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Abstract
Freshwater scarcity is an ever-increasing problem throughout the arid and semi-arid countries, and it often results in
poverty. Thus, it is necessary to enhance understanding of freshwater resources availability, particularly for groundwater,
and to be able to implement functional water resources plans. This study introduces a novel statistical approach com-
bined with a data-mining ensemble model, through implementing evidential belief function and boosted regression tree
(EBF-BRT) algorithms for groundwater potential mapping of the Lordegan aquifer in central Iran. To do so, spring
locations are determined and partitioned into two groups for training and validating the individual and ensemble
methods. In the next step, 12 groundwater-conditioning factors (GCFs), including topographical and hydrogeological
factors, are prepared for the modeling process. The mentioned factors are employed in the application of the EBF model.
Then, the EBF values of the GCFs are implemented as input to the BRT algorithm. The results of the modeling process
are plotted to produce spring (groundwater) potential maps. To verify the results, the receiver operating characteristics
(ROC) test is applied to the model’s output. The findings of the test indicated that the areas under the ROC curves are 75
and 82% for the EBF and EBF-BRT models, respectively. Therefore, it can be inferred that the combination of the two
techniques could increase the efficacy of these methods in groundwater potential mapping.
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Introduction

Groundwater could be regarded as the water in the saturated
parts of the Earth that fills the pore section of geologic forma-
tions and soil beneath the water table (Freeze and Cherry
1979). Groundwater has broad advantages over surface water
as a resource, including its capability to be utilized when
needed, and it is less vulnerable to catastrophic incidents
(Naghibi and Pourghasemi 2015). Furthermore, groundwater
contributes the most in meeting freshwater demand in arid and
semi-arid areas such as the Middle East (Chezgi et al. 2015).
Groundwater potential mapping is one of the well-studied
subjects in the literature and has attracted many researchers
over the years.

Many researchers have used statistical and data mining
algorithms to map groundwater potential. Some of them have
used spring locations as groundwater resource indicators,
while others used qanat and well locations. According to the
literature, the frequency ratio (Oh et al. 2011; Pourtaghi and
Pourghasemi 2014; Naghibi et al. 2015), weights-of-evidence
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(Ozdemir 2011a; Corsini et al. 2009; Razandi et al. 2015;
Tahmassebipoor et al. 2016), and index of entropy (Naghibi
et al. 2015) are among the most popular methods used by the
scholars. Moreover, other data mining methods such as clas-
sification and regression tree, random forest, and boosted re-
gression tree (BRT) are widely used to assess the potential of
groundwater (e.g. Naghibi and Pourghasemi 2015; Naghibi et
al. 2016; Zabihi et al. 2016; Rahmati et al. 2016; Mousavi et
al. 2017; Golkarian et al. 2018). Although data mining tech-
niques have proved to be reliable in working with nonlinear
and complex data (Naghibi et al. 2016), one of the drawbacks
is overfitting, which impacts the models’ estimation quality
and prediction validity. In two recent papers, by Naghibi and
Moradi Dashtpagerdi (2016) and Naghibi et al. (2018), vari-
ous data mining algorithms, including random forest, BRT,
support vector machine, artificial neural network, quadratic
discriminant analysis, linear discriminant analysis, flexible
discriminant analysis, penalized discriminant analysis, k-
nearest neighbors, and multivariate adaptive regression
splines, were employed for groundwater assessment taking
into account spring and qanat locations. Other techniques in-
clude the evidential belief function (EBF) method to map the
potentiality of groundwater (Nampak et al. 2014; Rahmati and
Melesse 2016). Nampak et al. (2014) used EBF to map
groundwater potential and compared its performance with a
logistic regression model; the results indicated the superior
performance of the EBF model. In another research project,
Naghibi and Pourghasemi (2015) examined the efficacy of the
EBF model and compared the results with classification and
regression tree, random forest, BRT, and generalized linear
model. Their findings also yielded an acceptable performance
of the EBF model.

The aforementioned studies mostly used single models in
the groundwater-related research; however, the ensemble
models have been used in other fields of study including land-
slides (Lee et al. 2012; Umar et al. 2014) and flood suscepti-
bility modelling (Tehrany et al. 2013, 2014). Very recently,
Naghibi et al. (2017b) introduced a novel ensemble model,
which was constructed based on four data mining models
and the frequency ratio in a groundwater-related study. The
findings of their research indicated that the produced ensem-
ble model showed a better performance than a single applica-
tion of the models. Similarly, Pourghasemi and Kerle (2016)
combined EBF and random forest models to achieve better
model performance and their results indicated a higher effica-
cy of the ensemble method.

Boosted regression tree as a data mining technique was
selected for this purpose as it has the capability for feature
selection (Naghibi et al. 2016) as well as implementing sto-
chastic gradient boosting to diminish variance and bias
(Abeare 2009). The BRT model also defines the importance
of the impacting factors in the modelling procedure.
Considering the aforementioned strong features of the BRT

model, this model was chosen to be combined with the EBF
model to improve its prediction accuracy. In this research, the
proposed ensemble method (EBF-BRT) improves on the
weak points of each method and combines their advantages
by analyzing the relationships of groundwater with each inde-
pendent layer and with each class of independent layers; fur-
thermore, groundwater-related independent variables can be
assessed. Since this combined approach is almost new in
groundwater potential assessment, through this research its
efficiency and capability can be examined. This research aims
to improve the performance of statistical techniques through
the extension of a data-mining ensemble model in groundwa-
ter potential mapping. Thus, the aims of this study are: (1)
evaluating the performance of the EBF-BRTmodel in ground-
water potentiality assessment, (2) ranking the importance of
groundwater-conditioning factors (GCFs) and the relationship
between groundwater potential and the GCFs, and (3) provid-
ing spatial information and guidance to support decision-
making processes concerning groundwater management in
the Lordegan aquifer in central Iran.

Materials and methods

A spring can be defined as a feature by which groundwater
flows from an aquifer to the land surface. Based on the phys-
iographical and hydrological characteristics of the study area,
this study assumes that the natural spring occurrences and
their discharge rates can be related to the potential of ground-
water resources in the studied basin. To quantify this relation-
ship, a groundwater potential map (GPM) is proposed as a tool
for providing spatial information and for determining the re-
lationship between the spring occurrence and effective factors,
here called ‘conditioning factors’.

For modelling of groundwater potential, two datasets were
prepared, including a springs location inventory and the
GCFs. Using the mentioned datasets, the EBF model was
implemented, and the resultant GPM was plotted using
ArcGIS 10.4. In the next step, EBF values were extracted
and then used as an input to the BRTmodel, and the ensemble
EBF-BRT model was trained. Finally, by implementing a re-
ceiver operating characteristics (ROC) plot, the efficacy of the
EBF and EBF-BRT methods were validated. Figure 1 shows
the methodology flowchart implemented in this research.

Study area and preparation of the conditioning
factors

Study area

The Lordegan Basin covers the areas between 31°19′09″ and
31°38′06″ north latitudes and 50°28′02″ and 51°13′13″ east
longitudes, and is located in Chaharmahal-e-Bakhtiari
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Province, Iran. Lordegan Basin covers an area of 1,486 km2.
The topographic elevation in Lordegan Basin ranges between
850 and 3,640 m above mean sea level (amsl) with a mean
elevation of 2,044 m amsl. The lithology of the Lordegan
Basin is mainly composed of sedimentary and tertiary rocks
and Quaternary deposits, and about 33.3% of its area is clas-
sified under group 5, including low-level piedmont fan and
valley terraces deposits (GSI 1997; Table 1). The dominant
land use is rangeland, which covers approximately 44% of the
basin floor. Other types of land use encompass forest, agricul-
ture, orchard, and residential area. Spring occurrence is not
limited to the plain areas and it can be seen on different slopes
and elevations; hence, the study was carried out at the basin
scale.

Data preparation

In this study, a spring inventory dataset including 94 springs
(in 2014) was prepared based on the field surveys (Fig. 2). The
dataset was then split into two subsets for training (70% of the
dataset: 66 springs) and validating (30% of the dataset: 28
springs) the models (Pourghasemi and Beheshtirad 2015). It
should be noted that the division of the spring dataset into two
subsets was conducted on the basis of a random algorithm in
ArcGIS 10.4.

Based on the literature (Ozdemir 2011a, b) and availability
of data, 12 GCFs were selected for the modelling process. The
GCFs are composed of eight topographical factors, two river-

related factors, and two physical factors including land use
and lithology. It should be noted that as the EBF works with
classified factors, the GCFs were classified based on the liter-
ature (Ozdemir 2011a, b; Naghibi et al. 2018).

In the first step, a 20-m resolution digital elevation model
(DEM) of the studied basin was derived from a 1:50,000-scale
topographic map. The slope angle derived from the DEMwas
split into four ranges of 0–5, 5–15, 15–30, and >30° (Fig. 3a).
Slope aspect was also derived from DEM data and then clas-
sified into nine classes (Fig. 3b). Elevation is another impor-
tant GCF (Ozdemir 2011a, b) that was employed in this in-
vestigation (Fig. 3c). The elevation of the studied basin was
partitioned into five equal classes.

Plan curvature is a topographical-based variable, which
shows the direction of flow (Ozdemir 2011a; Fig. 3d).
Profile curvature clarifies at which rate the slope changes in
the maximum slope direction (Ozdemir 2011b; Fig. 3e). Slope
length (LS) is considered as a mixture of the two variables of
slope steepness and slope length (Naghibi et al. 2016) and is
calculated as follows (Moore et al. 1991; Fig. 3f):

LS ¼ As

22:13

� �0:6 sinα
0:0896

� �1:3

ð1Þ

where, As depicts the specific watershed area and α is the
estimated slope gradient (degree).

The stream power index (SPI) could be implemented to
show potential flow erosion at a specific location of the basin
(Moore and Burch 1986; Fig. 3g). Further, the topographic

Fig. 1 Flowchart of the methodology implemented in this study
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wetness index (TWI) was taken into account in this investiga-
tion. TWI denotes the spatial changes of soil moisture (Moore
and Burch 1986; Fig. 3h).

Distance from rivers and river density are two crucial GCFs
that affect the groundwater potentiality (Naghibi et al. 2015).
These two layers were calculated in ArcGIS 10.4 using
Euclidean distance and line density functions. Concerning
the distance from rivers, 100 m-intervals were chosen, and
the distances were then classified into five groups (Fig. 3i).
A rivers density map was partitioned into four categories by a
natural break classification method (Fig. 3j).

A land use map was produced by implementing Landsat 8/
Enhance Thematic Mapper Plus (ETM+) images for the year
2015 based on a likelihood algorithm. The land use map
contained five different land use classes: orchard, residential
area, rangeland, agriculture, and forest (Fig. 3k).

Geology is composed of three GCFs including lithological
classes, and fault-related factors such as distance and density
maps (Naghibi et al. 2016). After investigating the fault layer
of the studied region, it was found that only a tiny portion of
the studied region is affected by faults; therefore, fault-related
factors were not considered in the current research. Based on a

Table 1 Lithology characteristics
of Lordegan Basin, Iran Lithology group Lithology characteristics

1 Anhydrite, salt, grey and red marl, alternating with anhydrite, argillaceous limestone
and limestone

2 Blue and purple shale and marl inter-bedded with the argillaceous limestone

3 Bluish grey marl and shale with subordinate thin-bedded argillaceous-limestone

4 Brown to grey, calcareous, feature-forming sandstone and low-weathering,
gypsum-veined, red marl and siltstone

5 Low-level piedmont fan and valley terrace deposits

6 Low-weathering grey marls alternating with bands of more resistant shelly limestone

7 Pale red marl, marlstone, limestone, gypsum and dolomite

8 Cream to brown color, weathering, feature-forming, well-jointed limestone with
intercalations of shale

9 Dark red, medium-grained arkosic to subarkosic sandstone and micaceous siltstone

10 Limestone, dolomite, dolomitic limestone and thick layers of anhydrite in alternation
with dolomite in middle part

11 Massive, shelly, cliff-forming partly anhydrite limestone

12 Undivided Bangestan group, mainly limestone and shale, Albian era

13 Undivided Eocene rock

Fig. 2 Locations of the study area in Iran, and the training and validation springs
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Fig. 3 The groundwater-conditioning factors (GCFs) considered in this
study: a slope angle, b slope aspect, c elevation, d plan curvature, e profile
curvature, f slope length, g stream power index (SPI), h topographic

wetness index (TWI), i distance from rivers, j rivers density, k land use,
and l lithology
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Fig. 3 (continued)
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1:100,000-scale geological map, the geological units were
partitioned into thirteen units including groups 1–13 (Table
1; Fig. 3l).

Modelling process

In this section, a description of the models is presented and
then the process of applying a novel data-mining model (EBF-
BRT) is explained.

Evidential belief function (EBF) model

The EBFmodel is developed based on the Dempster–Shafer
approach of evidence (Dempster 1967; Shafer 1976), which
includes uncertainty (Unc), belief (Bel), plausibility (Pls),
and disbelief (Dis) that change from 0 to 1 (Carranza and
Hale 2003). This model has a relative flexibility and is able
to work with uncertain conditions (Nampak et al. 2014). In
the Dempster–Shafer theory, Bel and Pls define the lower
and upper probabilities of the generalized Bayesian theo-
rem, respectively (Nampak et al. 2014). Therefore, it can
be inferred that Bel is greater than or equal to Pls. Unc could
be calculated by differentiating Pls and Bel values (Naghibi
and Pourghasemi 2015). Based on the evidential data, dis-
belief depicts the belief in the false proposition. For calcu-
lating the Bel value, first, a frame of discernment could be
calculated (Dempster 1967; Shafer 1976; Pourghasemi and
Beheshtirad 2015):

m : 2Θ ¼ ϕ; TP; TP;Θ
n o

with Θ ¼ TP; TP

n o
ð2Þ

where TP shows the pixels that include springs, TP shows
the pixels that do not include springs, and ϕ represents the
empty set.

From Eq. (1), the Bel function could be computed as fol-
lows (Park 2011; Pourghasemi and Beheshtirad 2015):

λ TPð ÞAij

h i
¼

N S∩Aijð Þ
N Sð Þ

" #
= N Aij−N S∩Aijð Þ

� �� �
= N Pð Þ−N Sð Þ
� �h i

ð3Þ

Bel ¼
λ SPð ÞAij

∑λ SPð ÞAij

" #
ð4Þ

where N S∩Aijð Þ denotes the density of spring pixels incidence
in Aij,N(S) denotes the total density of all springs in the studied
basin, N Aijð Þ represents the density of pixels in Aij, and N(P) is
the density of pixels in the whole studied basin. More descrip-
tions and information about EBF algorithm could be found in
Carranza and Hale (2003).

The novel data-mining ensemble model

The BRT is a data-mining/machine-learning approach, which
comprises of both decision trees and boosting techniques and
could be employed for both regression and classification is-
sues (Youssef et al. 2015). It aims to increase the efficacy as
well as prediction capability of single methods by combining
several fittedmodels (Naghibi et al. 2016). Boosting is applied
in order to combine the results of the decision trees, which is
similar to model averaging. There are some parameters that
require optimizing in this model such as a number of trees,
shrinkage (or learning rate), and interaction depth. Shrinkage
or learning rate defines the importance of trees in the built
model (Naghibi et al. 2016). Interaction depth or complexity
determines the number of nodes in trees.

The BRT model can be explained as follows (Elith et al.
2008; Naghibi et al. 2016):

Starting weights to be equal to fi = 1/n.
For m = 1 to iteration classifier Cm):

1. Run classifier Cm to the weighted data
2. Calculate misclassification rate rm
3. Consider the classifier weight αmlog

1−rmð Þ
rm

� �
4. Recalculate weights wi =wi exp[αmI(yi ≠Cm)]

Finally, the majority vote can be obtained by:

sign ¼ ∑M
m−1αmCm Xð Þ� �

It is noted that the best set of parameters in BRT were
selected by using the accuracy index and Cohen’s kappa in-
dex, which can be calculated as follows:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð5Þ

Kappa ¼ Pobs−Pexp

1−Pobs
ð6Þ

Pobs ¼ TPþ TN=n ð7Þ

Pexp ¼ TPþ FNð Þ TPþ FPð Þ þ FPþ TNð Þ FNþ TNð Þ=
ffiffiffiffi
N

p ð8Þ

where n is the ratio of cells that are correctly categorized, and
N shows the number of total training cells, while TP, FP, TN,
and FN represent true positive, false positive, true negative,
and false negative, respectively (Naghibi and Moradi
Dashtpagerdi 2016).

To apply a novel data-mining ensemble model, first, the
EBF model was applied and belief values were assigned to
different classes of the GCFs. Then, new maps of each factor
were produced by the lookup function in ArcGIS 10.4. A new
dataset was provided for training of the data-mining model
(i.e. BRT). In this dataset, 1 was assigned to the spring and 0
was assigned to nonspring locations. It is noted that the
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nonspring locations were randomly defined using ArcGIS
10.4. Using the new training dataset and new GCFs layers
with Bel values, the BRT model was conducted using R
open-source software via the gbm package (Ridgeway
2006). The BRT model was run using a 10-fold cross-valida-
tion, deemed to be a sufficient number of runs for optimization
of the assigned parameters. It needs to be clarified that the
GPMs produced by the EBF and BBF-BRT methods are clas-
sified into four classes—low, moderate, high, and very high—
by the natural break classification method (Naghibi et al.
2018).

Results and discussion

GPM production by evidential belief function

The results of the EBF model are presented in Table 2 where
the values of the Bel, Dis, and Unc are reported. As mentioned
in the methodology section, a class with high Bel value has a
high potential for the occurrence of the event, which in this
case is the existence of a spring (Nampak et al. 2014;
Pourghasemi and Beheshtirad 2015). Based on the results, it
can be observed that there is an inverse relationship between
slope angle and the Bel value, which means that the ground-
water potential decreases with the increase in slope angle.
Regarding the results of slope aspect, flat and north-east clas-
ses show the highest Bel values. In contrast, south-east and
south-west classes have Bel value of zero, which indicates
their low potential of spring incidence. This finding can be
related to the less sunshine duration over the north slope as-
pects in the northern hemisphere. In the case of elevation, the
results indicated that an inverse relationship exists between
GCF and spring incidence. At lower elevations, water has
concentrated near the rivers and, therefore, the wetness index
is higher in these areas which can result in the higher potential
of groundwater. The flat characteristic of the plan curvature
had the highest Bel value (Bel = 0.54). The highest Bel value
was observed in the (−0.001)–(0.001) category of the profile
curvature. An inverse relationship was observed between the
slope length and spring incidence. In the case of SPI, the
results indicated that <200 and 400–600 categories have the
highest Bel value of 0.34 and 0.24, respectively. The findings
of TWI signified a direct relationship between TWI and spring
incidence. Regarding the distance from rivers, an inverse re-
lationship between the distance from river and the spring oc-
currence was observed. Regarding river density, the 0.86–1.46
class has the highest Bel value of 0.40 followed by >1.46,
0.31–0.86, and <0.31 classes. The modeling results with re-
spect to land use showed that agriculture has the highest Bel
value, followed by forest and rangeland. Regarding lithology,
the highest values of Bel were observed for group 2 and group
10 with values of 0.22 and 0.17, respectively.

Overall, these findings signified that a direct relationship
exists between spring incidence and TWI factor. In contrast,
an inverse relationship was observed between the
groundwater potentiality and three GCFs including
elevation, slope length, and distance from rivers. Naghibi
and Pourghasemi (2015) obtained the same relationship be-
tween elevation, TWI, and distance from rivers and spring
occurrence. However, in some other factors such as LS, the
findings of this study differ from the findings of Naghibi and
Pourghasemi (2015). These differences can be due to the dif-
ferent properties of the studied regions (i.e. topographical and
hydrological characteristics). Furthermore, the results of the
EBF-BRT model revealed that the distance from rivers, lithol-
ogy, river density, and plan curvature had the highest impor-
tance in the groundwater potential mapping of the studied
basin.

The GPM produced by the EBF model in the current study
is presented in Fig. 4a and Table 3. It should be noted that the
final EBF map was obtained by summing all the Bel values.
Based on the findings, the value of GPM in this model ranges
from 0.88 to 5.29. Low, moderate, high, and very high poten-
tial categories composed 34, 28, 20, and 18% of the studied
basin, respectively.

GPM production by the novel data-mining ensemble
model

The findings of the application of BRT algorithm are present-
ed in Fig. 5. The final BRT model was applied with the min-
imum terminal node size of 10, shrinkage value of 0.1, 50
number of trees, and interaction depth of 1 (accuracy index =
0.66 and Cohen’s Kappa index = 0.33). The contribution of
the GCFs to the modelling process is presented in Fig. 6. The
results indicated that the distance from rivers, lithology, river
density, and plan curvature have the highest contribution to
groundwater potential estimated by the EBF-BRTmodel (Fig.
6). The land use and profile curvature showed the lowest con-
tribution and SPI showed no effect on groundwater potential.
The GPM obtained from the EBF-BRTmethod is presented in
Fig. 4b and Table 3. The GPM produced by the EBF-BRT
model resulted in low, moderate, high, and very high potential
categories, which composed 32, 28, 25, and 15% of the stud-
ied basin, respectively.

Validation and verification of the GPMs

This section includes two steps: (1) validation of the maps
using the validation dataset and ROC curve and (2) verifying
the results by taking the observed spring discharges into ac-
count. Chung and Fabbri (2003) stated that the validation is
regarded as a very necessary stage in the modeling procedure.
To do so, the ROC curve was implemented to define the ac-
curacy of the GPMs produced by the EBF and EBF-BRT
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Table 2 Spatial relationship
between GCFs and springs using
the EBF model

Factor Class % of pixels
in domain

No. of
springs

Bel Dis Unc

Slope angle (degree) 0–5 29.46 38 0.54 0.15 0.31

5–15 22.58 20 0.37 0.23 0.41

15–30 35.25 8 0.09 0.34 0.57

>30 12.71 0 0.00 0.29 0.71

Slope aspect Flat 8.70 10 0.22 0.19 0.59

North 13.59 8 0.11 0.21 0.68

Northeast 14.69 13 0.17 0.19 0.64

East 8.65 4 0.09 0.21 0.70

Southeast 8.66 6 0.00 0.00 1.00

South 10.47 4 0.07 0.21 0.72

Southwest 13.60 10 0.00 0.00 1.00

West 11.17 8 0.14 0.00 0.86

Northwest 10.47 3 0.06 0.00 0.94

Elevation (m) <1400 1.63 4 0.61 0.24 0.15

1400–1900 40.15 36 0.22 0.19 0.58

1900–2500 45.22 25 0.14 0.29 0.57

2500–3000 9.22 1 0.03 0.28 0.70

>3000 3.79 0 0.00 0.00 1.00

Plan curvature (100/m) Concave 29.54 16 0.28 0.36 0.36

Flat 37.60 39 0.54 0.22 0.24

Convex 32.86 11 0.18 0.42 0.41

Profile curvature (100/m) < (−0.001) 35.30 23 0.33 0.34 0.33

(−0.001)-(0.001) 32.79 30 0.46 0.27 0.27

> (0.001) 31.91 13 0.21 0.39 0.40

Slope length (m) <20 38.46 40 0.41 0.16 0.43

20–40 16.73 12 0.29 0.25 0.47

40–60 14.23 8 0.22 0.26 0.52

>60 30.58 6 0.08 0.33 0.59

Stream power index <200 30.62 27 0.34 0.21 0.45

200–400 12.96 7 0.21 0.26 0.54

400–600 9.55 6 0.24 0.25 0.51

>600 46.87 26 0.21 0.28 0.50

Topographic wetness index <8 19.44 2 0.05 0.39 0.56

8–12 56.23 32 0.29 0.38 0.33

>12 24.33 32 0.66 0.22 0.12

Distance from rivers (m) <100 4.69 27 0.71 0.17 0.12

100–200 4.15 5 0.15 0.27 0.58

200–300 4.10 2 0.06 0.28 0.66

300–400 4.03 1 0.03 0.28 0.69

>400 83.04 31 0.00 0.00 1.00

River density (km/km2) <0.31 60.74 18 0.08 0.42 0.50

0.31–0.86 11.82 8 0.18 0.23 0.60

0.86–1.46 21.94 33 0.40 0.14 0.45

>1.46 5.50 7 0.34 0.21 0.45

Land use Agriculture 24.58 33 0.61 0.16 0.23

Forest 30.83 11 0.16 0.30 0.54

Orchard 0.04 0 0.00 0.25 0.75

Rangeland 43.99 22 0.23 0.29 0.48

Residential area 0.57 0 0.00 0.00 1.00
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models. The GPMs were verified employing training and val-
idation datasets. The area under the curve of ROC varies be-
tween 0.5 and 1 (Sangchini et al. 2016; Hong et al. 2017;
Kalantar et al. 2018). A larger area under the curve of ROC
denotes higher efficacy of the models in spatial modeling
(Jaafari and Gholami 2017; Pham et al. 2018) such as ground-
water potential mapping. Figure 7 presents the prediction per-
formance of the produced GPMs by EBF and EBF-BRT
models implementing the ROC curve. Accordingly, the area
under the curve of ROC for the validation dataset was defined
as 75.5 and 82.1% for EBF and EBF-BRTmodels, respective-
ly. Further, the area under the ROC curve for the training
dataset was calculated as 77.2 and 83% for EBF and EBF-
BRT, respectively. It was assumed that the values of more than

70% indicate an acceptable performance of the model
(Naghibi et al. 2016).

To verify the resulting groundwater potential map of the
basin, the spring discharge record was used. For this, the ob-
served discharge values higher than the median discharge,
0.75 L/s, were selected for the models’ verification.
Distribution of the selected springs in different potential zones
produced by EBF and EBF-BRT is presented in Table 4. As
can be seen in the table that, among 47 high-discharge springs,
15 and 16 springs were located in the very high potential zone
produced by EBF and EBF-BRT, respectively. According to
the modeling results, very few springs with high discharge
were located in the low potential zone (Table 4). The distribu-
tion of the high-discharge springs in the identified groundwater

Fig. 4 Groundwater potential map produced by the a EBF and b EBF-BRT models

Table 2 (continued)
Factor Class % of pixels

in domain
No. of
springs

Bel Dis Unc

Lithology Group 1 3.25 4 0.16 0.07 0.76

Group 2 4.22 7 0.22 0.07 0.71

Group 3 0.22 0 0.00 0.08 0.92

Group 4 4.44 5 0.15 0.07 0.78

Group 5 33.32 26 0.10 0.07 0.82

Group 6 8.23 2 0.03 0.08 0.89

Group 7 1.53 0 0.00 0.08 0.92

Group 8 28.52 17 0.08 0.08 0.84

Group 9 2.39 1 0.06 0.08 0.87

Group 10 1.60 2 0.17 0.08 0.76

Group 11 0.02 0 0.00 0.08 0.92

Group 12 1.40 0 0.00 0.08 0.92

Group 13 10.86 2 0.03 0.08 0.89

Bel belief, Dis disbelief, Unc uncertainty
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potential zones, as well as the computed area under the ROC
curve, confirm the satisfying performance of the models in this
study.

Performance comparison

The findings of this study indicated superior performance of
the EBF-BRT to EBF model in producing groundwater poten-
tial maps; therefore, it can be observed that making the en-
semble EBF-BRT model increased the efficacy of the GPM in
this research. The validation results also indicated an accept-
able capability of the EBF model in producing GPM. Naghibi
and Pourghasemi (2015) and Nampak et al. (2014) employed
the EBF model for producing GPMs. Their results depicted
acceptable performance of the EBF, which is in agreement
with the findings of this study. Other researchers have
employed different methods to improve the performance of
the EBF model. Tien Bui et al. (2015) employed an EBF-
fuzzy logic hybrid method for modelling landslides. Their

findings showed the higher efficacy of the hybrid method
relative to the EBF model. In another research project,
Pourghasemi and Kerle (2016) employed an EBF-random
forest model to map landslide susceptibility, and their findings
depicted a better performance of the EBF-random forest mod-
el than the EBF model. In a related work, Naghibi et al.
(2017a) used an ensemble model comprised of four data-
mining models and frequency ratio. Their results indicated a
better performance of the ensemble model by the reduction of
overfitting. Moreover, Naghibi et al. (2017b) used a genetic
algorithm to optimize random forest as an ensemble model,
and this combination yielded a better performance. In the cur-
rent research, the more accurate results of the EBF-BRT mod-
el could be due to the strong features of the single BRT and
EBF models. The BRT model is capable of coping with non-
linear relationships (Naghibi et al. 2016). Boosted regression
tree applies a combination of boosting and regression tech-
niques, which results in a better performance (Elith et al.
2008). The EBF, on the other hand, is proved to be a robust
model for managing uncertainties in spatial modelling and can
deal with missing values.

Conclusions

Groundwater potential mapping has been considered as an
important aspect of groundwater-related studies and has
attracted many scholars worldwide. In this study, a novel

Fig. 6 Importance of the grGCFs in the BRT model (RiverDist distance
from rivers; Litho lithology; RiverDens rivers density; PlanC plan
curvature; TWI topographic wetness index; SlopeAngle slope angle;
SlopeAspect slope aspect; LS slope length; Altitude elevation; Landuse
land use; ProfileC profile curvature; SPI stream power index)

Fig. 5 Results of the EBF-BRT application

Table 3 Range and area of different classes of the groundwater
potential map (GPM) produced by the EBF and EBF-BRT models

Class EBF EBF-BRT

Range of
the values

Area % Range of
the values

Area %

Low 0.88–1.91 34 0–0.23 32

Moderate 1.91–2.60 28 0.23–0.41 28

High 2.60–3.41 20 0.41–0.61 25

Very high 3.41–5.29 18 0.61–0.96 15
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ensemble EBF-BRT model was introduced, and its perfor-
mance was assessed in groundwater potential mapping. The
EBF-BRT model was applied using a training dataset of the
belief values extracted from EBF model results. Using the
ROC curve, performance of the EBF and EBF-BRT models
was evaluated. The findings indicated that the EBF-BRTmod-
el yielded better performance than the simple EBF model.
Therefore, it can be concluded that application of the BRT
model can enhance the prediction strength of the EBF model;
however, both of the models had acceptable performance in
this study. The better performance of the EBF-BRT model
could be due to stronger features of the BRT model such as
its capability to cope with phenomena in which there are non-
linear relationships. Regarding the conditioning factors, it was
observed that the distance from rivers, lithology, rivers densi-
ty, and plan curvature have the highest importance in the
GPMs by the EBF-BRT model. Considering the findings of

this study, the implemented methodology can be recommend-
ed for other areas with similar geological and hydrological
setting. GPMs can be regarded as a guiding tool for freshwater
professionals to properly manage land and water resources.
GPMs would also provide superior insight of groundwater
condition in various parts of a basin that would subsequently
lead to efficient exploitation of groundwater.

The GPMs can be employed for functional water re-
sources management especially through land use planning.
Those activities with high water requirements, i.e. irrigated
agriculture, can be located in areas with higher groundwater
potential. However, the rate of exploitation should be mon-
itored and controlled. The GPMs can also support decision-
making processes in the land use and water resources plan-
ning that ultimately leads to environmental sustainability,
which is very crucial in the Middle Eastern countries such
as Iran. It is evident that overexploitation issue causes many
problems for people and the government in most of the
aquifers in Iran. The outputs of this study could be
channeled to the relevant agencies/organizations and result
in a better aquifer management strategy through defining
the places where groundwater extraction can be more pro-
ductive. Better land use planning could lead to lower pres-
sure on aquifers. However, it is the first step and there need
to be more remediation steps, such as artificial recharge
through water harvesting, and flood spreading.
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Fig. 7 Receiver operating characteristics (ROC) curve calculated for the EBF and EBF-BRT models for a training and b validation datasets

Table 4 Distribution of the high-discharge springs in the identified
groundwater potential zones

Potential zones EBF BRT

No. of
springs

Springs (%) No. of
springs

Springs (%)

Low 8 17.02 4 8.52

Moderate 10 21.28 12 25.53

High 14 29.79 15 31.91

Very high 15 31.91 16 34.04
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