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Abstract Robotic grasping has always been a challenging

task for both service and industrial robots. The ability of

grasp planning for novel objects is necessary for a robot to

autonomously perform grasps under unknown environ-

ments. In this work, we consider the task of grasp planning

for a parallel gripper to grasp a novel object, given an RGB

image and its corresponding depth image taken from a

single view. In this paper, we show that this problem can be

simplified by modeling a novel object as a set of simple

shape primitives, such as ellipses. We adopt fuzzy Gaus-

sian mixture models (GMMs) for novel objects’ shape

approximation. With the obtained GMM, we decompose

the object into several ellipses, while each ellipse is cor-

responding to a grasping rectangle. After comparing the

grasp quality among these rectangles, we will obtain the

most proper part for a gripper to grasp. Extensive experi-

ments on a real robotic platform demonstrate that our

algorithm assists the robot to grasp a variety of novel

objects with good grasp quality and computational

efficiency.

Keywords Grasp planning � Novel object grasping � Fuzzy
Gaussian mixture models � Shape approximation

1 Introduction

Recently, robotic grasping has gained increasing attention

because it is fundamental for robots’ manipulation task.

Finding a proper grasp pose is of great importance for

implementation of the grasping task. [1] converts the

robotic grasping problem into a detection problem. They

use an oriented rectangle in the image plane to present the

seven-dimensional grasping configuration which involves

the location, orientation and opening width of the gripper,

as shown in Fig. 1. The rectangle is called a ‘grasping

rectangle.’ This grasp detection method has been success-

fully applied on a real robotic platform. It is flexible to

employ in a real scene because only RGB-D image of the

object is needed. It overcomes the shortcoming of some

previous related works [2–4] which are only available

when the precise 3D model of the object and other physical

information such as the friction coefficient are known in

advance. However, the inefficiency of searching for a good

grasp of this grasping detection strategy is a great draw-

back, which cannot meet the demand in real industrial

scene.

Deep learning methods have shown great power in many

fields, especially for the visual recognition [5]. Lenz et al.

[6] adopts a deep learning approach to extract the grasping

features for grasp detection from the Cornell Grasp Dataset

[1]. Though their work is remarkable, the computation
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efficiency of their method is not satisfactory which needs

13.5 s to search for the best grasp in every single image.

Using the same dataset, [7] employs the AlexNet [8] and

[9] applies Resnet [10] for real-time grasp detection, both

of which achieve great performance.

However, these deep learning-based approaches require

a significant amount of computing capabilities. In the

training phase, it takes several days on parallel high-per-

formance GPUs to train a CNN (as the one in [7]) and takes

several hours to fine-tune the network. In the testing phase,

these deep networks need to run on a high-performance

GPU for real-time grasp detection. These methods are

computationally expensive. The performance requires large

masses of manually labeled data, which is another limita-

tion of these methods. And most importantly, the predicted

grasp rectangle of these deep networks does not necessarily

guarantee a stable grasp because it is solely learned from

the training data.

This paper proposes a novel method for grasp planning

based on shape approximation. First, we segment the object

from the background by employing a proposed segmenta-

tion algorithm. Only use an RGB image for segmentation is

hard to deal with problems such as indistinguishable

background and shadows. To take advantage of the aligned

depth image, we combine the RGB image and depth image

to achieve a better segmentation. Second, an adaptive

GMM-based shape approximation method will be

employed to decompose the shape of the object into several

ellipses. In order to accelerate the convergence speed of

parameters estimation for GMM, we adopt the fuzzy EM

algorithm instead of the normal EM algorithm. GMM with

fuzzy EM algorithm by defining a dissimilarity function

was introduced in [11], which they called fuzzy GMM.

According to the experiment results of [11], fuzzy GMM

can converge with less iterations and less computational

time when compared to conventional GMM. By now, we

have transformed the task of grasp planning into finding the

most proper ellipse to grasp. The grasp for each ellipse can

be represented as a grasping rectangle. In this algorithm,

the number of components of GMM is adaptively chosen

according to the complexity of the shape of the object.

Considering the uncertainty of gripper pose caused by the

inaccurate calibration between the robot and the camera

[12], a pose error robust metric is proposed to evaluate the

grasp quality for each grasping rectangle. We rank these

grasping rectangles to obtain the most stable grasp under

pose uncertainty. Finally, the best grasping rectangle is

converted to the corresponding seven-dimensional gripper

configuration according to the point cloud generated from

the RGB image and depth image.

To sum up, the contributions of this work can be con-

cluded as the following three points:

– An adaptive fuzzy GMM-based shape approximation

method is proposed for robotic grasping. It does not

need a training phase and has shown comparable

performance with more computational efficiency com-

pared to previous deep learning-based method.

– Taking the uncertainty in gripper pose into consider-

ation, we introduce a grasp quality metric to obtain the

most viable grasp.

– Experiments have been implemented on a real robotic

platform which demonstrates the effectiveness of the

proposed method.

The rest of this paper is structured as follows. We discuss

related work about the robotic grasping in Sect. 2. Details

of our proposed method are presented in Sects. 3 and 4.

Section 5 shows the experimental results implemented with

the proposed method, followed by the conclusion in

Sect. 6.

2 Related Work

Precise information of 3D models and other physical

information are required in most previous work. Based on

these knowledge, methods focusing on force closure

[13, 14] and form closure [15] aim to obtain theoretically

stable grasps. Given the 3D model of an object, they tried

to synthesize grasps fulfilling form closure and force clo-

sure and ranked them according to a specific grasp quality

metric. The most commonly used metric is the epsilon

quality (�GWS), which is corresponding to the radius of the

maximum inscribed ball of the convex hull determined by

the set of contact wrenches [16]. Some significant works

[17–19] use physical simulation to find optimal grasps

Fig. 1 Some example grasps for common objects, which are

presented as oriented rectangles in 2D. Yellow lines represent the

parallel plates of gripper, while green lines represent the opening

width of the gripper before grasping
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which also rely on a full 3D model. All the above

approaches are theoretical methods instead of practical

methods for grasp planning because the 3D model of the

target object is usually impossible to obtain a priori.

Since inexpensive depth sensors like Microsoft Kinect

are becoming available nowadays, RGB-D data have been

leveraged in various robotics applications, like object

detection and recognition [20, 21]. Though RGB-D data

can only capture incomplete information of the object

compared to the 3D model, it is more applicable in a real-

world robotic setting. Recent work on robotic grasping

focuses on finding appropriate grasps depending on RGB-

D data of the object instead of its full physical model. [1]

transforms it into a detection problem by encoding the

seven-dimensional grasping configuration of a gripper into

a 2D oriented rectangle in the RGB-D image. Two edges of

the gripper are corresponding to the plates, and the surface

normal of the point cloud is used to determine the grasp

approach vector. In this paper, we will follow this repre-

sentation of gripper configuration for the convenience of

grasp planning.

Recently, deep learning method has shown powerful

performance on multiple problems in computer vision,

such as image classification [8], object recognition [22] and

face verification [23]. It has been firstly introduced into

grasp detection since Lenz’s remarkable work [6]. [7]

employs the AlexNet [8] and [9] applies Resnet [10] for

real-time grasp detection, both of which achieve better

performance. The deep learning models mentioned above

are all trained on the Cornell Grasp Dataset [1]. All of these

methods are computationally expensive in the training

phase and testing phase and largely depend on the dataset.

Since these methods only learn from labeled data, the

stability of the planned grasp is not guaranteed. Further-

more, they give no consideration to the inevitable pose

error for a robot to execute the grasp.

3 Data Acquisition And Preprocessing

3.1 Capturing Data From RGB-D Camera

In this work, we use a Microsoft Kinect to obtain the raw

3D data. Kinect is commonly used to obtain the point cloud

[9] since it is low cost. With a pair of additional infrared

ray emitter and receiver, this RGB-D camera can acquire

extra depth data compared to the common ones. The raw

data generated by Kinect sensor are in the form of a depth

image and an RGB image, as shown in Fig. 2. The addi-

tional depth information is used to recover the 3D coor-

dinate [x, y, z] for every pixel of the RGB image, which is

corresponding to each point in the point cloud. Use P ¼

fpjðxj; yj; zjÞjj ¼ 0; 1; . . .;mg to denote the 3D point cloud

and the coordinate of each point pj is obtained by [24]:

xj ¼ djðxcj � cxÞ=fx

yj ¼ djðycj � cyÞ=fy

zj ¼ dj

ð1Þ

where ðxcj ; ycj Þ is the coordinate of pj in the image coordi-

nate frame, dj is the depth value of pj, cx; fx; cy; fy are Kinect

sensor’s intrinsic parameters. Figure 3 gives an intuitive

explanation for Eq. 1. In this figure, p is in the image

coordinate frame, while P is in the 3D camera coordinate

frame. Equation 1 is employed to transform the coordinate

of p to P.

3.2 Object Segmentation from Background

Raw data obtained by the Kinect consist of points

belonging to the object and the background. The points

belonging to the object are what we really need. For further

processing, we must firstly segment the object from the

background and the quality of the segmentation largely

(a) The RGB image

(b) The depth image

Fig. 2 Raw data captured by the Kinect
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influences the performance of the following grasping

planning [25].

At the beginning, a background image is taken from

Kinect. An intuitive idea for segmentation is to subtract the

background image from the foreground image using the

following formulation,

Iðx; yÞ � Bðx; yÞk k2 [ s ð2Þ

where I denotes the image which contains the object; B

denotes the background image; Iðx; yÞ 2 R3 denotes the

intensity of the pixel (x, y) in I; and s is a preset threshold.
If the L2 distance between these intensities is greater than

the threshold s, then this pixel is considered to belong to

the object.

Since this method is solely based on pixel intensities, it

cannot work as expected in scenes having indistinguishable

background or shadows. It is easy to infer that only using

color information is not an ideal method. To make full use

of the depth data, we combine the RGB image and depth

image to achieve a better segmentation. Denote the set of

points belonging to the object as PO, we have

PO ¼ ðx; yÞj xT � ð�Iðx; yÞ � �Bðx; yÞÞ
�
�

�
�
2
[ s

n o

ð3Þ

In this formula, Iðx; yÞ 2 R3 is augmented with depth value

to become �Iðx; yÞ 2 R4 and s is a predefined threshold.

Considering that the RGB value and depth value may

have different importance for segmentation, we introduce a

weight vector x 2 R4 to assign weights to different ele-

ments of �Iðx; yÞ according to their importance. Experiments

demonstrate that assigning greater weights to color inten-

sities than the depth value results in better segmentation

performance. According to the experimental results, setting

weights to 0.4 for the depth channel and 0.6 for the color

channels derives the best results.

The performance of these two methods, segmentation

with and without depth data, is shown in Fig. 4. In this

figure, we can see that without depth data, shadows of the

stapler is segmented as part of the foreground, while a part

of the tape are segmented as the background. In contrast,

segmentation with depth data gives a better result, which

can separate the object from the background compactly.

Finally, we obtain a set of points PO which construct the

2D shape of the object.

4 Grasp Planning

4.1 Grasping an Ellipse and Its Rectangle

Representation

Before detailed description of the proposed algorithm, we

first discuss how to grasp an ellipse for better grasp sta-

bility by examining some examples.

Consider an ellipse given by the following equation,

where a[ b.

x2

a2
þ y2

b2
¼ 1 ð4Þ

Consider grasping the ellipse with flat fingertips at different

points shown in Fig. 5a–c. According to our daily experi-

ences, the grasp in Fig. 5c seems more stable among these

grasps. From this example, we can come to a preliminary

conclusion that the curvature of the grasped object and

distance between the two contact points are important in

grasp stability.

In [26], the author makes a comparison between contact

grasp stability [27] and spatial grasp stability [28]. They

show that spatial stability cannot represent the essence of

grasp stability and contact stability must be involved for a

comprehensive evaluation of the grasp stability. According

to their theory, the grasp in Fig. 5c is of good contact

stability. Therefore, we consider it to be the best grasp for

an ellipse with a parallel gripper.

For the convenience of the post-processing, we adopt the

rectangle-based approach proposed in [1] to present the

grasp, as shown in Fig. 5d. The center of the grasping

rectangle and the center of the ellipse coincide. The long

side of the rectangle is parallel to the short axis of the

ellipse, while the short side of the rectangle is parallel to

the long axis. The length of the long side of the rectangle is

set a little greater to the length of the short axis to avoid

collision.

4.2 Fuzzy Gaussian Mixture Models (GMMs)

Gaussian mixture models are widely employed in different

pattern recognition problems acting as a powerful tool to

classify or represent data, which we use in the proposed

method. In a GMM, the probability density at the value of x

is given by

Fig. 3 Transformation between coordinate frames
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pðxjHÞ ¼
XK

i¼1

wipiðxjli;RiÞ ð5Þ

piðxjhiÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞdjRij
q exp �ðx� liÞTR�1

i ðx� liÞ
2

 !

ð6Þ

in which li denotes the mean of the ith single Gaussian

model, Ri is the covariance matrix and wi is the mixture

weight. Therefore, a GMM is determined by

H ¼ fwi; li;Riji ¼ 1; . . .;Kg, where K denotes the number

of components of the GMM.

Given a dataset of observations X ¼ fx1; x2; . . .; xng, our
goal is to estimate H using maximum likelihood method.

In other words, we need to find H that maximizes the log-

likelihood function LðXjHÞ.

LðXjHÞ ¼ log
Yn

t¼1

pðxtjHÞ
 !

ð7Þ

Ĥ ¼ argmax
H

LðXjHÞ ð8Þ

The common method for estimating parameters of GMM is

to use expectation maximization (EM) algorithm [29],

which is often utilized to estimate parameters with

incomplete data. The following equations are applied to

update the parameters of each component iteratively,

where pðijxt;HÞ denotes the posteriori probability of data

xt belonging to the ith single Gaussian model.

knewi ¼
Xn

t¼1

pðijxt;HÞ ð9Þ

wnew
i ¼ knewi

n
ð10Þ

lnewi ¼
Pn

t¼1 pðijxt;HÞxt
knewi

ð11Þ

(a) The RGB image of a stapler (b) Segmentation without depth (c) Segmentation with depth

(d) The RGB image of a tape (e) Segmentation without depth (f) Segmentation with depth

Fig. 4 Segmentation results without and with depth

(a) (b)

(c) (d)

Fig. 5 Different grasps for an ellipse and the grasping rectangle
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Rnew
i ¼

Pn
t¼1 pðijxt;HÞðxt � lnewi Þðxt � lnewi ÞT

knewi

ð12Þ

Inspired by the mechanism of Fuzzy C-means, [11, 30]

introduced the concept of fuzzy membership into the EM

algorithm for GMM to accelerate the procedure of

parameters estimation. They define a dissimilarity function

dit as follows,

d2it ¼ ½wipiðxtjhiÞ��1 ð13Þ

Therefore, the degree of membership of xt in the ith

component uit can be obtained according to Eq. 14, which

is defined in fuzzy c-means clusteringl algorithm [31].

uit ¼
XK

j¼1

dit

djt

� � 2
m�1

" #�1

ð14Þ

Substitute Eq. 13 into Eq. 14, we can obtain

umit ¼
½wipiðxtjhiÞ�

m
m�1

PK
j¼1ðwjpjðxtjhjÞÞ

1
m�1

h im ð15Þ

where m denotes the degree of fuzziness. And the equations

for the update of parameters of GMM become

wnew
i ¼

Pn
t¼1 u

m
it

PK
i¼1

Pn
t¼1 u

m
it

ð16Þ

lnewi ¼
Pn

t¼1 u
m
it xt

Pn
t¼1 u

m
it

ð17Þ

Rnew
i ¼

Pn
t¼1 u

m
it ðxt � lnewi Þðxt � lnewi ÞT

Pn
t¼1 u

m
it

ð18Þ

According to the experiment results in [11], when the

number of components K � 2, fuzzy GMM can converge to

similar results with fewer iterations and less computational

time compared to conventional GMM, which reveals that

the introduction of fuzziness does help the EM algorithm

converge faster. For this reason, when K � 2 we adopt the

fuzzy EM in our algorithm instead of the conventional one.

When K ¼ 1, GMM degenerates to a single Gaussian

model (SGM). In this case, we directly estimate the

parameters using the following equations without iteration,

l ¼
Pn

t¼1 xt

n
ð19Þ

R ¼
Pn

t¼1ðxt � lÞðxt � lÞT

n
ð20Þ

which are derived directly from the maximum likelihood

method.

4.3 Adaptive Fuzzy GMM for Shape

Approximation

After filtering out the background points in the RGB image,

the points belonging to the target object are left behind,

which form the 2D shape of the object. Each of these points

is represented by its location (x, y) in the image coordinate

frame. We assume that these two-dimensional points are

generated by some kind of probability distributions like

Gaussian mixture model, without knowing its parameters.

Therefore, we employ EM algorithm described in Sect. 4.2

to estimate the parameters of GMM using these points.

A Gaussian mixture model is composed of several single

Gaussian models (SGM). Each SGM can be represented by

an ellipse since the isoline of the probability density is also

an ellipse which can be fully determined by the parameters

of SGM. The center of the ellipse is determined by the

mean li. The axis are determined by the unit eigenvectors

Vi of the covariance matrix Ri, where ½Vi;Di� ¼ eigðRiÞ.
The short axis is determined by the eigenvector corre-

sponding to the smallest eigenvalue. The length of these

axis can be determined by the eigenvalues ks of the

covariance matrix Ri.

Combining the analysis above and in Sect. 4.1, we can

generate a grasping rectangle for each SGM. The center of

the grasping rectangle is set equal to the mean l of SGM so

as to align their centers. The long side and short side are

aligned to each unit eigenvector v of the covariance matrix

R. The width and height of the grasping rectangle are

determined by

Width ¼f � 2�
ffiffiffiffiffi

k2
p

ð21Þ

Height ¼ 1

2
� width ð22Þ

where k2 is the smallest eigenvalue which is the variance

along the direction of the eigenvector. f is a scale factor to

adjust the width, which is set to 2.5 for the best perfor-

mance. For convenience, we simply set the height half of

the width.

An example is shown in Fig. 6 for an intuitionistic

explanation. In this example, we manually set the number

of components K ¼ 1 since the shape of the umbrella is not

complex. In Fig. 6a, blue points are randomly sampled

from PO obtained according to Eq. 3 which filters out all of

the background points and leaves behind points belonging

to the target object. We estimate a probability density

function for these points using GMM, and one of the iso-

lines of the probability density is represented as an orange

ellipse in the figure. Note that in this case, GMM degen-

erates to a single Gaussian model. The rectangle composed

of green lines and yellow lines is the corresponding
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grasping rectangle of that ellipse. We can clearly see in

Fig. 6b that it indicates a good grasp for the umbrella.

However, when the shape of the object is getting more

complex, more components are required for a proper

approximation. Sequentially, we come across some prob-

lems, such as how to choose the number of components

adaptively and which rectangle to choose among all these

rectangles. Because of the inaccurate calibration between

the robot and the camera and noisy measurements from

joint encoders, the error in gripper pose is inevitable. How

to deal with uncertainty when executing the grasp becomes

another problem.

To solve these problems, we introduce a grasp quality

metric under uncertainty to evaluate each grasping rect-

angle. Given a pair of contact points of a grasp, if the

forces it applies at these two points are opposite and col-

linear, it is called an antipodal grasp. It satisfies the force-

closure condition and it is a theoretically stable grasp [32].

An antipodal grasp requires that the angle between the

vector connecting two contact points and the normal of

each contact point should be close to zero, which we for-

mulate as follows.

sðp1; p2Þ ¼ cos ðap1Þ � cos ðap2Þ ð23Þ

where p1, p2 denote the two contact points and api denotes
the angle between the connecting vector and the normal of

contact point pi. The normal of contact point pi can be

easily estimated using the 3D point cloud. If a pair of

contact points p1 and p2 forms an antipodal grasp, then

sðp1; p2Þ would be equal to 1. It can be inferred that contact

points with bigger sðp1; p2Þ would be more likely to form

an antipodal grasp.

Due to the uncertainty in gripper pose, when the gripper

closes, the actual contact points are likely not to lie along

the short axis of the ellipse. Instead, they will randomly

locate at a certain area. We divide the grasp rectangle into

three equal parts as shown in Fig. 7 and denote them as S1,

S2 and S3. For the convenience of analysis, we assume that

when the gripper closes, the actual contact points will

locate at S1 and S3 randomly. For a reasonable evaluation

of the grasp quality of the grasping rectangle, we randomly

generate many pairs of contact points (by randomly

selecting points located at S1 and S3, respectively), depic-

ted as red points connected with black lines in Fig. 7,

calculate the grasp quality score sðpi1; pi2Þ for each pair of

contact points pi1; pi2, and average them all as the final

grasp quality score, which is formulated as follows.

SðRÞ ¼
XN

i¼1

sðpi1; pi2Þ=N ð24Þ

where R denotes a given rectangle and N denotes the

number of pairs of contact points we generate. In theory, a

larger N leads to a better estimation of the grasp quality of

the grasping rectangle. For computational efficiency, we

manually set N to 100. Note that we select these points in

the 2D plane, but we must first transform them to their

corresponding 3D points in the point cloud to calculate the

grasp quality score sðpi1; pi2Þ since the contact points are

actually 3D points. This metric is more robust because it

takes an average of the grasp quality of many pairs of

contact points instead of using only one pair of contact

points.

Using this metric to evaluate each grasping rectangle,

we propose the adaptive fuzzy GMM-based shape

approximation algorithm for grasp planning. A grasping

rectangle which can be considered to be a proper one

should satisfy the following rules:

Firstly, the width of the rectangle should not exceed the

actual opening width of the gripper.

Secondly, the gripper should avoid to crash into the

object, which means that two short sides of the rectangle

should not overlap the object in the image.

Meanwhile, the grasp quality score S(R) of the grasping

rectangle should satisfy the following formulation,

(a) (b)

Fig. 6 GMM-based shape approximation for an umbrella

Fig. 7 Pairs of contact points
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SðRÞ[ s ð25Þ

where s is a predefined threshold. If this threshold is set too

high, no proper grasp would be found. If this threshold is

set too low, the quality of the grasp would be not guaran-

teed. According to our experiments, setting s to 0.7 can

lead to a satisfactory performance.

Testing all the grasping rectangles by the above rules,

when there are several proper rectangles left, we consider

the rectangle with the biggest S(R) value as the best one.

When none of the rectangles satisfies the conditions above,

we set the number of components to (K þ 1) and repeat the

fuzzy GMM algorithm again until the best rectangle is

obtained. We give an example to better explain the pro-

posed algorithm, which is illustrated in Fig. 8.

In Fig. 8a, blue points are randomly sampled from PO in

Fig. 4f, which construct the 2D shape of the tape. Fig-

ure 8b–d demonstrates the procedure of the proposed

algorithm, in which final planned grasp is depicted as the

rectangle with yellow and green lines, while other rectan-

gles are the intermediate results. At the beginning, the

number of components of GMM K is initially set to 1 and

the obtained grasping rectangle exceeds maximum opening

width of the gripper as can be seen in (b). Therefore, K is

updated to 2. It can be seen in (c) that both of the obtained

grasping rectangles will cause collision to the tape when

executing the grasps. Sequentially, K is updated to 3 and all

of the resulting grasping rectangles are viable. By evalu-

ating grasp quality metric for each rectangle, the one with

the maximal S(R) value which satisfies Equation 25 is

chosen as the best grasp. Actually, due to the symmetry of

the tape, the calculated S(R) values of these three rectan-

gles are very close, which means that they have similar

grasp quality.

5 Experiments

5.1 Off-line Experiments with Grasp Planning

The whole procedure of our algorithm is depicted as fol-

lows. Firstly, the RGB-D image of the object is captured by

Kinect; secondly, the target object in the image will be

segmented from the background with depth information as

described in Sect. 3.2; and finally, the grasp planning

algorithm described in Sect. 4.3 will be employed to gen-

erate the best grasp configuration.

In this experiment, we would like to visualize the result

of grasp planning to analyze the performance of the pro-

posed algorithm. We collected several common objects

which vary in material, shape and size to test the algorithm

off-line, and the result of our algorithm is given in Fig. 9a.

In addition, we compare our algorithm with the

approach in [6], which is the first to employ deep learning

method in generating robotic grasps. The deep network

they used is trained on the Cornell Grasp Dataset. Since the

code for their paper is available on the Internet, we can

easily make a comparison between their method and ours.

The comparison results are shown in Fig. 9. We can see

that most of the grasp planning results using Lenz’s method

indicate good grasps. And the performance of our method

is comparable and some planned grasps seem to be more

reasonable, such as the grasps for the scissors and the

pliers. We can also see that the grasps generated by our

method lie along the orientation of the objects. They are

similar to the way in which humans grasp objects; there-

fore, they are more likely to succeed when executing these

grasps.

We also make a comparison among the computational

efficiency of Lenz’s algorithm, our algorithm using normal

EM and fuzzy EM. The CPU of the computer we use is

Intel(R) Core(TM) i5-6400 CPU with basic frequency of

2.71 GHz and both of the algorithms run on MATLAB

R2017a. We run the algorithm 10 times for each object and

average the amount of time required to generate the grasp.

Table 1 presents the comparison of these methods in terms

of running time in seconds.

From Table 1, we can see that Lenz’s method is very

time-consuming, since it searches for the best grasp in an

(a) Point set PO of a tape (b) K = 1

(c) K = 2 (d) K = 3

Fig. 8 Process of the grasp planning

H. Lin et al.: Adaptive Fuzzy Gaussian Mixture Models for Shape Approximation in Robot Grasping 1033

123



exhaustive way using sliding windows, which cannot meet

the demand in real scenario. The execution time of these

methods largely depends on the size of the objects, as we

can see in Fig. 9 and Table 1. As for our method, since we

directly estimate the parameters of GMM using maximum

likelihood instead of EM when K ¼ 1, the screwdriver,

glue and mouse can be processed within less than 5 ms,

respectively. For those objects with K� 2, we can observe

that the algorithm using fuzzy EM consumes less time than

using normal EM. From Table 1, we can obtain that fuzzy

EM is 1.13� faster than normal EM on average. Besides,

we also observed in our experiments that fuzzy EM can

always converge using less iterations compared to the

normal EM with regard to the same object. It can be

concluded that the fuzzy EM algorithm does help to

improve the computational efficiency in the aspects of

running times and the number of iterations. Among the

objects listed in the table which are very common in our

daily life, our algorithm using fuzzy EM algorithm can

plan the grasp for each object within 100 ms. In the field of

robotic grasping, it is a relatively fast approach. The last

column of the table K denotes the number of components

required for shape approximation with our method for each

object. Objects with complex shape need more components

for shape approximation, such as the tape, which needs

three components, while the glue only needs one. It can be

observed that the execution time increases monotonically

with K.

5.2 Real-World Grasping

To evaluate the performance of the proposed method in the

real scenario, we conduct extensive experiments on a real

robotic platform, a Baxter Research Robot. Baxter has two

7-DOF arms, both of which is equipped with a two-finger

parallel gripper. Only the left arm is used for these

experiments. There is a table in front of Baxter. A Kinect

sensor is fixed near to the head of Baxter and angled

downwards toward the table, which can capture the RGB-D

image of the table.

In this experiment, the goal for Baxter was to grasp the

target object using gripper and lift it. The whole process of

the experiment is provided as follows. Firstly, we make the

hand–eye calibration for transformation between Kinect’s

and Baxter’s coordinate frames. Secondly, we take an

RGB-D image of the table as a background image for

segmentation, which contains no objects in the scene.

Thirdly, we place a single object on the table where Baxter

can reach. Then, we execute our algorithm with fuzzy

GMM or Lenz’s method to find the best grasping rectangle.

(a) Our method

(b) Lenz’s deep learning method[6]

Fig. 9 Comparison of grasp planning results using different methods

Table 1 Computational efficiency comparison

Object Running times (s) K

Lenz et al. [6] Ours

Normal EM Fuzzy EM

Screwdriver 21.42 0.0027 1

Glue 16.84 0.0028 1

Mouse 28.10 0.0033 1

Hammer 112.64 0.0132 0.0114 2

Pliers 72.92 0.0208 0.0171 2

Scissors 104.24 0.0341 0.0307 3

Tape 45.08 0.0560 0.0496 3

Bold value indicates the better performance of the proposed method

K is the number of components of GMM required in our method. Note

that the K value of each object is not manually set, it is adaptively

chosen by our algorithm
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Finally, we convert the obtained rectangle to the 7D grip-

per configuration and send a command to Baxter to execute

the grasp.

In this experiments, we collected several objects from

homes, our offices and laboratory, which are shown in

Fig. 10. We executed the steps above in sequence to grasp

these objects, each for 10 trials. The objects are placed on

the table at different positions in different poses in different

trials. If Baxter can grasp the object on the table, lift it up

and keep it stable for 3 s, we consider it a successful grasp;

otherwise, we record it as a failure. Some examples of

successful grasps generated by our algorithm are given in

Fig. 11.

The final experimental result is shown in Table 2. It

reveals that our robotic grasping system is able to make

successful grasps in 90.00% of cases, which demonstrates

the good performance of our algorithm in grasping differ-

ent objects. We can also observe that our algorithm can

achieve comparable or even slightly better performance

than Lenz’s algorithm, the average success rate of which is

86.36%. From the experiment, we observed that most of

the failure cases are because of the slight imprecision in

calibration between the camera’s and Baxter’s coordinate

frames and the inherent imprecision in Baxter’s end-ef-

fector positioning, which may cause the gripper to crash

into the object or grasp nothing. Though the obtained

grasping rectangles generated by our algorithm have rela-

tively high pose error robustness metric S(R), the uncer-

tainty in gripper pose is still disastrous. These pose error

can be alleviated using force or tactile feedback, which is

believed to complement our algorithm and improve the

robustness of our grasping system.

6 Conclusions

In this work, we consider the task of grasp planning for a

parallel gripper to grasp a novel object, given an RGB

image and its corresponding depth image taken from a

single view. We propose a novel grasp planning algorithm

based on shape approximation using Gaussian mixture

models, which can adaptively decompose the target object

into several ellipses and plan grasps upon these ellipses.

We employ the fuzzy EM algorithm to improve the com-

putational efficiency of the parameters estimation of GMM.

Taking the pose uncertainty into consideration, we intro-

duce a grasp quality metric to filter candidate grasps and

obtain the most viable grasp. We also implement extensive

grasping experiments on a real robotic platform. The

results of both off-line and real robotic experiments

demonstrate that our algorithm enables the robot to grasp a

variety of novel objects with high success rate and high

computational efficiency.

Fig. 10 Robotic experiment objects

Fig. 11 Some screenshots of Baxter executing grasps
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However, there is still room for improvement. Our

future work will focus on alleviating the uncertainty in

gripper pose by leveraging the force, tactile or visual

feedback in our grasping system to achieve a better

performance.
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