of matrices which was introduced in [23]. The isomorphism σ

is such that G is a generator matrix of a self-dual [2n, n] code if and only if v is unitary (see
Sect. 2.4 for more details). Recent applications of this isomorphism in constructing self-dual
codes can be seen in [1,8,15,16].

In this work, we assume a generator matrix of the form G = (In | Ω(v)) where Ω(v) is
a matrix that arises from group rings which we call a composite matrix. It clearly follows
that (In | Ω(v)) is a generator matrix of a self-dual code if and only if Ω(v)Ω(v)T = −In .
The idea of composite matrices was first introduced in [11] as a way of generalising the
structure of σ(v). The primary motivation for employing this technique is obtaining codes
whose structures are atypical compared with those of codes constructed by more classical
techniques. The main problem we face when attempting to construct codes with such a
generator matrix is choosing parameters in such a way that allows for structural complexity
of Ω(v) while also allowing for a reasonable set of necessary and sufficient conditions for
the satisfaction of Ω(v)Ω(v)T = −In .

Using generatormatrices of the form (In | Ω(v)) for a number of different compositematri-
ces Ω(v), we find many self-dual codes with weight enumerator parameters of previously
unknown values (relative to referenced sources). In total, 361 new codes are found, including
28 singly-even binary self-dual [80, 40, 14] codes, 107 binary self-dual [84, 42, 14] codes,
105 singly-even binary self-dual [96, 48, 16] codes and 121 doubly-even binary self-dual
[96, 48, 16] codes.

The rest of the work is organised as follows. In Sect. 2, we give preliminary definitions
on self-dual codes, Gray maps, circulant matrices and the alphabets we use. We also prove a
few results concerning a simple matrix transformation, which we use in two of the composite
matrix definitions. In Sect. 3, we define the composite matrices which we utilise in our
constructions and we also prove the necessary and sufficient conditions needed by each
construction to produce a self-dual code. In Sect. 4, we apply the constructions to obtain the
new self-dual codes of length 80, 84 and 96 whose weight enumerator parameter values and
automorphism group orders we detail. We also tabulate the results in this section. We finish
with concluding remarks and discussion of possible expansion on this work.

2 Preliminaries

2.1 Self-dual codes

Let R be a commutative Frobenius ring. We consider codes over Frobenius due to their good
duality properties, which are reflected by the equivalent statements in the following theorem
given in [31].

Theorem 2.1 ( [31]) If R is a finite ring, then the following are equivalent

(i) R is a Frobenius ring,
(ii) As a left module, ̂R ∼= R R,
(iii) As a right module, ̂R ∼= RR.

See [5] for a full description ofFrobenius rings and codes over Frobenius rings. Throughout
this work, we always assume R has unity. A code C of length n over R is a subset of Rn

whose elements are called codewords. If C is a submodule of Rn , then we say that C is linear.
Let x, y ∈ Rn where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). The (Euclidean) dual
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C⊥ of C is given by

C⊥ = {x ∈ Rn : 〈x, y〉 = 0,∀y ∈ C},
where 〈·, ·〉 denotes the Euclidean inner product defined by

〈x, y〉 =
n

∑

i=1

xi yi .

We say that C is self-orthogonal if C ⊆ C⊥ and self-dual if C = C⊥.
A binary self-dual code C is said to be doubly-even (Type II), if all codewords c ∈ C have

weight w(c) ≡ 0 (mod 4), otherwise C is said to be singly-even (Type I).
An upper bound on the minimum (Hamming) distance of a doubly-even binary self-dual

code was given in [27] and likewise for a singly-even binary self-dual code in [28]. Let dI(n)

and dII(n) be the minimum distance of a singly-even and doubly-even binary self-dual code
of length n, respectively. Then

dII(n) ≤ 4�n/24� + 4

and

dI(n) ≤

⎧

⎪

⎨

⎪

⎩

4�n/24� + 2, n ≡ 0 (mod 24),

4�n/24� + 4, n 
≡ 22 (mod 24),

4�n/24� + 6, n ≡ 22 (mod 24).

A self-dual code whose minimum distance meets its corresponding bound is called
extremal. A self-dual code with the highest possible minimum distance for its length is
said to be optimal. Extremal codes are necessarily optimal but optimal codes are not nec-
essarily extremal. A best known self-dual code is a self-dual code with the highest known
minimum distance for its length.

2.2 Alphabets

In this paper, we consider the alphabets F2, F2 + uF2 and F4.
Define

F2 + uF2 = {a + bu : a, b ∈ F2, u
2 = 0}.

Then F2 +uF2 is a commutative ring of order 4 and characteristic 2 such that F2 +uF2 ∼=
F2[u]/〈u2〉.

We define F4 ∼= F2[ω]/〈ω2 + ω + 1〉 so that
F4 = {aω + b(1 + ω) : a, b ∈ F2, ω

2 + ω + 1 = 0}.
We recall the following Gray maps from [7,13]:

ϕF2+uF2 : (F2 + uF2)
n → F

2n
2

a + bu �→ (b, a + b), a, b ∈ F
n
2,

ψF4 : Fn
4 → F

2n
2

aω + b(1 + ω) �→ (a, b), a, b ∈ F
n
2 .
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Note that these Gray maps preserve orthogonality in their respective alphabets. The Lee
weight of a codeword is defined to be the Hamming weight of its binary image under any
of the aforementioned Gray maps. A self-dual code in Rn where R is equipped with a Gray
map to the binary Hamming space is said to be of Type II if the Lee weights of all codewords
are multiples of 4, otherwise it is said to be of Type I.

Proposition 2.2 ( [7]) Let C be a code over F2+uF2. If C is self-orthogonal, then ϕF2+uF2(C)

is self-orthogonal. The code C is a Type I (resp. Type II) code over F2 + uF2 if and only if
ϕF2+uF2(C) is a Type I (resp. Type II) code over F2. The minimum Lee weight of C is equal
to the minimum Hamming weight of ϕF2+uF2(C).

Proposition 2.3 ( [13]) Let C be a code over F4. If C is self-orthogonal, then ψF4(C) is self-
orthogonal. The code C is a Type I (resp. Type II) code over F4 if and only if ψF4(C) is a
Type I (resp. Type II) code over F2. The minimum Lee weight of C is equal to the minimum
Hamming weight of ψF4(C).

The next two corollaries follow directly from Propositions 2.2 and 2.3, respectively.

Corollary 2.4 Let C be a self-dual code overF2+uF2 of length n andminimumLee distance d.
Then ϕF2+uF2(C) is a binary self-dual [2n, n, d] code. Moreover, the Lee weight enumerator
of C is equal to the Hamming weight enumerator of ϕF2+uF2(C). If C is a Type I (resp. Type
II) code, then ϕF2+uF2(C) is a Type I (resp. Type II) code.

Corollary 2.5 Let C be a self-dual code over F4 of length n and minimum Lee distance d.
Then ψF4(C) is a binary self-dual [2n, n, d] code. Moreover, the Lee weight enumerator of C
is equal to the Hamming weight enumerator of ψF4(C). If C is a Type I (resp. Type II) code,
then ψF4(C) is a Type I (resp. Type II) code.

2.3 Special matrices

We now recall the definitions and properties of some special matrices which we use in our
work. We begin by defining a matrix transformation whose properties we utilise in some of
the composite constructions we consider.

The following proposition is trivial and therefore the proof is omitted.

Proposition 2.6 Let A be n×n matrix over a commutative ring R. Let � : Rn×n → Rn×n be
the transformation such that A� is defined to be the matrix obtained after circularly shifting
the columns of A to the right by one position. If

P =
(

0 In−1

1 0

)

,

then A� = AP.

The matrix P as defined in Proposition 2.6 is a permutation matrix and is therefore
orthogonal, i.e. PPT = In . To see this, we have

PT =
(

0 1
In−1 0

)

,

which corresponds to P after circularly shifting its columns to the right by n−2 places and so
by Proposition 2.6we have PT = PPn−2 = Pn−1. Clearly, if we circularly shift the columns
of PT = Pn−1 to the right by one place we obtain In so that PT P = Pn−1P = Pn = In .
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It also follows that (Pk)T = P−k (mod n) for k ∈ N. We can easily prove this by induction
on k ∈ N. The cases k = 0 and k = 1 are trivial. Assume (Pk)T = P−k (mod n). Then we have
(Pk+1)T = (Pk P)T = PT (Pk)T = Pn−1P−k (mod n) = Pn−k−1 (mod n) = P−(k+1) (mod n)

which concludes our induction step.
We also have the following properties which are easy to prove.

Lemma 2.7 Let A and B be n × n matrices over a commutative ring R where n ≥ 2 and let
� be the transformation defined in Proposition 2.6.

(i) (A + B)� = A� + B�.
(i i) ABT = A�B�T .

Proof (i) By Proposition 2.6, we have (A + B)� = (A + B)P = AP + BP = A� + B�.
(ii) By Proposition 2.6 and the fact that P is orthogonal, we have A�B�T = AP(BP)T =

APPT BT = A(In)BT = ABT . ��
Let a = (a0, a1, . . . , an−1) ∈ Rn where R is a commutative ring and let

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2

an−2 an−1 a0 · · · an−3
...

...
...

. . .
...

a1 a2 a3 · · · a0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Then A is an n×nmatrix called the circulantmatrix generated a, denoted by A = circ(a).
If A = circ(a0, a1, . . . , an−1), then we see that A = a0 In + a1 I �

n + a2(I �
n )� + . . . and so

on. Using Proposition 2.6 and the properties of the matrix P , it follows that A = ∑n−1
i=0 ai Pi .

Clearly, the sum of any two circulant matrices is also a circulant matrix. If B = circ(b)

where b = (b0, b1, . . . , bn−1) ∈ Rn , then AB = ∑n−1
i=0

∑n−1
j=0 aib j Pi+ j . Since Pn = In

there exist ck ∈ R such that AB = ∑n−1
k=0 ck P

k so that AB is also circulant. In fact, it is true
that

ck =
∑

[i+ j]n=k

ai b j = x1yk+1

for k ∈ {0, . . . , n − 1}, where xi and yi respectively denote the i th row and column of A and
B and [i + j]n denotes the smallest non-negative integer such that [i + j]n ≡ i + j (mod n).
From this, we can see that circulant matrices commute multiplicatively. We also see that AT

is circulant such that AT = ∑n−1
i=0 ai (Pi )T = ∑n−1

i=0 ai Pn−i .

Lemma 2.8 Let A be an n × n matrix over a commutative ring R where n ≥ 2 and let � be
the transformation defined in Proposition 2.6. Let B be an n × n circulant matrix over R.

(i) BP = PB.
(ii) (ABT )� = A�BT .
(iii) (AB�T )� = ABT .

Proof (i) Let B = circ(b0, b1, . . . , bn−1). Then B can be expressed as B = ∑n−1
i=0 bi Pi and

so it is obvious that BP = PB.
(ii) Since B is circulant, then BT is circulant and so by (i), we have (ABT )� = (ABT )P =

A(BT P) = (AP)BT = A�BT .
(iii) Since B is circulant, then BT is circulant and so by (i) and the fact that P is orthogonal,

we have (AB�T )� = (A(BP)T )P = APT BT P = APT PBT = A(In)BT = ABT . ��
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Let Jn be an n × n matrix over R whose (i, j)th entry is 1 if i + j = n + 1 and 0 if
otherwise. Then Jn is called the n × n exchange matrix and corresponds to the row-reversed
(or column-reversed) version of In . Note that [i + j]n corresponds to the (i + 1, j + 1)th
entry of the matrix JnV where V = circ(n − 1, 0, 1, . . . , n − 2) for i, j ∈ {0, . . . , n − 1}.

Let A0, A1, . . . , Ak−1 be m × n matrices over R and let

X =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

A0 A1 A2 · · · Ak−1

Ak−1 A0 A1 · · · Ak−2

Ak−2 Ak−1 A0 · · · Ak−3
...

...
...

. . .
...

A1 A2 A3 · · · A0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Then X is an km × kn matrix called the block circulant matrix generated A0, A1, . . . ,

Ak−1, denoted by X = CIRC(A0, A1, . . . , Ak−1).

2.4 Group rings and composite matrices

In this section, we recall the basic definition of a finite group ring and proceed to define the
concept of a composite matrix.

Let G be a finite group order n and let R be a finite commutative Frobenius ring. Let
RG = {∑n

i=1 αgi gi : αgi ∈ R, gi ∈ G} and define addition in RG by

n
∑

i=1

αgi gi +
n

∑

i=1

βgi gi =
n

∑

i=1

(αgi + βgi )gi

and define multiplication in RG by

n
∑

i=1

αgi gi ·
n

∑

j=1

βg j g j =
n

∑

k=1

(

∑

i, j :gi g j=gk
αgi βg j

)

gk .

Then RG is called the group ring of G over R and is a ring with respect to the aforemen-
tioned definitions of addition and multiplication.

Let (g1, g2, . . . , gn) be a fixed listing of the elements of G with g1 = 1 and let v =
∑n

i=1 αgi gi ∈ RG. Define σ(v) to be the n × n matrix whose (i, j)th entry is αgk where
gk = g−1

i g j for i, j ∈ {1, . . . , n}, i.e.

σ(v) =

⎛

⎜

⎜

⎜

⎜

⎝

αg−1
1 g1

αg−1
1 g2

· · · αg−1
1 gn

αg−1
2 g1

αg−1
2 g2

· · · αg−1
2 gn

...
...

. . .
...

αg−1
n g1

αg−1
n g2

· · · αg−1
n gn

⎞

⎟

⎟

⎟

⎟

⎠

.

The matrix σ(v) was first given in [23] wherein it was proved that σ is an isomorphism
from the ring RG to Rn×n . It follows that σ(v)σ (v)T = −In if and only if vv∗ = −1 where
v∗ = ∑n

i=1 αgi g
−1
i . When R is of characteristic 2, we see that σ(v)σ (v)T = In if and only

if vv∗ = 1, i.e. v is unitary with respect to the involution ∗.
Suppose now that n > 1 is composite and let r be a fixed integer such that r | n : 1 < r < n

and let m = n/r . Let {H1, H2, . . . , Hη} be a collection of η groups of order r . Let Ht be a
representative of one of these groups for t ∈ {1, . . . , η} and let (ht :1, ht :2, . . . , ht :r ) be a fixed
listing of the elements of Ht with ht :1 = 1. Let H ′ be an m ×m matrix whose (y, z)th entry
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is h′
y,z ∈ {1, . . . , η} for y, z ∈ {1, . . . ,m} and let P ′ be anm×m matrix whose (y, z)th entry

is p′
y,z ∈ F2 for y, z ∈ {1, . . . ,m}. Define the mapping �(y, z, i, j) = g−1

r(y−1)+i gr(z−1)+ j

for y, z ∈ {1, . . . ,m} and i, j ∈ {1, . . . , r}.
Define Zy,z to be the r × r matrix whose (i, j)th entry is given by

zy,z|i, j = α�(y,z,i, j)

and define Z ′
t :y,z to be the r × r matrix whose (i, j)th entry is given by

z′t :y,z|i, j = α�(y,z,1,MHt (i, j)),

where MHt (i, j) is the (i, j)th entry of the matrix of integers � ∈ {1, . . . , r} such that
ht :� = h−1

t :i ht : j .
Define Ω(v) to be the block matrix whose (y, z)th block entry is given by

ωy,z =
{

Zy,z, p′
y,z = 0,

Z ′
h′
y,z :y,z, p′

y,z = 1.

Then Ω(v) is an n × n matrix composed of m2 blocks of size r × r which we call the
composite (G, H1, H2, . . . , Hη)-matrix of v ∈ RG with respect to H ′ and P ′. If P ′ = 0
(i.e. the m × m zero matrix), the matrix Ω(v) reduces to σ(v).

The concept of composite matrices defined in this way was first introduced in [11] as a
way of generalising the structure of σ(v). See [9,10,26] for recent applications of composite
matrices in constructing binary self-dual codes.

Example 2.9 Let G ∼= D4 ∼= 〈a, b | a4 = b2 = 1, bab = a−1〉 with the fixed listing
G = (g4 j+i+1) = aib j for i ∈ {0, . . . , 3} and j ∈ {0, 1}. Then G = (g1, g2, g3, g4, g5,
g6, g7, g8) = (1, a, a2, a3, b, ab, a2b, a3b). We have n = 8 and suppose we let r = 4 | n
so that m = n/r = 2. Let {H1, H2} be a collection of groups of order r = 4. Let H1 ∼=
C2 × C2 ∼= 〈c, d | c2 = d2 = 1, cd = dc〉 with the fixed listing H1 = (h1:2 j+i+1) = ci d j

for i ∈ {0, 1} and j ∈ {0, 1}. Then H1 = (h1:1, h1:2, h1:3, h1:4) = (1, c, d, cd). Let H2 ∼=
C2·2 ∼= 〈e | e2·2 = 1〉 with the fixed listing H2 = (h2:2 j+i+1) = e2i+ j for i ∈ {0, 1} and
j ∈ {0, 1}. Then H2 = (h2:1, h2:2, h2:3, h2:4) = (1, e2, e, e3). Let

H ′ =
(

1 2
2 1

)

and let P ′ = 1 (i.e. the 2 × 2 matrix of ones). Let v = ∑8
i=1 αgi gi ∈ RG and let Ω(v) be

the composite (G, H1, H2)-matrix of v ∈ RG with respect to H ′ and P ′. We have

Ω(v) =
(

ω1,1 ω1,2

ω2,1 ω2,2

)

=
(

Z ′
h′
1,1:1,1 Z ′

h′
1,2:1,2

Z ′
h′
2,1:2,1 Z ′

h′
2,2:2,2

)

=
(

Z ′
1:1,1 Z ′

2:1,2
Z ′
2:2,1 Z ′

1:2,2

)

and we also find that

MH1 =

⎛

⎜

⎜

⎝

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

⎞

⎟

⎟

⎠

and MH2 =

⎛

⎜

⎜

⎝

1 2 3 4
2 1 4 3
4 3 1 2
3 4 2 1

⎞

⎟

⎟

⎠

.
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Bydefinition, the (i, j)th entry of Z ′
1:1,1 is givenbyα�(1,1,1,MH1 (i, j)) where�(1, 1, 1,MH1

(i, j)) = g−1
1 gMH1 (i, j) = gMH1 (i, j) so that

Z ′
1:1,1 =

⎛

⎜

⎜

⎝

αg1 αg2 αg3 αg4
αg2 αg1 αg4 αg3
αg3 αg4 αg1 αg2
αg4 αg3 αg2 αg1

⎞

⎟

⎟

⎠

and similarly we find that

Z ′
2:1,2 =

⎛

⎜

⎜

⎝

αg5 αg6 αg7 αg8
αg6 αg5 αg8 αg7
αg8 αg7 αg5 αg6
αg7 αg8 αg6 αg5

⎞

⎟

⎟

⎠

,

Z ′
2:2,1 =

⎛

⎜

⎜

⎝

αg5 αg8 αg7 αg6
αg8 αg5 αg6 αg7
αg6 αg7 αg5 αg8
αg7 αg6 αg8 αg5

⎞

⎟

⎟

⎠

,

Z ′
1:2,2 =

⎛

⎜

⎜

⎝

αg1 αg4 αg3 αg2
αg4 αg1 αg2 αg3
αg3 αg2 αg1 αg4
αg2 αg3 αg4 αg1

⎞

⎟

⎟

⎠

.

Therefore, we obtain

Ω(v) =
(

Z ′
1:1,1 Z ′

2:1,2
Z ′
2:2,1 Z ′

1:2,2

)

=

⎛

⎜

⎜

⎝

A1 A2 B1 B2

A2 A1 B2 J2 B1

C1 C2 D1 D2

C2 J2 C1 D2 D1

⎞

⎟

⎟

⎠

where A1 = circ(αg1 , αg2), A2 = circ(αg3 , αg4), B1 = circ(αg5 , αg6), B2 = circ(αg7 , αg8),
C1 = circ(αg5 , αg8), C2 = circ(αg7 , αg6) and D1 = circ(αg1 , αg4), D2 = circ(αg3 , αg2).

3 Composite matrix constructions

In this section, we present our constructions which assume a generator matrix of the form
(In | Ω(v)) where Ω(v) is a composite matrix. For each construction, we first define the
structure of the corresponding composite matrixΩ(v) and subsequently prove the conditions
that hold if and only if (In | Ω(v)) is a generator matrix of a self-dual [2n, n] code over R. We
will hereafter assume that R is a finite commutativeFrobenius ring of characteristic 2. For each
v = ∑n

i=1 αgi gi ∈ RG thatwedefine,wedenotev = (v1, v2, . . . , vn) = (αg1 , αg2 , . . . , αgn )

where vi denotes vi = αgi for i ∈ {1, . . . , n}. We also use the following notation

vi : j =
{

(vi , vi+1, vi+2, . . . , v j−1, v j ), i < j,

(vi , vi−1, vi−2, . . . , v j+1, v j ), i > j,

for i, j ∈ {1, . . . , n}. We also let circ(u, v) denote circ(u1, u2, . . . , un, v1, v2, . . . , vn) for
any u, v ∈ Rn such that u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn).

Definition 3.1 Let G ∼= D10 ∼= 〈a, b | a10 = b2 = 1, bab = a−1〉 with the fixed listing
G = (g10 j+i+1) = aib j for i ∈ {0, . . . , 9} and j ∈ {0, 1}. Let H ∼= D5 ∼= 〈c, d | c5 =
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d2 = 1, dcd = c−1〉 with the fixed listing H = (h5 j+i+1) = aib j for i ∈ {0, . . . , 4} and
j ∈ {0, 1}. Let H ′ = 1 and P ′ = 1. Let v = ∑20

i=1 αgi gi ∈ RG. If Ω20
1 (v) is the composite

(G, H)-matrix of v ∈ RG with respect to H ′ and P ′, then

Ω20
1 (v) =

⎛

⎜

⎜

⎝

A1 B1 C1 D1

BT
1 AT

1 DT
1 CT

1
C2 D2 A2 B2

DT
2 CT

2 BT
2 AT

2

⎞

⎟

⎟

⎠

,

where A1 = circ(v1:5), B1 = circ(v6:10), C1 = circ(v11:15), D1 = circ(v16:20), A2 =
circ(v1, v10:7), B2 = circ(v6:2), C2 = circ(v11, v20:17) and D2 = circ(v16:12).

Theorem 3.2 Let G = (I | Ω20
1 (v)) where Ω20

1 (v) is as defined in Definition 3.1. Then G is
a generator matrix of a self-dual code of length 40 over R if and only if

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

A1A
T
1 + B1B

T
1 + C1C

T
1 + D1D

T
1 = I5,

A2A
T
2 + B2B

T
2 + C2C

T
2 + D2D

T
2 = I5,

A1C
T
2 + B1D

T
2 + C1A

T
2 + D1B

T
2 = 0,

A1D2 + B1C2 + C1B2 + D1A2 = 0.

Proof We know that G is a generator matrix of a self-dual code of length 40 over R if and
only if Ω20

1 (v)Ω20
1 (v)T = I20. We find that

Ω20
1 (v)Ω20

1 (v)T =

⎛

⎜

⎜

⎜

⎝

X1 0 Y1 Y2
0 X1 Y T

2 Y T
1

Y T
1 Y2 X2 0

Y T
2 Y1 0 X2

⎞

⎟

⎟

⎟

⎠

,

where

X1 = A1A
T
1 + B1B

T
1 + C1C

T
1 + D1D

T
1 ,

X2 = A2A
T
2 + B2B

T
2 + C2C

T
2 + D2D

T
2

and

Y1 = A1C
T
2 + B1D

T
2 + C1A

T
2 + D1B

T
2 ,

Y2 = A1D2 + B1C2 + C1B2 + D1A2.

Clearly, Yi = 0 if and only if Y T
i = 0 for i ∈ {1, 2}. Thus, Ω20

1 (v)Ω20
1 (v)T = I20 if and

only if
{

X1 = X2 = I5,

Y1 = Y2 = 0.

��

Definition 3.3 Let G ∼= C5 × C4 ∼= 〈a, b | a5 = b4 = 1, ab = ba〉 with the fixed listing
G = (g5 j+i+1) = aib j for i ∈ {0, . . . , 4} and j ∈ {0, . . . , 3}. Let H ∼= D5 ∼= 〈c, d | c5 =
d2 = 1, dcd = c−1〉 with the fixed listing H = (h5 j+i+1) = aib j for i ∈ {0, . . . , 4} and
j ∈ {0, 1}. Let H ′ = 1 and P ′ = 1. Let v = ∑20

i=1 αgi gi ∈ RG. If Ω20
2 (v) is the composite
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(G, H)-matrix of v ∈ RG with respect to H ′ and P ′, then

Ω20
2 (v) =

⎛

⎜

⎜

⎝

A B C D
BT AT DT CT

C D A B
DT CT BT AT

⎞

⎟

⎟

⎠

,

where A = circ(v1:5), B = circ(v6:10), C = circ(v11:15) and D = circ(v16:20).

Theorem 3.4 Let G = (I | Ω20
2 (v)) where Ω20

2 (v) is as defined in Definition 3.3. Then G is
a generator matrix of a self-dual code of length 40 over R if and only if

{

AAT + BBT + CCT + DDT = I5,

ACT + BDT + CAT + DBT = 0.

Proof We know that G is a generator matrix of a self-dual code of length 40 over R if and
only if Ω20

2 (v)Ω20
2 (v)T = I20. We find that

Ω20
2 (v)Ω20

2 (v)T = circ(X , 0, Y , 0),

where

X = AAT + BBT + CCT + DDT

and

Y = ACT + BDT + CAT + DBT .

Thus, Ω20
2 (v)Ω20

2 (v)T = I20 if and only if

{

X = I5,

Y = 0.

��

Definition 3.5 Let G ∼= D21 ∼= 〈a, b | a21 = b2 = 1, bab = a−1〉 with the fixed listing
G = (g21 j+i+1) = aib j for i ∈ {0, . . . , 20} and j ∈ {0, 1}. Let H ∼= C7 × C3 ∼= 〈c, d |
c7 = d3 = 1, cd = dc〉 with the fixed listing H = (h7 j+i+1) = aib j for i ∈ {0, . . . , 6}
and j ∈ {0, 1, 2}. Let H ′ = 1 and P ′ = 1. Let v = ∑42

i=1 αgi gi ∈ RG. If Ω42
1 (v) is the

composite (G, H)-matrix of v ∈ RG with respect to H ′ and P ′, then

Ω42
1 (v) =

(

CIRC(A1, A2, A3) CIRC(B1, B2, B3)

CIRC(C1,C2,C3) CIRC(D1, D2, D3)

)

,

where A1 = circ(v1:7), A2 = circ(v8:14), A3 = circ(v15:21), B1 = circ(v22:28), B2 =
circ(v29:35), B3 = circ(v36:42), C1 = circ(v22, v42:37), C2 = circ(v36:30), C3 = circ(v29:23),
D1 = circ(v1, v21:16), D2 = circ(v15:9) and D2 = circ(v8:2).
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Theorem 3.6 Let G = (I | Ω42
1 (v)) where Ω42

1 (v) is as defined in Definition 3.5. Then G is
a generator matrix of a self-dual code of length 84 over R if and only if

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A1A
T
1 + A2A

T
2 + A3A

T
3 + B1B

T
1 + B2B

T
2 + B3B

T
3 = I7,

C1C
T
1 + C2C

T
2 + C3C

T
3 + D1D

T
1 + D2D

T
2 + D3D

T
3 = I7,

A1A
T
3 + A2A

T
1 + A3A

T
2 + B1B

T
3 + B2B

T
1 + B3B

T
2 = 0,

A1C
T
1 + A2C

T
2 + A3C

T
3 + B1D

T
1 + B2D

T
2 + B3D

T
3 = 0,

A1C
T
3 + A2C

T
1 + A3C

T
2 + B1D

T
3 + B2D

T
1 + B3D

T
2 = 0,

A1C
T
2 + A2C

T
3 + A3C

T
1 + B1D

T
2 + B2D

T
3 + B3D

T
1 = 0,

C1C
T
3 + C2C

T
1 + C3C

T
2 + D1D

T
3 + D2D

T
1 + D3D

T
2 = 0.

Proof We know that G is a generator matrix of a self-dual code of length 84 over R if and
only if Ω42

1 (v)Ω42
1 (v)T = I42. We find that

Ω42
1 (v)Ω42

1 (v)T =
(

CIRC(X1, Y1, Y T
1 ) CIRC(Y2, Y3, Y4)

CIRC(Y T
2 , Y T

4 , Y T
3 ) CIRC(X2, Y5, Y T

5 )

)

,

where

X1 = A1A
T
1 + A2A

T
2 + A3A

T
3 + B1B

T
1 + B2B

T
2 + B3B

T
3 ,

X2 = C1C
T
1 + C2C

T
2 + C3C

T
3 + D1D

T
1 + D2D

T
2 + D3D

T
3

and

Y1 = A1A
T
3 + A2A

T
1 + A3A

T
2 + B1B

T
3 + B2B

T
1 + B3B

T
2 ,

Y2 = A1C
T
1 + A2C

T
2 + A3C

T
3 + B1D

T
1 + B2D

T
2 + B3D

T
3 ,

Y3 = A1C
T
3 + A2C

T
1 + A3C

T
2 + B1D

T
3 + B2D

T
1 + B3D

T
2 ,

Y4 = A1C
T
2 + A2C

T
3 + A3C

T
1 + B1D

T
2 + B2D

T
3 + B3D

T
1 ,

Y5 = C1C
T
3 + C2C

T
1 + C3C

T
2 + D1D

T
3 + D2D

T
1 + D3D

T
2 .

Clearly, Yi = 0 if and only if Y T
i = 0 for i ∈ {1, . . . , 5}. Thus, Ω42

1 (v)Ω42
1 (v)T = I42 if

and only if
{

X1 = X2 = I7,

Y1 = Y2 = Y3 = Y4 = Y5 = 0.
��

Definition 3.7 Let G ∼= D21 ∼= 〈a, b | a21 = b2 = 1, bab = a−1〉 with the fixed listing
G = (g21 j+i+1) = aib j for i ∈ {0, . . . , 20} and j ∈ {0, 1}. Let H ∼= C3 × C7 ∼= 〈c, d |
c3 = b7 = 1, cd = dc〉 with the fixed listing H = (h3 j+i+1) = ci d j for i ∈ {0, 1, 2}
and j ∈ {0, . . . , 6}. Let H ′ = 1 and P ′ = 1. Let v = ∑42

i=1 αgi gi ∈ RG. If Ω42
2 (v) is the

composite (G, H)-matrix of v ∈ RG with respect to H ′ and P ′, then

Ω42
2 (v) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

A1 A2 A3 B1 B2 B3

A�
3 A1 A2 B�

3 B1 B2

A�
2 A�

3 A1 B�
2 B�

3 B1

C1 C2 C3 D1 D2 D3

C�
3 C1 C2 D�

3 D1 D2

C�
2 C�

3 C1 D�
2 D�

3 D1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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where A1 = circ(v1:7), A2 = circ(v8:14), A3 = circ(v15:21), B1 = circ(v22:28), B2 =
circ(v29:35), B3 = circ(v36:42), C1 = circ(v22, v42:37), C2 = circ(v36:30), C3 = circ(v29:23),
D1 = circ(v1, v21:16), D2 = circ(v15:9), D2 = circ(v8:2) and � is the transformation defined
in Proposition 2.6.

Theorem 3.8 Let G = (I | Ω42
2 (v)) where Ω42

2 (v) is as defined in Definition 3.7. Then G is
a generator matrix of a self-dual code of length 84 over R if and only if

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A1A
T
1 + A2A

T
2 + A3A

T
3 + B1B

T
1 + B2B

T
2 + B3B

T
3 = I7,

C1C
T
1 + C2C

T
2 + C3C

T
3 + D1D

T
1 + D2D

T
2 + D3D

T
3 = I7,

A2A
T
1 + A3A

T
2 + A1A

�T
3 + B2B

T
1 + B3B

T
2 + B1B

�T
3 = 0,

A1C
T
1 + A2C

T
2 + A3C

T
3 + B1D

T
1 + B2D

T
2 + B3D

T
3 = 0,

A2C
T
1 + A3C

T
2 + A1C

�T
3 + B2D

T
1 + B3D

T
2 + B1D

�T
3 = 0,

A3C
T
1 + A1C

�T
2 + A2C

�T
3 + B3D

T
1 + B1D

�T
2 + B2D

�T
3 = 0,

C2C
T
1 + C3C

T
2 + C1C

�T
3 + D2D

T
1 + D3D

T
2 + D1D

�T
3 = 0.

Proof We know that G is a generator matrix of a self-dual code of length 84 over R if and
only if Ω42

2 (v)Ω42
2 (v)T = I42. Using Lemmas 2.7 and 2.8, we find that

Ω42
2 (v)Ω42

2 (v)T =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

X1 Y1 Y �T
1 Y2 Y3 Y4

Y T
1 X1 Y1 Y �

4 Y2 Y3
Y �
1 Y T

1 X1 Y �
3 Y �

4 Y2
Y T
2 Y �T

4 Y �T
3 X2 Y5 Y �T

5
Y T
3 Y T

2 Y �T
4 Y T

5 X2 Y5
Y T
4 Y T

3 Y T
2 Y �

5 Y T
5 X2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where

X1 = A1A
T
1 + A2A

T
2 + A3A

T
3 + B1B

T
1 + B2B

T
2 + B3B

T
3 ,

X2 = C1C
T
1 + C2C

T
2 + C3C

T
3 + D1D

T
1 + D2D

T
2 + D3D

T
3

and

Y1 = A2A
T
1 + A3A

T
2 + A1A

�T
3 + B2B

T
1 + B3B

T
2 + B1B

�T
3 ,

Y2 = A1C
T
1 + A2C

T
2 + A3C

T
3 + B1D

T
1 + B2D

T
2 + B3D

T
3 ,

Y3 = A2C
T
1 + A3C

T
2 + A1C

�T
3 + B2D

T
1 + B3D

T
2 + B1D

�T
3 ,

Y4 = A3C
T
1 + A1C

�T
2 + A2C

�T
3 + B3D

T
1 + B1D

�T
2 + B2D

�T
3 ,

Y5 = C2C
T
1 + C3C

T
2 + C1C

�T
3 + D2D

T
1 + D3D

T
2 + D1D

�T
3 .

Clearly, Yi = 0 if and only if Y T
i = 0, Y �

i = 0 and Y �T
i = 0 for i ∈ {1, . . . , 5}. Thus,

Ω42
2 (v)Ω42

2 (v)T = I42 if and only if
{

X1 = X2 = I5,

Y1 = Y2 = Y3 = Y4 = Y5 = 0.

��
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Definition 3.9 Let G ∼= C12 × C2 ∼= 〈a, b | a12 = b2 = 1, ab = ba〉 with the fixed listing
G = (g12 j+i+1) = aib j for i ∈ {0, . . . , 11} and j ∈ {0, 1}. Let H ∼= D3 ∼= 〈c, d | c3 =
d2 = 1, dcd = c−1〉 with the fixed listing H = (h3 j+i+1) = ci d j for i ∈ {0, 1, 2} and
j ∈ {0, 1}. Let H ′ = 1 and P ′ = 1. Let v = ∑24

i=1 αgi gi ∈ RG. If Ω24
1 (v) is the composite

(G, H)-matrix of v ∈ RG with respect to H ′ and P ′, then

Ω24
1 (v) = I2 ⊗ CIRC( Ã, B̃) + J2 ⊗ CIRC(C̃, D̃),

where ⊗, I2 and J2 denote the Kronecker product, 2× 2 identity matrix and 2× 2 exchange
matrix, respectively and

Ã =
(

A1 A2

AT
2 AT

1

)

, B̃ =
(

B1 B2

BT
2 BT

1

)

,

C̃ =
(

C1 C2

CT
2 CT

1

)

, D̃ =
(

D1 D2

DT
2 DT

1

)

,

where A1 = circ(v1:3), A2 = circ(v4:6), B1 = circ(v7:9), B2 = circ(v10:12), C1 =
circ(v13:15), C2 = circ(v16:18), D1 = circ(v19:21) and D2 = circ(v22:24).

Theorem 3.10 Let G = (I | Ω24
1 (v)) where Ω24

1 (v) is as defined in Definition 3.9. Then G
is a generator matrix of a self-dual code of length 48 over R if and only if

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

A1A
T
1 + A2A

T
2 + B1B

T
1 + B2B

T
2 + C1C

T
1 + C2C

T
2 + D1D

T
1 + D2D

T
2 = I3,

A1B
T
1 + A2B

T
2 + B1A

T
1 + B2A

T
2 + C1D

T
1 + C2D

T
2 + D1C

T
1 + D2C

T
2 = 0,

A1C
T
1 + A2C

T
2 + B1D

T
1 + B2D

T
2 + C1A

T
1 + C2A

T
2 + D1B

T
1 + D2B

T
2 = 0,

A1D
T
1 + A2D

T
2 + B1C

T
1 + B2C

T
2 + C1B

T
1 + C2B

T
2 + D1A

T
1 + D2A

T
2 = 0.

Proof We know that G is a generator matrix of a self-dual code of length 48 over R if and
only if Ω24

1 (v)Ω24
1 (v)T = I24. We find that

Ω24
1 (v)Ω24

1 (v)T = I2 ⊗ CIRC(X̃ , Ỹ1) + J2 ⊗ CIRC(Ỹ2, Ỹ3),

where

X̃ =
(

X 0
0 X

)

, Ỹ1 =
(

Y1 0
0 Y1

)

,

Ỹ2 =
(

Y2 0
0 Y2

)

, Ỹ3 =
(

Y3 0
0 Y3

)

with

X = A1A
T
1 + A2A

T
2 + B1B

T
1 + B2B

T
2 + C1C

T
1 + C2C

T
2 + D1D

T
1 + D2D

T
2

and

Y1 = A1B
T
1 + A2B

T
2 + B1A

T
1 + B2A

T
2 + C1D

T
1 + C2D

T
2 + D1C

T
1 + D2C

T
2 ,

Y2 = A1C
T
1 + A2C

T
2 + B1D

T
1 + B2D

T
2 + C1A

T
1 + C2A

T
2 + D1B

T
1 + D2B

T
2 ,

Y3 = A1D
T
1 + A2D

T
2 + B1C

T
1 + B2C

T
2 + C1B

T
1 + C2B

T
2 + D1A

T
1 + D2A

T
2 .

Thus, Ω24
1 (v)Ω24

1 (v)T = I24 if and only if
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{

X1 = X2 = I3,

Y1 = Y2 = Y3 = 0.
��

Definition 3.11 Let G ∼= D12 ∼= 〈a, b | a12 = b2 = 1, bab = a−1〉 with the fixed listing
G = (g12 j+i+1) = aib j for i ∈ {0, . . . , 11} and j ∈ {0, 1}. Let H ∼= C2·6 ∼= 〈c | c2·6 = 1〉
with the fixed listing H = (h6 j+i+1) = c2i+ j for i ∈ {0, . . . , 5} and j ∈ {0, 1}. Let H ′ = 1
and P ′ = 1. Let v = ∑24

i=1 αgi gi ∈ RG. If Ω24
2 (v) is the composite (G, H)-matrix of

v ∈ RG with respect to H ′ and P ′, then

Ω24
2 (v) =

⎛

⎜

⎜

⎝

A1 A2 B1 B2

A�
2 A1 B�

2 B1

C1 C2 D1 D2

C�
2 C1 D�

2 D1

⎞

⎟

⎟

⎠

,

where A1 = circ(v1:6), A2 = circ(v7:12), B1 = circ(v13:18), B2 = circ(v19:24), C1 =
circ(v13, v24:20), C2 = circ(v19:14), D1 = circ(v1, v12:8), D2 = circ(v7:2) and � is the
transformation defined in Proposition 2.6.

Theorem 3.12 Let G = (I | Ω24
2 (v)) where Ω24

2 (v) is as defined in Definition 3.11. Then G
is a generator matrix of a self-dual code of length 48 over R if and only if

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A1A
T
1 + A2A

T
2 + B1B

T
1 + B2B

T
2 = I6,

C1C
T
1 + C2C

T
2 + D1D

T
1 + D2D

T
2 = I6,

A1A
�T
2 + A2A

T
1 + B1B

�T
2 + B2B

T
1 = 0,

A1C
T
1 + A2C

T
2 + B1D

T
1 + B2D

T
2 = 0,

A1C
�T
2 + A2C

T
1 + B1D

�T
2 + B2D

T
1 = 0,

C1C
�T
2 + C2C

T
1 + D1D

�T
2 + D2D

T
1 = 0.

Proof We know that G is a generator matrix of a self-dual code of length 48 over R if and
only if Ω24

2 (v)Ω24
2 (v)T = I24. Using Lemmas 2.7 and 2.8, we find that

Ω24
2 (v)Ω24

2 (v)T =

⎛

⎜

⎜

⎝

X1 Y1 Y2 Y3
Y T
1 X1 Y �

3 Y2
Y T
2 Y �T

3 X2 Y4
Y T
3 Y T

2 Y T
4 X2

⎞

⎟

⎟

⎠

,

where

X1 = A1A
T
1 + A2A

T
2 + B1B

T
1 + B2B

T
2 ,

X2 = C1C
T
1 + C2C

T
2 + D1D

T
1 + D2D

T
2

and

Y1 = A1A
�T
2 + A2A

T
1 + B1B

�T
2 + B2B

T
1 ,

Y2 = A1C
T
1 + A2C

T
2 + B1D

T
1 + B2D

T
2 ,

Y3 = A1C
�T
2 + A2C

T
1 + B1D

�T
2 + B2D

T
1 ,

Y4 = C1C
�T
2 + C2C

T
1 + D1D

�T
2 + D2D

T
1 .
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Clearly, Yi = 0 if and only if Y T
i = 0, Y �

i = 0 and Y �T
i = 0 for i ∈ {1, . . . , 4}. Thus,

Ω24
2 (v)Ω24

2 (v)T = I24 if and only if
{

X1 = X2 = I6,

Y1 = Y2 = Y3 = Y4 = 0.

��
Definition 3.13 Let G ∼= D12 ∼= 〈a, b | a12 = b2 = 1, bab = a−1〉 with the fixed listing
G = (g12 j+i+1) = aib j for i ∈ {0, . . . , 11} and j ∈ {0, 1}. Let H ∼= D6 ∼= 〈c, d | c6 =
d2 = 1, dcd = c−1〉 with the fixed listing H = (h6 j+i+1) = ci d j for i ∈ {0, . . . , 5} and
j ∈ {0, 1}. Let H ′ = 1 and P ′ = 1. Let v = ∑24

i=1 αgi gi ∈ RG. If Ω24
3 (v) is the composite

(G, H)-matrix of v ∈ RG with respect to H ′ and P ′, then

Ω24
3 (v) =

⎛

⎜

⎜

⎝

A1 A2 B1 B2

AT
2 AT

1 BT
2 BT

1
C1 C2 D1 D2

CT
2 CT

1 DT
2 DT

1

⎞

⎟

⎟

⎠

,

where A1 = circ(v1:6), A2 = circ(v7:12), B1 = circ(v13:18), B2 = circ(v19:24), C1 =
circ(v13, v24:20), C2 = circ(v19:14), D1 = circ(v1, v12:8) and D2 = circ(v7:2).

Theorem 3.14 Let G = (I | Ω24
3 (v)) where Ω24

3 (v) is as defined in Definition 3.13. Then G
is a generator matrix of a self-dual code of length 48 over R if and only if

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

A1A
T
1 + A2A

T
2 + B1B

T
1 + B2B

T
2 = I6,

C1C
T
1 + C2C

T
2 + D1D

T
1 + D2D

T
2 = I6,

A1C
T
1 + A2C

T
2 + B1D

T
1 + B2D

T
2 = 0,

A1C2 + A2C1 + B1D2 + B2D1 = 0.

Proof We know that G is a generator matrix of a self-dual code of length 48 over R if and
only if Ω24

3 (v)Ω24
3 (v)T = I24. We find that

Ω24
3 (v)Ω24

3 (v)T =

⎛

⎜

⎜

⎝

X1 0 Y1 Y2
0 X1 Y T

2 Y T
1

Y T
1 Y2 X2 0

Y T
2 Y1 0 X2

⎞

⎟

⎟

⎠

,

where

X1 = A1A
T
1 + A2A

T
2 + B1B

T
1 + B2B

T
2 ,

X2 = C1C
T
1 + C2C

T
2 + D1D

T
1 + D2D

T
2

and

Y1 = A1C
T
1 + A2C

T
2 + B1D

T
1 + B2D

T
2 ,

Y2 = A1C2 + A2C1 + B1D2 + B2D1.

Clearly, Yi = 0 if and only if Y T
i = 0 for i ∈ {1, 2}. Thus, Ω24

3 (v)Ω24
3 (v)T = I24 if and

only if
{

X1 = X2 = I6,

Y1 = Y2 = 0.
��
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Table 1 Quaternary notation
system for elements of F2 + uF2
and F4

F2 + uF2 F4 Symbol

0 0 0

1 1 1

u w 2

1 + u 1 + w 3

4 Results

In this section, we apply the theorems given in the previous section to obtain many new best
known binary self-dual codes. In particular, we obtain 28 singly-even [80, 40, 14] codes,
107 [84, 42, 14] codes, 105 singly-even [96, 48, 16] codes and 121 doubly-even [96, 48, 16]
codes.

We search for these codes using MATLAB and determine their properties using Q-
extension [3] and Magma [2]. In MATLAB, we employ an algorithm which randomly
searches for the construction parameters that satisfy the necessary and sufficient conditions
stated in the corresponding theorem. For such parameters, we then build the corresponding
binary generator matrices and print them to text files. We then use Q-extension to read these
text files and determine the minimum distance and partial weight enumerator of each cor-
responding code. Furthermore, we determine the automorphism group order of each code
using Magma. A database of generator matrices of the new codes is given online at [19]. The
database is partitioned into text files (interpretable by Q-extension) corresponding to each
code type. In these files, specific properties of the codes including the construction param-
eters, weight enumerator parameter values and automorphism group order are formatted as
comments above the generator matrices. Partial weight enumerators of the codes are also
formatted as comments below the generator matrices. Table 1 gives the quaternary notation
system we use to represent elements of F2 + uF2 and F4.

4.1 New self-dual codes of length 80

The weight enumerator of a singly-even binary self-dual [80, 40, 14] code is given in [33] as
W80 = 1 + (3200 + 4α)x14 + (47645 − 8α + 256β)x16 + · · · ,

where α, β ∈ Z. Previously known (α, β) values for weight enumerator W80 can be found
online at [30] (see [14,16–18,20,29,33]).

We obtain 28 new best known singly-even binary self-dual codes of length 80 which have
weight enumerator W80 for

β = 0 and α ∈ {−z : z = 65, 80, 120, 125, 130, 135, 140, 145, 150, 155, 165, 175,
190, 195, 205, 210, 215, 230, 235, 250, 270, 275, 280, 360};
β = 10 and α ∈ {−2z : z = 130, 150, 160, 185}.
Of the 28 new codes, 19 are constructed by applying Theorem 3.2 over F4 (Table 2); 4

are constructed by applying Theorem 3.4 over F2 + uF2 (Table 3) and 5 are constructed by
applying Theorem 3.4 over F4 (Table 4).
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Table 2 New singly-even binary self-dual [80, 40, 14] codes from Theorem 3.2 over F4

C80,i v α β |Aut(C80,i )|
1 (31223333300320201200) −275 0 22 · 5
2 (13111130203000233223) −270 0 22 · 5
3 (00302012331122313103) −250 0 22 · 5
4 (01332030221111113310) −235 0 22 · 5
5 (23320213130330103221) −230 0 23 · 5
6 (22011233231033013100) −210 0 22 · 5
7 (11333122033223331212) −205 0 22 · 5
8 (02222010112332220213) −195 0 22 · 5
9 (30333313000233100021) −190 0 22 · 5
10 (00111023231213313321) −175 0 22 · 5
11 (22310231030332003032) −165 0 22 · 5
12 (02002030232203221313) −155 0 22 · 5
13 (03121003232002123332) −150 0 22 · 5
14 (23200233120101002302) −145 0 22 · 5
15 (22133232333121133232) −140 0 23 · 5
16 (31031330230000203122) −135 0 22 · 5
17 (01103022122003122122) −130 0 22 · 5
18 (22010203131000112213) −65 0 22 · 5
19 (02330020210322001303) −260 10 23 · 5

Table 3 New singly-even binary self-dual [80, 40, 14] codes from Theorem 3.4 over F2 + uF2

C80,i v α β |Aut(C80,i )|
20 (12222331200322021203) −280 0 23 · 5
21 (23330310032021331010) −120 0 23 · 5
22 (30320122023203322322) −80 0 23 · 5
23 (21222311321120112303) −320 10 24 · 5

4.2 New self-dual codes of length 84

The possible weight enumerators of a binary self-dual [84, 42, 14] code are given in [6,33]
as

W84,1 = 1 + (4080 − α)x14 + 39524x16

+ (247264 + 14α)x18 + · · · ,

W84,2 = 1 + (4080 − α)x14 + (28644 + 64β)x16

+ (390368 + 14α − 384β)x18 + · · · ,

W84,3 = 1 + (4080 − α)x14 + (28644 + 64β)x16

+ (394464 + 14α − 384β)x18 + · · · ,
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Table 4 New singly-even binary self-dual [80, 40, 14] codes from Theorem 3.4 over F4

C80,i v α β |Aut(C80,i )|
24 (31211223330300232332) −360 0 22 · 5
25 (10201301032322330300) −215 0 22 · 5
26 (01021003132222203113) −125 0 22 · 5
27 (31003000101110232322) −370 10 22 · 5
28 (11210213102203230313) −300 10 22 · 5

where α, β ∈ Z. It is unknown whether or not a code with weight enumeratorW84,3 has been
previously reported.

We obtain 107 new best known binary self-dual codes of length 84 which have weight
enumerator W84,3 for

β = 0 and α ∈ {6z : z = 336, 350, 358, 365, 372, 386, 392, 393, 399, 400, 406, 407,
413, 414, 420, 421, 427, 428, 434, 435, 441, 442, 448, 449, 455, 456, 462, 463, 469, 470,
476, 477, 483, 484, 490, 491, 497, 498, 504, 505, 511, 512, 518, 519, 525, 526, 532, 533,
539, 540, 546, 553, 554, 560, 567};
β = 21 and α ∈ {6z : z = 413, 434, 435, 441, 442, 449, 455, 456, 462, 463, 469, 470,
476, 477, 483, 484, 490, 491, 497, 498, 504, 505, 511, 512, 518, 519, 525, 526, 532, 533,
539, 540, 546, 547, 553, 560, 568, 575, 595};
β = 42 and α ∈ {6z : z = 490, 512, 518, 525, 526, 539, 540, 547, 553, 560, 568};
β = 63 and α ∈ {6z : z = 574, 575}.
Of the 107 new codes, 55 are constructed by applying Theorem 3.6 over F2 (Table 5) and

52 are constructed by applying Theorem 3.8 over F2 (Table 6). In Tables 5 and 6, we only
list 10 codes to save space. We refer to Database 2 of [19] for the remaining unlisted codes.

4.3 New self-dual codes of length 96

The possible weight enumerators of a singly-even binary self-dual [96, 48, 16] code are given
in [21] as

W I
96,1 = 1 + (α − 5814)x16 + (97280 + 64β)x18

+ (1784320 − 16α − 384β)x20

+ (17626112 + 192β)x22 + · · · ,

W I
96,2 = 1 + (α − 5814)x16 + (97280 + 64β)x18

+ (1694208 − 16α − 384β + 4096γ )x20

+ (18969600 + 192β − 49152γ )x22 + · · · ,

where α, β, γ ∈ Z. Previously known (α, β, γ ) values for weight enumerator W I
96,2 can be

found online at [30] (see [21]).
We obtain 105 new best known singly-even binary self-dual codes of length 96 which

have weight enumerator W I
96,2 for

γ = 0 and (α, β) ∈ {(12z1,−4z2) : (z1, z2) = (850, 0), (896, 0), (904, 0), (805, 1),
(854, 3), (808, 4), (837, 6), (926, 6), (822, 7), (865, 9), (860, 10), (860, 12), (897, 12),
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0
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Table 7 New singly-even binary self-dual [96, 48, 16] codes from Theorem 3.10 over F2 + uF2

CI96,i v W I
96, j α β γ |Aut(CI96,i )|

1 (021111013112231302031321) 2 15336 −240 0 24 · 3
2 (332030221021223333303031) 2 14664 −144 0 24 · 3
3 (310201300213103023131203) 2 12456 −120 0 24 · 3
4 (110330330331133112022003) 2 16608 −432 12 26 · 3
5 (301201202300231031203031) 2 14712 −336 12 25 · 3

Table 8 New singly-even binary self-dual [96, 48, 16] codes from Theorem 3.10 over F4 (see Database 3 of
[19] for codes CI96,16 to CI96,61)

CI96,i v W I
96, j α β γ |Aut(CI96,i )|

6 (301220102333222223210331) 2 14448 −208 0 24 · 3
7 (111322103200321233201211) 2 13776 −184 0 24 · 3
8 (333110012302102113330110) 2 11652 −136 0 24 · 3
9 (321212110001220122211301) 2 12624 −124 0 23 · 3
10 (000232332103103311032121) 2 11364 −112 0 23 · 3
11 (231232002131031220200120) 2 12036 −108 0 23 · 3
12 (021301113010112220211130) 2 11580 −100 0 23 · 3
13 (000332130323021220110022) 2 11880 −96 0 23 · 3
14 (001022122300133130333310) 2 11424 −88 0 23 · 3
15 (213121322231133130230323) 2 11256 −84 0 23 · 3

(900, 12), (929, 12), (1014, 12), (877, 13), (910, 15), (877, 16), (933, 18), (908, 19),
(938, 21), (952, 22), (957, 24), (990, 24), (965, 25), (1003, 27), (947, 28), (1038, 30),
(1052, 31), (971, 34), (1045, 36), (1222, 36), (1148, 46), (1244, 48), (1260, 48), (1204,
52), (1278, 60)};
γ = 6 and (α, β) ∈ {(12z1,−4z2) : (z1, z2) = (909, 30), (913, 31), (922, 33), (901,
34), (902, 36), (918, 37), (944, 39), (948, 40), (932, 42), (995, 43), (949, 45), (980, 46),
(1034, 48), (1018, 49), (969, 51), (978, 52), (1120, 64)};
γ = 12 and (α, β) ∈ {(12z1,−4z2) : (z1, z2) = (928, 60), (988, 60), (992, 60), (1048,
60), (1056, 60), (1076, 60), (1096, 60), (1104, 60), (1120, 60), (1148, 60), (1160, 60),
(1168, 60), (1176, 60), (1208, 60), (1216, 60), (1232, 60), (1240, 60), (1264, 60), (1280,
60), (1288, 60), (1320, 60), (1336, 60), (1520, 60), (982, 61), (975, 63), (984, 64), (997,
66), (1133, 66), (1148, 66), (1236, 66), (977, 67), (1075, 69), (1042, 70), (1080, 72),
(1112, 72), (1120, 72), (1137, 72), (1272, 72), (1544, 72), (1036, 73), (1046, 76), (1098,
78), (1121, 78), (1072, 79), (1226, 84), (1352, 84), (1528, 84), (1224, 85), (1332, 100),
(1384, 108)}.
Of the 105 newcodes, 5 are constructed by applyingTheorem3.10 overF2+uF2 (Table 7);

56 are constructed by applying Theorem 3.10 over F4 (Table 8); 29 are constructed by
applying Theorem 3.12 over F2+uF2 (Table 9) and 15 are constructed by applying Theorem
3.14 over F2 + uF2 (Table 10). In Tables 8 and 9, we only list 10 codes to save space. We
refer to Database 3 of [19] for the remaining unlisted codes.
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Table 9 New singly-even binary self-dual [96, 48, 16] codes from Theorem 3.12 over F2+uF2 (see Database
3 of [19] for codes CI96,72 to CI96,90)

CI96,i v W I
96, j α β γ |Aut(CI96,i )|

62 (222222222220220133213123) 2 14928 −192 0 26 · 3
63 (222222222220220133211121) 2 15120 −192 0 26 · 3
64 (222220222011020210021113) 2 12540 −144 0 24 · 3
65 (222222222011021013011303) 2 11484 −96 0 24 · 3
66 (222222222011202110211131) 2 10764 −48 0 24 · 3
67 (222222222101200131212230) 2 10800 −48 0 25 · 3
68 (222222222011202110213111) 2 11148 −48 0 24 · 3
69 (222222220103021223012121) 2 12168 −48 0 24 · 3
70 (222222222101200131221023) 2 10752 0 0 25 · 3
71 (222222202121200111221203) 2 10848 0 0 25 · 3

Table 10 New singly-even binary self-dual [96, 48, 16] codes from Theorem 3.14 over F2 + uF2

CI96,i v W I
96, j α β γ |Aut(CI96,i )|

91 (222220222111201001210311) 2 11112 −24 0 24 · 3
92 (222222202111001223010313) 2 16224 −336 12 26 · 3
93 (222222222011101333122333) 2 18336 −336 12 25 · 3
94 (222222222101220113212010) 2 15264 −288 12 25 · 3
95 (222220222111221003212111) 2 18528 −288 12 26 · 3
96 (222220220101211331210113) 2 14832 −264 12 24 · 3
97 (222220200103211331212113) 2 13776 −240 12 24 · 3
98 (222220222111221003212313) 2 13920 −240 12 25 · 3
99 (222222220021202121211101) 2 14496 −240 12 26 · 3
100 (222222222113212131201003) 2 14592 −240 12 25 · 3
101 (222222222011212313201101) 2 14784 −240 12 25 · 3
102 (222222220021020101011121) 2 14880 −240 12 25 · 3
103 (222222222113212333201003) 2 15360 −240 12 25 · 3
104 (222222222011011111002013) 2 15456 −240 12 25 · 3
105 (222222222211020101021321) 2 16032 −240 12 25 · 3

The weight enumerator of a doubly-even binary self-dual [96, 48, 16] code is given in
[21] as

W II
96 = 1 + αx16 + (3217056 − 16α)x20 + · · · ,

where α ∈ Z. Previously known α values for weight enumerator W II
96 can be found online at

[30] (see [4,6,12,21,22,24,25,32]).
We obtain 121 new best known doubly-even binary self-dual codes of length 96 which

have weight enumerator W II
96 for
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Table 11 Newdoubly-evenbinary self-dual [96, 48, 16] codes fromTheorem3.10overF2+uF2 (seeDatabase
4 of [19] for codes CII96,11 to CII96,88)

CII96,i v α |Aut(CII96,i )|

1 (320210300223213323022021) 8514 24 · 3
2 (122313111112022110302021) 8754 24 · 3
3 (122123010133300221011031) 8994 24 · 3
4 (001212011312020203212003) 9042 24 · 3
5 (122000032021320000301313) 9138 24 · 3
6 (010220032021103212312322) 9234 24 · 3
7 (210231130330223123221020) 9282 24 · 3
8 (032311303332300120032321) 9378 24 · 3
9 (213201111011203112303130) 9474 24 · 3
10 (110230310113303323101232) 9618 24 · 3

Table 12 New doubly-even binary self-dual [96, 48, 16] codes from Theorem 3.10 over F4

CII96,i v α |Aut(CII96,i )|

89 (332010230212013330233103) 8274 23 · 3
90 (121001211131002223313030) 8418 23 · 3
91 (330222312102031223221213) 8658 23 · 3
92 (331001322120111003113202) 8838 23 · 3
93 (322112032202123203331221) 11478 23 · 3
94 (333003302201123232100313) 11526 23 · 3
95 (201120113100000113122122) 11742 23 · 3
96 (000232210010130121123202) 13194 25 · 3

α ∈ {6z : z = 1379, 1403, 1419, 1443, 1459, 1473, 1499, 1507, 1523, 1539, 1547, 1563,
1579, 1603, 1619, 1627, 1643, 1659, 1667, 1683, 1699, 1707, 1723, 1747, 1759, 1763, 1779,
1787, 1795, 1803, 1811, 1819, 1827, 1835, 1843, 1851, 1859, 1867, 1875, 1879, 1883, 1891,
1899, 1903, 1907, 1913, 1915, 1921, 1923, 1931, 1939, 1947, 1957, 1963, 1971, 1975, 1979,
1987, 1995, 2003, 2007, 2011, 2015, 2019, 2023, 2027, 2031, 2039, 2043, 2055, 2059, 2067,
2071, 2079, 2083, 2087, 2091, 2095, 2103, 2107, 2119, 2127, 2135, 2143, 2147, 2151, 2163,
2167, 2175, 2195, 2199, 2203, 2207, 2211, 2215, 2223, 2231, 2247, 2255, 2259, 2263, 2279,
2283, 2295, 2311, 2359, 2379, 2407, 2423, 2471, 2483, 2503, 2519, 2567, 2599, 2663, 2695,
2711, 2759, 2887, 4751}.

Of the 121 new codes, 88 are constructed by applying Theorem 3.10 over F2+uF2 (Table
11); 8 are constructed by applying Theorem 3.10 over F4 (Table 12); 13 are constructed
by applying Theorem 3.12 over F2 + uF2 (Table 13) and 12 are constructed by applying
Theorem 3.14 over F2 + uF2 (Table 14). In Table 11, we only list 10 codes to save space.
We refer to Database 4 of [19] for the remaining unlisted codes.
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Table 13 New doubly-even binary self-dual [96, 48, 16] codes from Theorem 3.12 over F2 + uF2

CII96,i v α |Aut(CII96,i )|

97 (222222220103200133210030) 10002 24 · 3
98 (222222220103021003012303) 10098 24 · 3
99 (222222220103200133212032) 10578 24 · 3
100 (222222220103021003010123) 10818 24 · 3
101 (222222220103221203210101) 10866 24 · 3
102 (222220202013221331211111) 12138 25 · 3
103 (222222222101122211113131) 12234 26 · 3
104 (222222222101020131001221) 12522 26 · 3
105 (222222220103200113212230) 12546 24 · 3
106 (222222222101201021210101) 12810 26 · 3
107 (222220222211020212001111) 13290 26 · 3
108 (222222202013220110213131) 13578 25 · 3
109 (222222222220222111213123) 28506 28 · 3 · 5

Table 14 New doubly-even binary self-dual [96, 48, 16] codes from Theorem 3.14 over F2 + uF2

CII96,i v α |Aut(CII96,i )|

110 (222220200103011331010113) 12186 24 · 3
111 (222222222011202121201123) 12426 25 · 3
112 (222222222011211111220213) 12714 25 · 3
113 (222220220101011331012113) 12762 24 · 3
114 (222222222011212313221303) 13002 25 · 3
115 (222020200101011331012133) 13050 24 · 3
116 (222220220101011331012133) 13338 24 · 3
117 (222222220211121333100113) 13866 26 · 3
118 (222222220211121333100131) 14826 26 · 3
119 (222222222011211311220213) 15978 26 · 3
120 (222222222011121333100333) 16170 25 · 3
121 (222222222011121333100311) 16554 25 · 3

5 Conclusion

In this work, we applied the idea of composite matrices Ω(v) to derive a number of tech-
niques assuming a generator matrix of the form (In | Ω(v)) to construct new binary self-dual
codes. We defined each of the composite matrices that were implemented in the techniques
and we proved the necessary conditions required by the techniques to produce self-dual
codes. We applied these techniques directly over F2 as well as over the rings F2 + uF2 and
F4. By so doing, we were able to construct new best known binary self-dual codes with
many different weight enumerator parameter values. In particular, we constructed 28 singly-
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even [80, 40, 14] codes, 107 [84, 42, 14] codes, 105 singly-even [96, 48, 16] codes and 121
doubly-even [96, 48, 16] codes.

The advantage of using composite matrices is that there are many different combinations
of their determining parameters, i.e. the groups G and {H1, H2, . . . , Hη} and the parameter
matrices H ′ and P ′. This allows for many different forms of the matrices Ω(v) which often
have very unusual structures. For each of the composite matrices we defined, we assumed that
H ′ = 1 and P ′ = 1. A suggestion for future work could be to investigate different choices
for both H ′ and P ′. Another suggestion would be to use composite matrices determined
by groups G and {H1, H2, . . . , Hη} of different orders. We could also investigate applying
composite matrices over rings other than those used in this work.
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