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Abstract
Dense 3D reconstruction of the abdominal environment for Minimally Invasive Surgery (MIS) is important for tasks in 
Computer Assisted Surgery (CAS), including the alignment with Computed Tomography (CT) and Magnetic Resonance 
Imaging (MRI), the autonomous navigation of surgical robots, and the application of augmented reality (AR). In this paper, 
we investigate the binocular laparoscopy-based stereo vision technology, and ultimately achieve fast and dense 3D recon-
struction of the preoperative abdominal environment and intraoperative lesion localization based on visual guidance. We 
introduce binocular constraints and data looping combined to improve the hand–eye calibration algorithm based on binocular 
laparoscopy. As it is challenging to obtain the depth truth value from medical image data, we employ a binocular unsupervised 
learning algorithm based on the Parallax Attention Mechanism (PAM) for depth estimation, while a coarse-to-fine pyramid 
optimization method is used to minimize the photometric error to obtain the laparoscopic trajectory and reconstruct the 
abdominal environment by parallel processing. In order to confirm the effectiveness of the algorithm, we build a binocular 
laparoscope-based robot platform and conduct experiments on an abdominal phantom, and the results demonstrate that the 
simultaneous localization and mapping (SLAM) absolute pose error (APE) of our proposed method outperforms that of 
some other methods, and it can achieve precise intraoperative lesion localization based on visual guidance.

Keywords  Binocular laparoscope · Abdominal environment · Hand–eye calibration · Depth estimation · Laparoscopic 
SLAM

1  Introduction

With the advantages of less trauma, low germ infection 
rate, fewer complications, less pain for patients, and faster 
recovery, MIS has been widely used in clinical practice over 
the past decade, promoting landmark advances in medicine. 

However, in comparison with traditional open surgery, there 
are several limitations, including restricted field of view, 
imprecise laparoscopic positioning, and a lack of informa-
tion about the surrounding environment. The conventional 
monocular laparoscopy employed in MIS is constrained by 
its two-dimensional imaging capabilities, which leads to 
insufficient estimation of surgical instrument advancement 
distance and depth of the body cavity, as well as the 3D rep-
resentation of the lesions, blood vessels, surrounding organs 
and tissues within the abdominal cavity. This significantly 
complicates surgical.

Furthermore, laparoscopes are unable to observe infor-
mation beneath the surface of organs. Following the use of 
SLAM to reconstruct the abdominal environment in great 
detail, it is able to align and fuse with CT or MRI images 
from preoperative diagnosis, which allows the anatomical 
structure of the patient to be shown intraoperatively. Addi-
tionally, it can also be integrated with AR to superimpose 
supplementary information within the 3D scene, includ-
ing annotations of target lesions, contour of organs, and 
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tumor measurements, and also facilitates the expansion 
of the current laparoscopic field of view and promotes the 
development of autonomy for future laparoscopic robotic 
surgery.

In order to enhance laparoscopic surgical techniques, 
Mahmoud et al. (2016) enhance ORB-SLAM (Mur-Artal 
et al. 2015) using a monocular laparoscope by enlarging the 
search region for image keypoint matching, and in vivo pig 
experiment demonstrates that laparoscopic tracking remains 
robust even in the presence of organ deformation and partial 
instrument occlusion. However, this study uses a monocular 
laparoscope, which is unable to obtain depth-scale data and 
thus incapable of reconstructing accurate and usable envi-
ronmental information. Song et al. (2018a, b) propose a real-
time large-scale dense deformation SLAM system based on 
heterogeneous computing. Their enhanced ORB-SLAM runs 
on the CPU and transfers the ORB features and global pose 
to the GPU, thus enabling the generation and rendering of 
dynamic 3D shapes in real time for an autonomous surgical 
robot. However, the computational complexity and memory 
usage increase significantly with the growth of the model, 
and the depth estimation uses the ELAS algorithm, which 
exhibits a slight reduction in accuracy in medical scenarios. 
Qiu et al. (2020) introduce a CT based SLAM registration 
for laparoscopic navigation in oral surgery, where they uti-
lize semi-dense contours with preoperative CT data for 3D 
point cloud registration, and the root mean square error 
(rmse) of the mapping is kept at 1mm. However, this study 
incorporates information other than visual data, increasing 
the time and cost of reconstruction.

In contrast to previous techniques, our study focuses on 
acquiring visual information exclusively by binocular lapa-
roscope, without any other sensors, and the binocular lapa-
roscope can obtain true depth map based on the principle 
of binocular disparity. We employ the Zhang’s calibration 
method (Zhang 1999) to obtain the intrinsics of binocular 
laparoscopes and achieve sub-pixel level reprojection accu-
racy, which meets the requirements for medical. Addition-
ally, we introduce binocular constraints and data loops to 
enhance the accuracy of the binocular laparoscope-based 
hand–eye calibration algorithm. The left and right images 
are rectified by intrinsics, and the depth information is 
obtained by finetuning the binocular unsupervised network 
based on the parallax attention mechanism, the pseudo 
RGBD sequence is obtained by aligning the timestamps, 
while the trajectory of the binocular laparoscope is obtained 
by using pyramid optimization method from coarse to fine 
to minimize the photometric error by parallel processing 
to achieve fast and dense 3D reconstruction of the abdomi-
nal environment. This provides surgeons or surgical robots 
with a full range of visual information in order to facilitate 
a more comprehensive understanding of the relationship 
between lesion and blood vessel positions and a reduction 

in intraoperative risks. In summary, our contributions of this 
paper include:

1.	 We introduce binocular constraints and data loops to 
improve hand–eye calibration algorithms, which is spe-
cifically designed for binocular laparoscope.

2.	 We introduce a novel SLAM method that generates 
pseudo-RGBD frames via an unsupervised PAM-based 
algorithm and uses parallel processing for trajectory 
tracking with coarse-to-fine pyramid optimization.

3.	 Our method enables fast and dense reconstruction of the 
preoperative abdominal environment and high-precision 
intraoperative localization of lesions.

2 � Related work

2.1 � Hand–eye calibration

Hand–eye calibration is the process of translating spatial 
information from complex environments to the robot base 
coordinate system, and proper hand–eye calibration is criti-
cal when sub-pixel perceptual accuracy is required (Ene-
buse et al. 2021). In robot-assisted surgery (RAS), excessive 
errors in hand–eye calibration may result in the damage of 
vital tissues and organs, thereby increasing the risk of surgi-
cal complications.

Krittin Pachtrachai et  al. (2018) propose a hand–eye 
calibration method based on adjoint transformation of twist 
motions, which is solved iteratively by alternately estimating 
the rotation and translation matrices. Orhan Özgüner et al. 
(2020) add a Polaris Vicra optical tracking system to the da 
Vinci Surgical System for intraoperative real-time calibra-
tion of the remote-center-of-motion (RCM) based laparo-
scopic camera and the patient-side manipulator (PSM) arm 
through translation relations between coordinate systems. Lu 
et al. (2022) compute hand–eye calibration in a hierarchical 
manner based on monocular laparoscopy by manipulating 
PSM in a limited workspace, optimize globally to minimize 
the proposed aggregating sphere loss, and optimize locally 
based on beam adjustment model. Zhong et al. (2020) per-
form hand–eye calibration by fixing a monocular laparo-
scope and moving the surgical instrument without the use of 
a calibration target, they use only CAD model of the surgical 
instrument and a small amount of data to achieve calibration 
results with low error.

2.2 � Depth estimation

Depth estimation algorithm is the foundation for binocu-
lar stereo vision technology, which is a crucial component 
of laparoscopic surgery. Scharstein et al. (2001) have pro-
posed a four-step framework for traditional stereo matching, 
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including matching cost computation, cost aggregation, par-
allax computation, and parallax optimization. The accuracy 
and speed of binocular-based parallax estimation in com-
plex environment have been significantly enhanced with the 
advent of deep learning algorithms, which can be classified 
into two distinct categories: supervised and unsupervised.

To address the challenges of laparoscopic surgery, Chang 
et al. (2013) propose a stereoscopic depth estimation algo-
rithm that constructs a 3D cost volume per pixel based on 
disparity, followed by Huber-L convex optimization. This 
method efficiently achieves dense reconstruction of smooth 
surfaces, such as the heart, even in texture-poor regions or 
regions occluded by surgical instruments, and it preserves 
depth discontinuity and real time on GPU. Godard et al. 
(2017) introduce a fully convolutional deep neural network 
with differentiable training losses, including left–right con-
sistency checks, to enhance the quality of synthesized depth 
maps by minimizing reprojection errors. Huang et al. (2018) 
presented a multi-view convolutional neural network that 
aggregates information from an unordered set of images, 
which integrates multi-layer feature activations from a pre-
trained VGG-19 network on a real dataset, demonstrating 
superior reconstruction results in low-texture regions. Wang 
et al. (2020) use Blender to simulate binocular laparos-
copy data in gastrointestinal environment. They propose a 
23-layer convolutional neural network for real-time parallax 
map generation, and introduce a scale-invariant loss function 
to improve depth estimation accuracy with minimal training 
data.

2.3 � Visual SLAM

Robotic SLAM systems are distinguished by their core func-
tional modules, which can be broadly categorized into two 
forms: laser SLAM and vision SLAM(VSLAM) (Zaffar et al. 
2018). These can also be further subdivided into sparse and 
dense reconstruction. VSLAM includes monocular, stereo, 
event-based, omnidirectional, and RGBD cameras (Tourani 
et al. 2022). VSLAM is relatively straightforward to install, 
utilizes inexpensive sensors, enables dense reconstruction, 
and is more suitable for medical applications in abdominal 
environments. In recent years, the use of light model correc-
tion and highly robust feature points have become prevalent 
in the field of VSLAM research, with encouraging results.

ORB-SLAM2 (Mur-Artal et al. 2017) incorporates loop 
closure, reposition and map reuse to enhance accuracy with 
bundled adjustment. Additionally, it includes a lightweight 
positioning mode that utilizes visual odometer for unmapped 
areas and matches map points to permit zero drift position-
ing. DSO (Engel et al. 2018) enhance the direct pose estima-
tion model by incorporating affine luminance transformation, 
photometric calibration and depth optimization, yet lack 
loop closure detection. Mahjourian et al. (2018) presented 

a novel unsupervised learning approach for depth and ego 
motion estimation in monocular video, which is validated 
on the KITTI dataset and on a dataset of videos captured by 
calibrated mobile phones in micro-landscapes. Static Fusion 
(Scona et al. 2018) is an element-based RGB-D SLAM sys-
tem designed for dynamic environments, but initialization 
uncertainty arises in the presence of numerous dynamic 
objects. In this paper, we utilize binocular laparoscopy and 
separate the depth and SLAM reconstruction processes.

3 � Method

3.1 � Framework

In this paper, we propose a fast and dense preoperative 3D 
reconstruction of the abdominal tissue and intraoperative 
precise lesion localization using only the visual information 
provided by binocular laparoscope. The algorithmic flow of 
this paper is shown in Fig. 1, which illustrates that intrinsic 
calibration and hand–eye calibration of the binocular laparo-
scope is required only once and a set of left and right images 
of the scene are acquired to finetune the unsupervised depth 
estimation network. The video captured by the binocular 
endoscope is uploaded to the GPU side of the computer 
in real time through the capture card. The pseudo-RGBD 
frames are created after acquiring the depth map through 
the trained depth estimation network, and then sequentially 
passed to the SLAM algorithm for parallel processing, esti-
mating the trajectory of the binocular endoscope and com-
pleting the dense reconstruction of the abdominal surface. 
Intraoperatively, the pixel points of the lesion are extracted 
through threshold segmentation and contour extraction, and 
the spatial position in the base of robotic coordinate system 
is calculated according to the depth map combined with the 
hand–eye calibration matrix, and the surgical instrument is 
visually guided to move to the lesion.

3.2 � Binocular‑based hand–eye calibration

A series of checkerboard images and the corresponding 
angular data for each joint angle of the robot are collected. 
The Perspective-n-Point (PnP) algorithm is then used to 
solve the transformation matrix of the checkerboard origin 
to the left laparoscopy. We construct the AX = XB hand–eye 
calibration equation, and in order to minimize the quantity of 
data collected and ensure the X iteration solution remained 
accurate, a data loop processing approach rather than a 
sequential one is implemented, and where A is the prod-
uct of any two robot ends to bases transformation matrices, 
rather than the i + 1th to the ith, B is the product of any two 
checkerboard origins to left laparoscopies transformation 
matrices and X is the desired hand–eye calibration matrix. 
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Coordinate system employed in the process of hand–eye 
calibration is shown in Fig. 2.

A binocular laparoscope is employed in this procedure, 
and it should be noted that some other calibration meth-
ods may result in the loss of information from one of the 

laparoscopes. The transformation matrix �RightCamera

LeftCamera
 of the 

left to the right laparoscope can be derived from the 
intrinsic calibration and remains constant throughout the 
calibration procedure. In order to achieve accurate 

Fig. 1   Pipeline Overview. The process includes a one-time intrinsic 
and hand–eye calibration of the binocular laparoscope, followed by 
fine-tuning of the depth estimation network using rectified images. 

Real-time video is processed into pseudo-RGBD frames for preopera-
tive abdominal environment reconstruction and intraoperative lesion 
localization

Fig. 2   All coordinates employed 
in the process of hand–eye cali-
bration. The symbol �A

B
 denotes 

the transformation relationship 
between the B coordinate to the 
A coordinate, the direction in 
which the arrow is pointing
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calibration results, we use both the left and right images 
and incorporate binocular constraints.

where the range of i is the number of calibrated images 
captured, while the range of j is the number of calibrated 
images captured minus 1, and for each i, the loop iterates j 
times. Finally, the classical Tsai method (Tsai et al. 1989) 
is employed to solve the hand–eye calibration equation for 
AX = XB, where subscript l represents the left camera and 
r represents the right camera, Bl1,Bl2,Bl3,Bl4 are stacked as 
Bl matrix, and Br1,Br2,Br3,Br4 are stacked as Br matrix, and 
the transformation matrices of the left and right camera with 
respect to the robot base are calculated respectively.
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3.3 � Unsupervised binocular‑based depth 
estimation

There are few medical open binocular datasets with depth 
groundtruth, so we use parallax attention for unsupervised ste-
reo correspondence learning network (PASMnet) (Wang et al. 
2022) architecture and training procedures, which achieves the 
state-of-the art performance, and we generalize it to medical 
images. The PASMnet feeds the rectified left and right images 
into an hourglass-type feature extraction network respectively, 
and the resulting feature maps are fed into a cascaded PAM, 
which uses coarse-to-fine matching cost regression, and the 
parallax map is output after the hourglass-type parallax refine-
ment module. The general flow of the algorithm for depth esti-
mation is shown in Fig. 3.

PAM employs 1 × 1 convolution to extract the left and right 
image feature maps �left and �right respectively, with dimen-
sions H × W × C. H a batch of matrix multiplication, with 
each matrix comprising W points, and C represents the fea-
ture dimension of each point. The geometrical-aware matrix 
multiplication and SoftMax function operations are conducted 
on these two feature maps to encode the feature similarity of 
any two pixels along the pole line into the PAM �right→left 
and �right→left respectively, with dimensions H × W × W. The 
masked pixels are removed according to the point pair match-
ing correlation to obtain the valid mask. Employing PAM 
instead of the cost volume reduces the amount of computa-
tion and memory occupancy. Furthermore, there is no need to 
set a fixed parallax maximum value. In order to obtain reliable 
matching relationships, both left–right consistency and cycle 
consistency are introduced, left–right consistency is calculated 
as follows, and torch.matmul is the tensor's multiplication 
method for multiplying two tensor matrices:

Cycle consistency is calculated as follows:

(2)
{

�left = torch.matmul(�right→left, �right)

�right = torch.matmul(�left→right, �left)

Fig. 3   The process of depth estimation. The net feeds the rectified left 
and right images into an hourglass-type feature extraction network 
respectively, and the resulting feature maps are fed into a cascaded 

PAM, which uses coarse-to-fine matching cost regression, and the 
disparity map is output after the hourglass-type parallax refinement 
module, which can be transformed into a 3D pointcloud
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The loss function of this unsupervised network incorpo-
rates three components: photometric loss Lp , smoothness loss 
Ls and PAM loss L

PAM
 , and �p , �s , �PAM are their respective 

weights:

The photometric loss comprises two components: the mean 
absolute error and the structural similarity index (SSIM). The 
edge-aware smoothness loss enhances the local smoothness of 
parallax. PAM loss introduces three terms of varying scales to 
regulate the process, thereby ensuring the generation of accu-
rate and consistent stereo correlation, which includes PAM 
photometric loss Ls

PAM−p
:

PAM cycle consistency loss Ls
PAM−c

:
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3.4 � SLAM in the abdominal environment

VSLAM for laparoscopic surgery consists of three parts: 
image acquisition and feature information extraction for the 
environment in which the binocular laparoscope itself is 
located firstly, and then positioning of the binocular laparo-
scope according to the visual information, reconstruction of 
the spatial information of the abdominal environment finally. 
We use the dense direct method, which does not compute 
feature points and descriptors and is suitable for the abdomi-
nal environment that lacks texture. Based on the assumption 
that the same spatial point has the same grey value under 
different camera positions, we focus on the gradient of image 
pixel grey values.

The issue of discontinuities between successive images, 
which are the result of rapid motion, is addressed by the 
construction of an image pyramid comprising four levels. 
This approach entails a progressive reduction in the reso-
lution of the original image by a factor of four, which is 
intended to facilitate the process of feature matching and 
stabilize the optimization process by initiating the process 
with a coarser representation of the scene. In this four-layer 
pyramid, the first layer is the coarsest and represents the 
lowest resolution image. Subsequently, the resolution of 
the layers in question increases gradually until it reaches 
that of the fourth and final layer, which corresponds to the 
resolution of the original image. Subsequently, each layer 
of the pyramid is optimized in a coarse-to-fine manner. The 
coarse-to-fine strategy allows the optimization process to 
converge in a more seamless and dependable manner, as it 
starts with a global approximation and gradually refines the 
solution in detail.

At each stage of the optimization process, a nonlinear 
optimization technique is employed to estimate the camera's 
rotation matrix R and translation vector t, which are funda-
mental for determining the camera's pose with respect to 
the scene. However, this process is susceptible to the bias of 
reprojection error, which refers to the discrepancy between 
the observed image features and their expected positions 
based on the estimated camera pose. In order to minimize 
this bias and refine the estimates of R and t, a nonlinear 
iterative optimization approach, which is the Gauss–Newton 
method is employed, represents an adaptation of the New-
ton method for addressing nonlinear systems. This method 
employs an iterative adjustment of the estimates of R and t 
with the objective of reducing the reprojection error and thus 
minimizing the bias. The Gauss–Newton method employs 
second-order derivatives (Hessian matrices) to approximate 
the optimized surface, thereby facilitating a more rapid 
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convergence to a more accurate solution in comparison to 
first-order methods. This iterative process is continued until 
the bias is sufficiently reduced to result in a negligible repro-
jection error. The transformation relationship between the 
two frames and the schematic of the solution are shown in 
Fig. 4.

The laparoscope left intrinsic matrix is defined as A, the 
coordinates of the pixel points on the image are defined as 
u, v, and the depth of the spatial point P to the laparoscope 
imaging plane is defined as Z. The relative motion of the 
camera between the k-1th and kth frame is estimated as the 
rotation matrix R and the translation vector t, corresponding 
to the Lie algebra � . This can be obtained from the projection 
equation based on the principle of small-aperture imaging:

For all spatial points P, I(p) is photometry of the pixel 
of p, the problem of minimizing the photometric error e is 
formulated:

The Lie group is multiplied by a small quantity, and the 
perturbation model is employed to ascertain the rate of 
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the following formula:

where �I2
�u

 is the partial derivative of grey scale with respect 
to pixel points, �u

�q
 is the partial derivative of pixel points with 

respect to spatial points, and is the partial derivative of spa-
tial points with respect to the corresponding Lie algebra of 
the transformation matrix Lie group. Then the Jacobi matrix 
of the error with respect to the Lie algebra is derived. Sub-
sequently, the increments are calculated using the Gaussian 
Newton method to solve iteratively.

4 � Experiment

4.1 � Datasets and implementation details

In this paper, the hardware environments are Intel(R) Core 
(TM) i5-8300H CPU @ 2.30GHz and 2 NVIDIA GeForce 
GTX 1060 GPUs.

A 3D reconstruction system of abdominal cavity is devel-
oped based on a binocular laparoscope and a Universal 
Robot 5 (UR5). The imaging resolution of both the left and 
right image of the laparoscope is 1920 × 1080, and two video 
capture cards are used to connect to the computer via a USB 
interface with a transmission speed of up to 60 frames per 
second. The binocular image data is acquired and processed 
by Python and OpenCV function, the RTDE drive toolkit is 
utilize for UR5 trajectory control by Ubuntu 18.04 operat-
ing system.

One of the image sequences datasets of the binocular 
abdominal environment we use are derived from an open-
source video dataset provided by the Hamlyn Medical 
Center. Additionally, another image sequences datasets of 
the abdominal phantom and the suture practice model are 
captured using our own binocular laparoscopes.

Firstly, the binocular laparoscope is fixed to the end of 
UR5 by a 3D-printed fixture, and the checkerboard calibra-
tion board is fixed on the robot platform. Different positions 
and attitudes of the end of UR5 are transformed to record 30 
sets of joint angles and the corresponding binocular check-
erboard images. The intrinsics of the laparoscope, including 
the focal length, optical center, distortion coefficients, and 
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Fig. 4   A four-layer image pyramid is constructed and non-linear opti-
mization is performed on each layer of the pyramid, from coarse to 
fine, in order to determine the camera rotation matrix R and transla-
tion vector t 
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left and right transformation matrix, are calibrated by the 
MATLAB toolbox, and the re-projection error is 0.2 pixels, 
which meets the medical use requirement at the sub-pixel 
level, and the hand–eye calibration matrix is calculated using 
our proposed method. It is important to note that images 
acquired by binocular laparoscopes must be rectified using 
the intrinsics parameters obtained from the calibration pro-
cess before they can be input to the depth estimation network 
for training and obtaining parallax maps.

4.2 � Preoperative SLAM accuracy evaluation

The image should be center cropping and the values of u0 
and v0, which represent the position of the optical center 
pixel in the laparoscope’s intrinsics parameters, should be 
modified, this operation will result in a reduction of SLAM 
mapping anomalies, with a corresponding improvement 
in the effect. The video stream is transmitted to the com-
puter in real time, where it is used to run the depth estima-
tion and SLAM algorithms in parallel process. This can be 
achieved at an average speed of 500 ms per frame, resulting 
in the generation of the laparoscopic trajectory and dense 
3D reconstruction of abdominal environment. The process 
of 3D reconstruction of the abdominal cavity by SLAM is 
shown in Fig. 5.

Based on EVO (Sturm et al. 2012), an open-source tool 
used for evaluating the performance of SLAM systems, pro-
viding a suite of metrics and visualization tools to assess 
accuracy and reliability. We select the absolute pose error 

(APE) metric, which is a metric within EVO that directly 
calculates the discrepancy between the groundtruth of the 
laparoscopic trajectory and the estimated value of the SLAM 
system, and is essential for understanding the long-term pre-
cision of SLAM systems. It involves aligning the estimated 
trajectory with the ground truth, computing the Euclidean 
distance errors for each pose, and averaging these to obtain 
the APE, which provides a highly intuitive reflection of 
the algorithmic accuracy and the global consistency of the 
trajectory. The groundtruth of the laparoscopic trajectory 
mentioned above is achieved by employing UR5 to execute 
a specified trajectory at a low velocity, and the position of 
the UR5 end to the base is obtained real-time via commu-
nication with the RTDE drive toolkit, ensuring that the fre-
quency of position acquisition is consistent with the frame 
rate of the video captured by the laparoscope. The trajectory 
groundtruth and the trajectory computed by the SLAM algo-
rithm are converted into the KITTI pattern required by EVO 
and aligned using the timestamps, and then input them into 
EVO to compute the spatial position error of XYZ.

Three sets of abdominal phantom image sequences 
acquired by ourselves are chosen to acquire laparoscopic 
trajectories using the RGBD method in ORB-SLAM2 
(Mur-Artal et al. 2017), Endo-depth-and-motion (Recas-
ens et al. 2021) and our proposed method respectively, and 
APE is compared with the trajectory acquired by UR5 as 
groundtruth. Rmse, mean, median, Standard Error(std), 
minimum, maximum and sum of squares due to error (sse) 
of our method are all smaller than the other two methods. 

Fig. 5   abcdef are screenshots of the gradual reconstruction of the intraoperative abdominal environment in the order of increasing frames
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Among these, the mean error of our proposed method is 
0.6mm for dataset1, but the ORB-SLAM2 reaches 2mm, 
the Endo-depth-and-motion reaches 5mm. Further, ORB-
SLAM2 cannot get dense depth to reconstruct the environ-
ment. Therefore, our method is superior. Specific compari-
son results are shown in Table 1 and Fig. 6, of which the 
optimal indicator is in bold.

4.3 � Intraoperative lesion localization

The binocular laparoscopic fixture we use has a needle 
fixed to it, and the transformation relationship of the tool 
coordinate system to laparoscopy coordinate system is 
known by the designed fixture. Intraoperatively, the lesion 
area and center point are extracted by color space transfor-
mation, threshold segmentation, and contour extraction fit-
ting. The parallax map is then obtained and combined with 
the hand–eye calibration matrix to calculate the spatial 
position of the lesion point under the robot base coordinate 
system. and visually guided the movement of the surgical 

Table 1   ATE assessment results. Dataset1, dataset2 and dataset3 
are the abdominal phantom we collect ourselves using the UR5, we 
compare the accuracy of the SLAM trajectories using ORB-SLAM2, 
Endo-depth and our proposed method using metrics such as Rmse, 

mean, median, Standard Error(std), minimum, maximum and sum of 
squares due to error (sse). Data in the table are in meters, and optimal 
indicators are in bold

Image sequence Method RMSE Mean Median STD Min Max SSE

Dataset1 ORB_SLAM2 0.00223 0.00208 0.002085 0.000802 0.000364 0.00424 0.00086
Endo_depth 0.006115 0.005502 0.005468 0.002668 0.001368 0.012641 0.006469
Ours 0.000745 0.000658 0.000582 0.00035 8.41E-05 0.002362 9.61E-05

Dataset2 ORB_SLAM2 0.010383 0.009036 0.008163 0.005114 0.002552 0.024925 0.01714
Endo_depth 0.00823 0.008053 0.007872 0.001695 0.003339 0.013433 0.010769
Ours 0.001012 0.000872 0.000763 0.000512 9.82E-05 0.002289 0.000163

Dataset3 ORB_SLAM2 0.00896 0.007597 0.007456 0.00475 2.11E-05 0.016084 0.010837
Endo_depth 0.002452 0.002152 0.001763 0.001174 0.000412 0.005228 0.000812
Ours 0.001518 0.001412 0.001408 0.000557 0.000262 0.002609 0.000311

Fig. 6   ATE assessment results. Data in the diagrams are in meters
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instrument to the lesion point. Following the experiment, 
the positioning accuracy is found to be approximately 
5mm. The experimental scenarios and localization results 
are shown in Fig. 7.

5 � Conclusion

In this paper, we investigate the binocular laparoscopic ste-
reo imaging technique, complete sub-pixel intrinsic calibra-
tion to meet the requirements of medical use, combine the 
binocular constraints and data loops to complete a accu-
rate hand–eye calibration specifically for binocular laparo-
scopic, and acquire the depth map through the binocular 
unsupervised depth estimation algorithm based on PAM. 
The pseudo-RGBD frames are established, while the SLAM 
algorithm run based on the pyramid optimization method to 
minimize the luminance error from coarse to fine by paral-
lel process. The trajectory accuracy of our proposed algo-
rithm on our dataset also reaches 1mm. We complete fast 
and dense 3D reconstruction of the preoperative abdominal 
environment and intraoperative lesion localization.

The abdominal cavity environment presents a number 
of challenges for the accurate estimation of depth, which 
include lack of texture, specular luminescence on the tissue 
surface and smoke. Additionally, the deformation of tissues 
due to heart beating and occlusion of surgical instruments 
affects SLAM construction. Consequently, 3D reconstruc-
tion of abdominal cavity is a complex and challenging 

process, with numerous issues that require further investi-
gation. In future research, we intend to further investigate 
the potential for improvement of unsupervised depth estima-
tion algorithms to address the specific challenges posed by 
smoke and mirror reflection, and to study SLAM algorithms 
suitable for dynamic environments, with the objective of 
achieving higher speed and more robust 3D reconstruction 
of abdominal tissues. Furthermore, we intend to combine 
the Nerf (Mildenhall et al. 2020) and 3D Gaussian splatting 
(Kerbl et al. 2023) algorithms to obtain a more realistic and 
reconstructed view of the region of instrument occlusion. 
This paper focuses on the system overall integrity, with a 
lack of in-depth research on MIS, such as RCM constraints 
and the support of clinical invivo data (Liu et al. 2024). The 
proposed algorithm will be further validated with the clini-
cal data of our group's project.
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