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Abstract. In this paper we study the limitations of current verification strategies 
in object recognition and suggest how they may be enhanced. On the whole object 
topology is exploited little during verification. In practice, understanding the con- 
nectivity relationships between features in the image, or on the object, can lead 
to significantly more accurate evaluations of recognition hypotheses. We study 
how topology reasoning allows us to hypothesize the presence of occlusions in 
the image. Analysis of these hypotheses provides information which turns out to 
be crucial to the quality of our overall verification results. 

1 Introduction 
In an object recognition system, the process which is most used to differentiate between 
identification hypotheses is the final stage, called verification. The typical processing 
path for a recognition system is to start off by extracting features from the image, then 
to do feature grouping and model selection (indexing), and penultimately a correspon- 
dence stage is used to pair together sets of model and image features. Finally, in ma- 
ture systems a verification step is then included which ultimately determines the degree 
of correctness of the model-image correspondences. Of course not all recognition sys- 
tems follow this path, and often we find that verification is not performed as a sepa- 
rate process to correspondence. Nevertheless, a fairly general list of recognition algo- 
rithms which record the variations in the methods contains the efforts of Ayache and 
Faugeras Il l ,  Pollard, et al. [9l, Grimson and Lozano-Ptrez [6], Bolles and Horaud [2], 
Faugeras and H~bert [5], Thompson and Mundy [14], Huttenlocher and Ullman [7], 
Lamdan and Wolfson [8], Stein and Medioni [13], and Califano and Mohan [3]. 

In this article we study how verification based on understanding model and image 
topology leads to better verification results. We use the term topology to represent the 
connectivity relationships between features. The importance of the use of  topology in 
vision is discussed more completely in [10], here it is sufficient to state that none of the 
processing techniques discussed in this paper would be possible without a suitable un- 
derstanding of topology. Typically, verification is based entirely on geometric methods. 

Locally, topology conveys whether two model features are adjacent (connected) and 
should be seen as such in an image. Globally it reveals whether a continuous chain of 
features is present between any pair of primitives, and so defines notions of global con- 
nectivity. Topology thus enables neighbourhood based inferences. The observance of a 
particular model feature in an image would most likely indicate that all features adjacent 
to it should also be visible. The failure to find the adjacent features in the image would 
thus indicate either of two things: perhaps an occlusion is present and so the features 
are hidden; or conversely that the hypothesis is wrong and should either be discarded 
or at least have its importance diminished. Discrimination between these two types of 
incident can only be achieved by simultaneous topological and occlusion analysis. 

Commonly verification is done as follows: the final conclusion of a recognition al- 
gorithm is that a set of individual model features matches a set of individual image fea- 
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tures (rather than just saying that the model matches the image). The precise set of cor- 
respondences implies a geometric mapping from the model to the image. Additionally, 
one would also recover a measure of the number of matching features as a percentage of 
the whole; this number would form the basis of a verification score on which a criterion 
for the acceptance of the hypothesis would be built. The actual score would be computed 
by projecting all of  the model features (perhaps a set of  line segments, or even edgels 
from an acquisition image) to the image, and then counting the number of projected 
features which find image support. The hypothesis is accepted if a certain proportion of 
the features are matched. A test for image support of a projected model feature could be 
whether the feature lies close to an observed image feature which has a similar orienta- 
tion. A complete description of such a verification strategy can be found in [14]. Note 
especially that approach is entirely geometric. 

In the rest of this article we build on the work of [12], but include the following 
considerations in order to improve the verification method of the previous paragraph: 
- Negative evidence must he explained. Primarily we should be able to locate occlusion 

events which justify the lack of measurement of a scene-model match. Failure to find 
occlusion events reduces the likelihood that a hypothesis is correct. 

- Unless there is positive evidence of occlusion, some notion of object topology must 
be preserved. Therefore two image features should not he marked as coming from ad- 
jacent features on an object's boundary unless they are either connected in the image, 
or unless there exists an occlusion event between them. 

- Under generic viewing conditi~ there mnst be uniqueness ~  s~176 A single fea" 
ture cannot belong to more than one object. 

This last point requires development. The nature of  the results given by different recog- 
nition systems varies dramatically depending on the application. Often the recognition 
problem is posed as the task of finding a specific object in a scene, and then immedi- 
ately terminating the processing [6]. This problem is significantly different from, and 
easier, than that of identifying all objects in a scene which might correspond to any of 
a number of objects in a model base (that is a complete evaluation of the scene). In this 
situation, a single mistake can lead to catastrophic failures in interpretation because any 
one decision influences all subsequent processing. Thus, we would be likely to find that 
accepting a particular hypothesis might in some way prevent the formation of another 
hypothesis (particularly if the former is incorrect). It is perhaps therefore wise to be con- 
servative and to allow multiple interpretations so that no truly correct hypothesis is dis- 
carded. Certainly, in light of the results given in [12], where it was stated that a signif- 
icant number of  false positives are likely to be recovered in a scene, we should at first 
follow this line of thinking. 

However, most applications might be expected to provide unique and accurate scene 
interpretations. We are therefore interested in moving towards the notion of single fea- 
ture interpretations whilst still working in relatively unstructured and unknown envi- 
ronments. Unfortunately, the immaturity of most verification schemes makes this dif- 
ficult. It is for this reason that we have taken another look at the competences of these 
schemes, and we see that combining a topological representation with our previous ge- 
ometric measures provides an initial step towards improvement. 

We now describe how topological reasoning can be used as an aid to verification. 
Frrst we show how a system such as that described in [12] produces incorrect recogni- 
tion results due to the frailty of geometric verification methods, and then we show how 
topology reasoning introduces oppommities for occlusion analysis leading to more ro- 
bust recognition. A more complete version of this paper is available as [11]. 
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Fig. 1. A model from the library, having an outer boundary similar to that o f  the bracket 
visible in the image is hypothesized as being present in the scene. 

2 A sample recognition system 
The recognition system we base our work on is called LEWIS, which uses invariant- 
indexing to form recognition hypotheses. A complete review of LEWIS can be found 
in [12], as well as examples of the system recognizing objects and performance statis- 
tics, Here we concentrate on examples failures of the system in identifying objects. 

A characteristic example of recognition failure is shown in Fig. 1. After edgel de- 
tection and extraction of lines and conics, features are grouped together to form indexes 
based on plane projective invariants. Five lines around the boundary of the bracket just 
above centre-left in the image happens to have an index value which matches the in- 
variants for a particular object which is distinct from the bracket in the model base. 

Under verification the model for the incorrect hypothesis is projected to the image. 
Within LEWIS a model is represented as a set of edgel data recovered from an acquisi- 
tion view of the isolated object, and a combination of the fitted lines, conics, and com- 
puted invariants for the edgel data. In essence, only the edgel data of the model are pro- 
jected to the image. These are matched to image edgels using distance and orientation 
criteria: their orientations must differ by less than fifteen degrees and separations by less 
than five pixels. In the right-hand image of Fig. 1 the edges which found complete sup- 
port are drawn in white, those which found matching image edgels within five pixels 
but whose orientation differed too much are drawn in grey (these may not be visible), 
and those failing both matching criteria are marked in black. In this example 55.0% of 
the model features were found to have complete image support. Any score over 50% 
is considered by LEWIS to be sufficiently high, and so the hypothesis is marked as ac- 
cepted. Obviously there is an error as the wrong object has been identified. However, 
using geometric verification measures it cannot be ruled out. 

A different failure is shown in Fig. 2. Here a false positive is created due to the 
presence of spurious scene features (linear texture). The problem arises because uncon- 
nected image features provide support for the model hypothesis over a large area. In this 
case 55.2% of the model edgels found matches in the scene even though only a few of 
them actually projected onto the features used for indexing. 

3 Enhanced verification methods 
Figures i and 2 highlight two areas where the insufficiency of current reasoning causes 
verification to fail. We cannot correct these errors using purely geometrical processes 
but rather must exploit integrated topological structure. Advances can be made rapidly 
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Fig. 2. In this case an invariant configuration causes the estimation of  the incorrect pose 
of  an object. This is due to symmetry on part o f  the model. 
when we start to diffuse the local acceptance or rejection of a hypothesis around an ob- 
ject boundary. In short, in considering the acceptance of any one model element, we 
must analyse the outcome of the verification procedure for its neighbouring elements. 

The two driving notions in verification thus become topology and consequently the 
understanding of occlusion. The topology of the image features which are assigned cor- 
respondences to model features must match the topology of the model features exactly. 
Exception can only be permitted due to occlusion, or when we are faced with the time- 
old problem of extracting reliable segmentations from images. We thus need to develop 
algorithms for analyzing the topology of features and for estimating the presence of oc- 
clusions. Now, in cluttered scenes we are very seldom able to recover image support for 
the entire boundary of the projection of a model hypothesized through indexing. Often 
this is because the objects are occluded in scenes, or perhaps they may suffer partial self- 
occlusion if they possess their own three-dimensional structure. The key issue is that the 
projection of the model into the image indicates where occlusions might arise (due to 
the loss of image support) and so our task becomes that of finding independent evidence 
for the occlusions. If we cannot, then it is likely that the original recognition hypothesis 
is incorrect and so we might do better by considering a different interpretation. 

Occlusion events are typically marked by the presence of 'T '  junctions in the im- 
age edgel structure. Generically, an object feature which undergoes occlusion will be 
cut and terminated by a locally straight transverse line segment. Thus when occlusions 
are hypothesized by the sudden loss of image support for the projection of the model 
we should look for 'T'  junctions. Hypothesizing occlusions is roughly done as follows 
(see [11 ] for a more thorough treatment): find all of the projected model edgels which 
have image support, these form connected sub-sets. Then, at the boundaries of each of 
these sets (where image support is first totally lost), hypothesize an occlusion event. 

We have evaluated occlusion hypotheses in two ways. The first uses the edgel data 
computed as the initial step of image processing. Initially we recover all of the junctions 
in the original edgel image which have an order greater or equal to three. Junctions of or- 
der three are those where three edgel chain curves meet at a single point. We declare the 
presence of a 'T '  junction when the angle between any pair of the edges meeting at an 
order 3 junction are within twenty degrees of 180 degrees. The large tolerance reflects 
the fact that edgel contours are frequently displaced by significant amounts near junc- 
tions, and it also allows for occlusion by curved objects. Then, if the edgel-'T' junction 
lies sufficiently close to where the recognition hypothesis deduced that there should be 
an occlusion event, then we can add confidence to the original recognition hypothesis. 
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Fig. 3. (a) shows part of an image which includes an object from the model base. In (b) 
are edgels from the edgel detector and (c) the (correct)projection of the model. This 
suggests occlusions at the points marked by the arrows in (d). Near to these points are 
triple junctions in the edgel description which have the forms of 'T's, as shown in (j~. 

In practice this type of processing does not resolve all of the occlusion events we 
find in an image. This is because edgel detectors are notoriously poor at recovering 
meaningful connectivity at junctions, Consequently, it will seldom recover all of the 
'T '  junctions. We therefore resort to a second test which examines the overall struc- 
ture of the image intensity data near to the locations of each hypothesized occlusion. 
This is done by parametric model fitting to junctions such as suggested by Deriche and 
Blaszka [4], though there are many other approaches to model fitting, some of which are 
mentioned in [11]. The type of parametric model fitted by [4] assumes that the surface 
is composed of a number of constant intensity plateaux which meet at the junction and 
are separated by straight edges. Each plateau represents an image region and smooth- 
ing is accounted for between the image regions through an approximate parametrization 
of Gaussian smoothing. The algorithm of [4] fits such a model over a specific window 
size at a given location in the image (where we suspect that there is an occlusion), and 
returns a number of different parameters which represent the interpretation of the inten- 
sity surface. The key measures which are returned are a fitting cost, the grey level values 
of the plateaux, and the angles at which the edges come into the junction. We can then 
estimate whether the junction is a real 'T '  junction by looking at the angles between the 
edges and by making sure that the plateaux have sufficiently different grey levels. 

Examples - edgel contour junctions 
In Fig. 3 we show how data from the edgel detector hypothesizes 'T '  junctions near to 
where occlusion events should be found on the strength of a specific recognition hypoth- 
esis. This is an example of positive support for an object hypothesis, with the measure- 
ment of the low-level junction description enhancing the confidence in a hypothesis. In 
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Fig. 4. The edgels for sub-image (a) are shown in (b). LEWIS deduces the incorrect hy- 
pothesis (c). Near the white-grey transition of the projected outline in (d), we expect to 
find a junction in the edgel description (that is i f  the hypothesis were correct). However, 
as shown in 09 the faihlre of the edgel detector to record a )mction in the right place 
suggests that the hypothesis is false. 
Fig. 4 we demonstrate an example of negative evidence which renders a hypothesis un- 
likely (or perhaps may even cause it to be rejected outright). The projected mode/curves 
are shown initially following a contour in the image, but at one stage (due to an incor- 
rect model being hypothesized), the projected model curve parts quite clearly from the 
image curve. The edgel detector fails to find any junctions near the point of departure 
and so one can start to doubt whether the original hypothesis is correct. 

This type of reasoning appears very attractive on the weight of the two examples 
given. However, most edgel detectors have difficulty recovering correct edgel contour 
connectivity near junctions. This means that failure to record the presence ofa  'T'  junc- 
tion can be taken as only partial evidence against a hypothesis, and should not be used 
too strongly. Conversely, if we are able to find a 'T '  junction where predicted by a recog- 
nition hypothesis then we can add considerable weight to the hypothesis. The progress 
we make in marking 'T'  junctions is apparent. Henceforth, the projected edgel data from 
the hypothesis which originally failed to gain image support (and so was treated neu- 
trally) can be treated as positive support if associated with a confirmed occlusion event. 

Examples - parametric junction models 
The alternative approach to evaluating 'T '  junctions fits parametric junction models. In 
Figs 5 and 6 we show similar examples to those for the edgel junction reasoning, but 
this time 'T '  junctions are evaluated using the Deriche-Blaszka operator. In the first case 
a pair of suitable 'T '  junctions are recovered and shown superimposed in the figure, and 
in the second case no such fit could be found and so the hypothesis is marked as being 
unlikely. Thus we see that parametric model fitting can enhance the understanding of 
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Fig. 5. The output of the Deriche-Blaszka junction detector is shown in (b ). Both junc- 
tions appear to be 

Fig. 6. The Deriche-Blaszka filter fails to find a suitable 'T" junction near the potential 
occlusion event already discussed in Fig. 4. Instead it finds the 'L' junction shown in 
(b). Such a feature has no relation to an occlusion event, and so the original hypothesis 
is likely to be false. 
recognition hypotheses when directed by prior topological reasoning. 

Again, these examples of the use of the parametric junction model approach do not 
describe the whole truth. Over repeated trials we have found that the Deriche-Blaszka 
model does not actually represent the image intensity surface correctly. In [11] we dis- 
cuss to some extent why this is the case; overall more work is required in developing 
junction detectors which model the image intensity surface correctly. 

In summary, we have so far demonstrated how occlusion events can be hypothe- 
sized by studying the model topology information contained in hypotheses produced 
by a typical recognition system. We have also seen that hypothesized occlusions can be 
evaluated in different ways. Two methods have been discussed: the first using bottom-up 
information recovered from the original output of an edgel filter; and the second derives 
top-down data resulting from the application of parametric junction model fitting. For 
certain cases the second method is more accurate and more reliable, but in general it re- 
lies on making incorrect assumptions about the shape of the intensity surface (which is 
seldom composed of smoothed constant-intensity plateaux). Nevertheless we can em- 
ploy both methods with caution. Whenever either approach suggests the presence of a 
'T'  junction, we can be fairly confident that it is right. However, they both frequently 
reject junctions which do actually correspond to occlusion events. 

3.1 H o w  to u p d a t e  hypotheses  
Now, whenever we find an occluded region which is terminated at one end by a veri- 
fied 'T'  junction, it can be marked as making a positive contribution to the hypothesis. 
This is to say that the score of visible model edgels used to compute the overall veri- 
fication score should be incremented by the number of edgels in the occluded region. 
Consequently we can transform a hypothesis such as that in Fig. 7 from a 70.5% score to 
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Fig. 7. The original verification method produced only a 70.5% score for the hypothe- 
sis shown in (a). However, after the prediction and verification of the various 'T" junc- 
tions bounding the occhMed parts of the hypothesized object, we increase the verifica- 
tion score to 93.6%. Edgels which were previously unmatched, but are now marked as 
positively occluded, are depicted in white in (b ). The overall verification score is incre- 

Fig. 8. The original verification score for the object in (b) was 70.7%. After occlusion 
reasoning this rises to 83.6% which is a clear indication that the hypothesis is correct. 
a re-evaluated score of 93.6%, and hence have little doubt that the hypothesis is correct. 
Ideally we would hope that the new score would tend towards 100%, but there are al- 
ways short sections of projected model curve which project near to image features with 
the wrong orientation (and so are not marked as being caused by occlusion). Taking 
these into account would make the hypothesis in Fig. 7 take on a score of little less than 
100% (in fact 98.2% when we ignore small section of less than five pixels in length). 
The dominance of a good hypothesis such as this one significantly enhances our under- 
standing of the scene. From a number of experiments we are able to conch, de that a final 
matching score of over 90% leaves little doubt as to the identity of an obiect. Another 
example is in Fig. 8 where the score of an occluded object rises from 7,.  ~% to 83.6% 
after occlusion reasoning (and 91.3% after removal of short unmatcheo chains). 

3.2 Cor r ec tnes s  of  image  topology 
S o far in this paper the effects we have been interested in have been dominated by model 
topology and cause-and-effect reasoning for connected parts of the model to be either 
occluded or visible. It is quite understandable that we can make reciprocal considera- 
tions with regard to image topology, or more properly between the consistency of both 
of the model and image descriptions. In an ideal world (where we would of course cease 
to be frustrated by problems in segmentation), the image topology should match the pro- 
jection of the model topology exactly. 

Even with our current segmentation abilities we can develop simple tests which 



607 

Fig. 9. The poorly oriented hypothesis in Fig. 2 required supportfrom unconnected tex- 
ture features. These have an image topology which is inconsistent with that of  the model. 
As there are no indications of occlusion events at the ends of each image curve, we infer 
that the correspondences are incorrect. Subsequently we can doubt the hypothesis. 
show some robustness to errors in the extraction of the low-level image description, 
and which indicate whether the grounds for believing a hypothesis should be reduced. 
For instance, we can start off by seeing which sets of image features have been given a 
correspondence with a single topological feature from a model. Due to the trivial con- 
nectivity constraints which exist on a lone model feature, one would also expect the 
corresponding image features to be connected. There are a number of different reasons 
for the image features to become distinct, though still to remain topologically linked. 
Perhaps the segmentation and fitting procedures separated the features at the geometric 
level by attributing each one to different geometric objects, or perhaps the edgel detector 
erroneously placed a junction between them to provide connectivity with other features. 
However, in both of these cases the image topology is consistent with a single model 
feature, and so we need not doubt the integrity of a particular hypothesis. 

Conversely, we should mark cases in which connectivity has been lost. Of course 
there might be a perfectly reasonable explanation such as the presence of an occlusion 
event, but if not, we should add further doubt to the interpretation. Thus, our way of 
reasoning is again led back to the detection of occlusion events. 

We show the success of this line of reasoning in Fig. 9. Model features have been 
projected into the image and have found sufficient image support along their lengths. 
However, the support has actually been provided by sets of unconnected image features. 
We thus test for the presence of occlusion events at the ends of the image features, and 
if they are not found, we mark the hypothesis as being unreasonable. 

3.3 Un iqueness  of  de sc r ip t i on  

By this stage of the proceedings the hypotheses have undergone a detailed level of topo- 
logical analysis. Those which have been attributed near perfect scores are very likely to 
be correct, whilst those with poorer verification tallies may either be erroneous, or might 
just be suffering due to difficulties in segmentation or occlusion event detection. 

We now return to the fact that a single feature in an image is caused by a single scene 
feature. Therefore, a consequence of recognition should be that the correspondence be- 
tween model and image features is at most one-to-one. Should two hypotheses match a 
single image feature we can be sure that at least one of the hypotheses is incorrect, and 
so should try and eliminate the least likely. This process is risky should the confidence 
levels in the hypotheses be poorly defined, but as our abilities at verification improve, 
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Fig. 10. In Fig. 8 we were able to find two hypotheses which matched to common scene 
features. After all of  the topological processing the hypothesis in (a) scored 91.3% and 
that in (b) 68.20-/0. Any score over 90% provides very strong confidence, and so we can 
eliminate any other hypotheses which match to the same image features. 
we can start to attribute error measures with reasonable accuracy. 

Remembering that once occlusion analysis has been performed, we can mark hy- 
potheses more clearly for acceptance or rejection. Thus we can proceed by accepting the 
single hypothesis which has gained the highest recognition score. Then, all of the image 
features which have been given a correspondence to any of the features in this model 
are marked as being explained. All other hypotheses which have correspondences with 
these image features are marked as being inconsistent, and rejected. We then take the 
next best hypothesis, and proceed by examining its image features. In short, this process 
ensures a uniqueness of description of the image features. An example of this type of 
reasoning is given in Fig. 10 where we are able to rule out the hypothesis in (b) because 
it shares scene features with the very highly scored hypothesis in (a). 

4 C o n c l u s i o n s  
In this article we have demonstrated how reasoning about model and image topology en- 
hances our object recognition verification abilities. A typical recognition system such as 
that of [ 14] computes the final match score for any hypothesis by determining whether a 
set of independent model features finds support in an image. [ 12] demonstrated that such 
a geometric strategy does not produce conclusive recognition results. We have found 
that diffusing verification information around connected components of a model means 
that a lack of image support can actually be turned into positive evidence. Tl~s in turn 
means that verification thresholds can perhaps be raised from 50% up to somewhere in 
excess of a 90% level of image support. 

The development of our verification algorithm involves reasoning about discrepan- 
cies between the model and image topologies. The differences are used to hypothesize 
where occlusion events should lie in the image. The presence of such events strengthens 
a recognition hypothesis, and the lack of one suggests that a hypothesis might be false. 
The detection of the junctions is done via both edgel detector output, and the Deriche- 
Blaszka feature detector [4]. Neither of these filters function perfectly, though when ei- 
ther hypothesizes the presence of a 'T '  junction we can be relatively sure that it is cor- 
rect. 

Of course our results are not entirely complete. Whilst working with single images, 
we need to analyse the effects of other feature detectors. There are a large number of 
other filters which require evaluation in either of the domains of bottom-up or top-down 
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processing. We also need to test the algorithms on a more varied range of  objects of  
which a three-dimensional model base is the ultimate goal. 

On a different level, we have only made use of  the boundary information contained 
within the models. Such geometric primitives obviously provide very easy access to 
object descriptions. However, a full verification scheme should include analysis about 
surface properties such as texture, and also even colour. Certainly with the aid of  top- 
down segmentation based on the recognition hypotheses one would be able to test out 
other object properties in conjunction with the more geometric aspects. 

A more complete version of  this paper is available through ftp as a technical report [11 ] 
from: <URL ftp://ftp.inria.fr/INRIAlpublication/publi-ps-gz]RR]RR-2673.ps.gz>. 
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