Abstract
Nature is filled with examples of autonomous creatures capable of dealing with the diversity, unpredictability, and rapidly changing conditions of the real world. Such creatures must make decisions and take actions based on incomplete perception, time constraints, limited knowledge about the world, cognition, reasoning and physical capabilities, in uncontrolled conditions and with very limited cues about the intent of others. Consequently, one way of evaluating intelligence is based on the creature’s ability to make the most of what it has available to handle the complexities of the real world. The main objective of this chapter is to explain behavior-based systems and their use in autonomous control problems and applications. The chapter is organized as follows. Section 13.1 overviews robot control, introducing behavior-based systems in relation to other established approaches to robot control. Section 13.2 follows by outlining the basic principles of behavior-based systems that make them distinct from other types of robot control architectures. The concept of basis behaviors, the means of modularizing behavior-based systems, is presented in Sect. 13.3. Section 13.4 describes how behaviors are used as building blocks for creating representations for use by behavior-based systems, enabling the robot to reason about the world and about itself in that world. Section 13.5 presents several different classes of learning methods for behavior-based systems, validated on single-robot and multi-robot systems. Section 13.6 provides an overview of various robotics problems and application domains that have successfully been addressed or are currently being studied with behavior-based control. Finally, Sect. 13.7 concludes the chapter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- AAAI:
-
American Association for Artificial Intelligence
- APOC:
-
allowing dynamic selection and changes
- AuRA:
-
autonomous robot architecture
- BLE:
-
broadcast of local eligibility
- BP:
-
behavior primitive
- CEC:
-
Congress on Evolutionary Computation
- DEA:
-
differential elastic actuator
- EMIB:
-
emotion, motivation and intentional behavior
- FP:
-
fusion primitive
- HBBA:
-
hybrid behavior-based architecture
- HRI:
-
human–robot interaction
- IRL:
-
in real life
- MBA:
-
motivated behavioral architecture
- MVERT:
-
move value estimation for robot teams
- RL:
-
reinforcement learning
- SLAM:
-
simultaneous localization and mapping
References
J.S. Albus: Outline for a theory of intelligence, IEEE Trans. Syst. Man Cybern. 21(3), 473–509 (1991)
G. Girald, R. Chatila, M. Vaisset: An integrated navigation and motion control system for autonomous multisensory mobile robots, Proc. 1st Int. Symp. Robotics Res. (1983)
H. Moravec, A. Elfes: High resolution maps from wide angle sonar, Proc. IEEE Int. Conf. Robotics Autom. (1995)
J. Laird, P. Rosenbloom: An investigation into reactive planning in complex domains, Proc. 9th Natl. Conf. Am. Assoc. Artif. Intell. (1990) pp. 1022–1029
N.J. Nilsson: Shakey the Robot, Tech. Rep. No. 325 (SRI International, Menlo Park 1984)
S.J. Rosenschein, L.P. Kaelbling: A situated view of representation and control, Artif. Intell. 73, 149–173 (1995)
R.A. Brooks: Elephants don't play chess. In: Designing Autonomous Agents: Theory and Practice form Biology to Engineering and Back, ed. by P. Maes (MIT Press, Cambridge 1990) pp. 3–15
R. Brooks, J. Connell: Asynchrounous distributed control system for a mobile robot, Proc. SPIE Intell. Control Adapt. Syst. (1986) pp. 77–84
R.A. Brooks: A robust layered control system for a mobile robot, IEEE J. Robotics Autom. RA-2(1), 14–23 (1986)
P.E. Agre, D. Chapman: Pengi: An implementation of a theory of activity, Proc. 6th Natl. Conf. Am. Assoc. Artif. Intell. (1987) pp. 268–272
R.A. Brooks: Intelligence without representation, Artif. Intell. 47, 139–159 (1991)
M. Schoppers: Universal plans for reactive robots in unpredictable domains, Proc. Int. Jt. Conf. Artif. Intell. (1987) pp. 1039–1046
P.E. Agre, D. Chapman: What are plans for? In: Designing Autonomous Agents: Theory and Practice form Biology to Engineering and Back, ed. by P. Maes (MIT Press, Cambridge 1990) pp. 17–34
G.N. Saridis: Intelligent robotic control, IEEE Trans. Autom. Control AC-28(5), 547–557 (1983)
R.J. Firby: An investigation into reactive planning in complex domains, Proc. AAAI Conf. (1987) pp. 202–206
R. Arkin: Towards the unification of navigational planning and reactive control, Proc. Am. Assoc. Artif. Intell., Spring Symp. Robotics Navig. (1989) pp. 1–5
C. Malcolm, T. Smithers: Symbol grounding via a hybrid architecture in an autonomous assembly system. In: Designing Autonomous Agents: Theory and Practice from Biology to Engineering and Back, ed. by P. Maes (MIT Press, Cambridge 1990) pp. 123–144
J.H. Connell: SSS: A hybrid architecture applied to robot navigation, Proc. IEEE Int. Conf. Robotics Autom. (1992) pp. 2719–2724
E. Gat: Integrating planning and reacting in a heterogeneous asynchronous architecture for controlling real-world mobile robots, Proc. Natl. Conf. Artif. Intell. (1992) pp. 809–815
M. Georgeoff, A. Lansky: Reactive reasoning and planning, Proc. 6th Natl.Conf. Am. Assoc. Artif. Intell. (1987) pp. 677–682
B. Pell, D. Bernard, S. Chien, E. Gat, N. Muscettola, P. Nayak, M. Wagner, B. Williams: An autonomous spacecraft agent prototype, Auton. Robots 1-2(5), 1–27 (1998)
R.C. Arkin: Behavior-Based Robotics (MIT Press, Cambridge 1998)
M.J. Matarić: Reinforcement learning in the multi-robot domain, Auton. Robots 4(1), 73–83 (1997)
P. Bonasso, R.J. Firby, E. Gat, D. Kortenkamp, D.P. Miller, M.G. Slack: Experiences with an architecture for intelligent reactive agents, Proc. Int. Jt. Conf. Artif. Intell. (1995)
M. Goller, T. Kerscher, J.M. Zollner, R. Dillmann, M. Devy, T. Germa, F. Lerasle: Setup and control architecture for an interactive shopping cart in human all day environments, Proc. Int. Conf. Adv. Robotics (2009) pp. 1–6
P. Pirjanian: Multiple objective behavior-based control, Robotics Auton. Syst. 31(1-2), 53–60 (2000)
P. Pirjanian: Behavior Coordination Mechanisms – State-of-the-Art, Tech. Rep. IRIS-99-375 (Univ. of Southern California, Institute of Robotics and Intelligent Systems, Los Angeles 1999) pp. 99–375
M. Scheutz, V. Andronache: Architectural mechanisms for dynamic changes of behavior selection strategies in behavior-based systems, IEEE Trans. Syst. Man Cybern. B 34(6), 2377–2395 (2004)
M. Proetzsch, T. Luksch, K. Berns: Development of complex robotic systems using the behavior-based control architecture iB2C, Robotics Auton. Syst. 58(1), 46–67 (2010)
D. Payton, D. Keirsey, D. Kimble, J. Krozel, J. Rosenblatt: Do whatever works: A robust approach to fault-tolerant autonomous control, Appl. Intell. 2(3), 225–250 (1992)
P. Maes: Situated agents can have goals. In: Designing Autonomous Agents: Theory and Practice form Biology to Engineering and Back, ed. by P. Maes (MIT Press, Cambridge 1990) pp. 49–70
P. Maes: The dynamics of action selection, Proc. Int. Jt. Conf. Artif. Intell. (1989) pp. 991–997
B.A. Towle, M. Nicolescu: Real-world implementation of an Auction Behavior-Based Robotic Architecture (ABBRA), Proc. IEEE Int. Conf. Technol. Pract. Robot Appl. (2012) pp. 79–85
B.A. Towle, M. Nicolescu: Fusing multiple sensors through behaviors with the distributed architecture, Proc. IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst. (2010) pp. 115–120
A. Saffiotti: The uses of fuzzy logic in autonomous robot navigation, Soft Comput. 1, 180–197 (1997)
F. Michaud: Selecting behaviors using fuzzy logic, Proc. IEEE Int. Conf. Fuzzy Syst. (1997)
E. Gat: On three-layer architectures. In: Artificial Intelligence and Mobile Robotics, ed. by D. Kortenkamp, R. Bonasso, R. Murphy (MIT/AAAI Press, Cambridge 1998)
M.J. Matarić: Integration of representation into goal-driven behavior-based robots, IEEE Trans. Robotics Autom. 8(3), 304–312 (1992)
M.J. Matarić: Navigating with a rat brain: A neurobiologically-inspired model for robot spatial representation, From animals to animats. Proc. 1st Int. Conf. Simul. Adapt. Behav. (1990) pp. 169–175
M. Nicolescu, M.J. Matarić: Experience-based representation construction: Learning from human and robot teachers, Proc. IEEE/RSJ Int. Conf. Intell. Robot Syst. (2001) pp. 740–745
M. Nicolescu, M.J. Matarić: A hierarchical architecture for behavior-based robots, Proc. Int. Jt. Conf. Auton. Agents Multiagent Syst. (2002)
L.E. Parker: ALLIANCE: An architecture for fault tolerant multirobot cooperation, IEEE Trans. Robotics Autom. 14(2), 220–240 (1998)
M.J. Matarić: Designing and understanding adaptive group behavior, Adapt. Behav. 4(1), 50–81 (1995)
C. Raïevsky, F. Michaud: Improving situated agents adaptability using interruption theory of emotions, From animals to animats. Proc. Int. Conf. Simul. Adapt. Behav. (2008) pp. 301–310
F. Michaud, G. Lachiver, C.T. Le Dinh: Architectural methodology based on intentional configuration of behaviors, Comput. Intell. 17(1), 132–156 (2001)
F. Michaud: EMIB–Computational architecture based on emotion and motivation for intentional selection and configuration of behaviour-producing modules, Cogn. Sci. Q. 3-4, 340–361 (2002)
F. Michaud, M.T. Vu: Managing robot autonomy and interactivity using motives and visual communication, Proc. Int. Conf. Auton. Agents (1999) pp. 160–167
O. Petterson, L. Karlsson, A. Saffiotti: Model-free execution monitoring in behavior-based robotics, IEEE Trans. Syst. Man Cybern. 37(4), 890–901 (2007)
F. Michaud, M.J. Matarić: Learning from history for behavior-based mobile robots in non-stationary environments, Auton. Robots 5(3/4), 335–354 (1998)
F. Michaud, M.J. Matarić: Learning from history for behavior-based mobile robots in non-stationary environments II, Auton. Robots 31(3-4), 335–354 (1998)
F. Michaud, M.J. Matarić: Representation of behavioral history for learning in nonstationary conditions, Robotics Auton. Syst. 29(2), 1–14 (1999)
O.C. Jenkins, M.J. Matarić: Deriving action and behavior primitives from human motion data, Proc. IEEE/RSJ Int. Conf. Intell. Robot Syst. (2002) pp. 2551–2556
O.C. Jenkins, M.J. Matarić: Automated derivation of behavior vocabularies for autonomous humanoid motion, Proc. 2nd Int. Jt. Conf. Auton. Agents Multiagent Syst. (2003)
M.J. Matarić: Designing emergent behaviors: From local interactions to collective intelligence, From animals to animats 2. Proc. 2nd Int. Conf. Simul. Adapt. Behav. (1992) pp. 432–441
S. Saripalli, D.J. Naffin, G.S. Sukhatme: Autonomous flying vehicle research at the University of Southern California, Proc. 1st Int. Work. Multi-Robot Syst. (2002) pp. 73–82
M.J. Matarić: Behavior-based control: Examples from navigation, learning, and group behavior, J. Exp. Theor. Artif. Intell. 9(2-3), 323–336 (1997)
P. Maes, R.A. Brooks: Learning to coordinate behaviors, Proc. 8th Natl. Conf. Artif. Intell. AAAI (1990) pp. 796–802
H. Yanco, L.A. Stein: An adaptive communication protocol for cooperating mobile robots, From animals to animats 3. Proc 3rd Int. Conf. Simul. Adapt. Behav. (1993) pp. 478–485
J.R. del Millàn: Learning efficient reactive behavioral sequences from basic reflexes in a goal-directed autonomous robot, From animals to animats 3. Proc. 3rd Int. Conf. Simul. Adapt. Behav. (1994) pp. 266–274
L. Parker: Learning in cooperative robot teams, Proc. Int. Jt. Conf. Artif. Intell. (1993) pp. 12–23
M.J. Matarić: Learning to behave socially, From animals to animats 3. Proc. 3rd Int. Conf. Simul. Adapt. Behav. (1994) pp. 453–462
M. Asada, E. Uchibe, S. Noda, S. Tawaratsumida, K. Hosoda: Coordination of multiple behaviors acquired by a vision-based reinforcement learning, Proc. IEEE/RSJ Int. Conf. Intell. Robot Syst. (1994)
J. McCarthy: Making robots conscious of their mental states, AAAI Spring Symp. (1995)
T. Smithers: On why better robots make it harder, From animals to animats. Proc. 3rd Int. Conf. Simul. Adapt. Behav. (1994) pp. 64–72
D. McFarland, T. Bösser: Intelligent Behavior in Animals and Robots (MIT Press, Cambridge 1993)
P. Maes: A bottom-up mechanism for behavior selection in an artificial creature, From animals to animats. Proc. 1st Int. Conf. Simul. Adapt. Behav. (1991) pp. 238–246
B.M. Blumberg, P.M. Todd, P. Maes: No bad dogs: Ethological lessons for learning in Hamsterdam, From animals to animats. Proc. Int. Conf. Simul. Adapt. Behav., ed. by P. Maes, M.J. Matarić, J.-A. Meyer, J. Pollack, S.W. Wilson (1996) pp. 295–304
C. Breazeal, B. Scassellati: Infant-like social interactions between a robot and a human caregiver, Adapt. Behav. 8(1), 49–74 (2000)
F. Michaud, P. Pirjanian, J. Audet, D. Létourneau: Artificial emotion and social robotics. In: Distributed Autonomous Robotic Systems, ed. by L.E. Parker, G. Bekey, J. Barhen (Springer, Tokyo 2000) pp. 121–130
A. Stoytchev, R. Arkin: Incorporating motivation in a hybrid robot architecture, J. Adv. Comput. Intell. Intell. Inf. 8(3), 269–274 (2004)
S. Mahadevan, J. Connell: Automatic programming of behavior-based robots using reinforcement learning, Artif. Intell. 55, 311–365 (1992)
J. Kober, A. Wilhelm, E. Oztop, J. Peters: Reinforcement learning to adjust parametrized motor primitives to new situations, Auton. Robots 33, 361–379 (2012)
M.J. Matarić: Reward functions for accelerated learning, Proc. 11th Int. Conf. Mach. Learn., New Brunswick, ed. by W.W. Cohen, H. Hirsh (Morgan Kauffman, Boston 1994) pp. 181–189
H. Gleitman: Psychology (Norton, New York 1981)
M. Dorigo, M. Colombetti: Robot Shaping: An Experiment in Behavior Engineering (MIT Press, Cambridge 1997)
M. Nicolescu, M.J. Matarić: Learning and interacting in human-robot domains, IEEE Trans. Syst. Man Cybern. 31(5), 419–430 (2001)
M. Nicolescu, O.C. Jenkins, A. Olenderski, E. Fritzinger: Learning behavior fusion from demonstration, Interact. Stud. 9(2), 319–352 (2008)
R.C. Arkin: Motor schema based navigation for a mobile robot: An approach to programming by behavior, Proc. IEEE Int. Conf. Robotics Autom. (1987) pp. 264–271
S.B. Reed, T.R.C. Reed, M. Nicolescu, S.M. Dascalu: Recursive, hyperspherical behavioral learning for robotic control, Proc. IEEE World Autom. Congr. (2010) pp. 1–8
A. Olenderski, M. Nicolescu, S. Louis: A behavior-based architecture for realistic autonomous ship control, Proc. IEEE Symp. Comput. Intell. Games (2006)
M. Nicolescu, O.C. Jenkins, A. Olenderski: Learning behavior fusion estimation from demonstration, Proc. IEEE Int. Symp. Robot Hum. Interact. Commun. (2006) pp. 340–345
J.M. Peula, C. Urdiales, I. Herrero, I. Sánchez-Tato, F. Sandoval: Pure reactive behavior learning using case based reasoning for a vision based 4-legged robot, Robotics Auton. Syst. 57(67), 688–699 (2009)
S. Huang, E. Aertbelien, H. Van Brussel, H. Bruyninckx: A behavior-based approach for task learning on mobile manipulators, Proc. 41st Int. Symp. Robotics 6th Ger. Conf. Robotics (2010) pp. 1–6
A.K. McCallum: Hidden state and reinforcement learning with instance-based state identification, IEEE Trans. Syst. Man Cybern. B 26(3), 464–473 (1996)
E. Jauregi, I. Irigoien, B. Sierra, E. Lazkano, C. Arenas: Loop-closing: A typicality approach, Robotics Auton. Syst. 59(3-4), 218–227 (2011)
D.J. Harvey, T.-F. Lu, M.A. Keller: Comparing insect-inspired chemical plume tracking algorithms using a mobile robot, IEEE Trans. Robotics 24(2), 307–317 (2008)
A. Agha, G. Bekey: Phylogenetic and ontogenetic learning in a colony of interacting robots, Auton. Robots 4(1), 85–100 (1997)
R.A. Brooks, L. Stein: Building brains for bodies, Auton. Robots 1(1), 7–25 (1994)
B. Webb: Robotic experiments in cricket phonotaxis, From animals to animats 3. Proc. 3rd Int. Conf. Simul. Adapt. Behav. (1994) pp. 45–54
C. Liu, K. Conn, N. Sakar, W. Stone: Online affect detection and robot behavior adaptation for intervention of children with autism, IEEE Trans. Robotics 24(4), 883–896 (2008)
N. Mitsunaga, C. Smith, T. Kanda, H. Ishiguro, N. Hagita: Adapting robot behavior for human–robot interaction, IEEE Trans. Robotics 24(4), 911–916 (2008)
J.-W. Yoon, S.-B. Cho: An intelligent synthetic character for smartphone with Bayesian networks and behavior selection networks, Expert Syst. Appl. 39(12), 11284–11292 (2012)
A. Brunete, M. Hernando, E. Gambao, J.E. Torres: A behaviour-based control architecture for heterogeneous modular, multi-configurable, chained micro-robots, Robotics Auton. Syst. 60(12), 1607–1624 (2012)
J.L. Jones: Robots at the tipping point, IEEE Robotics Autom. Mag. 13(1), 76–78 (2006)
M.F. Selekwa, D.D. Dunlap, D. Shi, E.G. Collins Jr.: Robot navigation in very cluttered environments by preference-based fuzzy behaviors, Robotics Auton. Syst. 56(3), 231–246 (2008)
P. Rusu, E.M. Petriu, T.E. Whalen, A. Coronell, H.J.W. Spoelder: Behavior-based neuro-fuzzy controller for mobile robot navigation, IEEE Trans. Instrum. Meas. 52(4), 1335–1340 (2003)
R. Huq, G.K.I. Mann, R.G. Gosine: Behaviour modulation technique in mobile robotics using fuzzy discrete event system, IEEE Trans. Robotics 22, 903–916 (2006)
J.S. Cepeda, L. Chaimowicz, R. Soto, J.L. Gordillo, E.A. Alanís-Reyes, L.C. Carrillo-Arce: A behavior-based strategy for single and multi-robot autonomous exploration, Sensors 12(9), 12772–12797 (2012)
A. Marino, L. Parker, G. Antonelli, F. Caccavale: A decentralized architecture for multi-robot systems based on the null-space-behavioral control with application to multi-robot border patrolling, J. Intell. Robotic Syst. 71(3-4), 423–444 (2013)
L.E. Parker: Current research in multirobot systems, Artif. Life Robotics 7(1–2), 1–5 (2003)
L.E. Parker, M. Chandra, F. Tang: Enabling autonomous sensor-sharing for tightly-coupled cooperative tasks, Proc. 1st Int. Work. Multi-Robot Syst. (2005) pp. 119–230
B.B. Werger, M.J. Matarić: Broadcast of Local Eligibility for Multi-Target Observation, Proc. 5th Int. Conf. Distrib. Auton. Robotics Syst. (2000) pp. 347–356
B.P. Gerkey, M.J. Matarić: Principled communication for dynamic multi-robot task allocation, Lect. Notes Control Inform. Sci. 271, 353–362 (2001)
B.P. Gerkey, M.J. Matarić: Sold!: Auction methods for multi-robot coordination, IEEE Trans. Robotics Autom. 18(5), 758–768 (2002)
B.P. Gerkey, M.J. Matarić: Pusher-watcher: An approach to fault-tolerant tightly-coupled robot coordination, Proc. IEEE Int. Conf. Robotics Autom. (2002) pp. 464–469
B. Akin, A.M. Aydan, I. Erkmen: A behavior based layered, hybrid, control architecture for robot/sensor networks, Proc. IEEE Int. Conf. Robotics Autom. (2006) pp. 206–211
N. Sedat, E. Aydan: A fractal conductivity-based approach to mobile sensor networks in a potential field, Int. J. Adv. Manuf. Technol. 37(7), 732–746 (2008)
L. Iocchi, D. Nardi, M. Piaggio, A. Sgorbissa: Distributed coordination in heterogeneous multi-robot systems, Auton. Robots 15(2), 155–168 (2004)
M. Batalin, G. Sukhatme: Coverage, exploration and deployment by a mobile robot and communication network, Telecommun. Syst. 26(2–4), 181–196 (2004)
A.W. Stroupe, T. Balch: Value-based action selection for observation with robot teams using probabilistic techniques, Robotics Auton. Syst. 50(2–3), 85–97 (2005)
R. Simmons, T. Smith, M.B. Dias, D. Goldberg, D. Hershberger, A. Stentz, R. Zlot: A Layered Architecture for coordination of mobile robots, Proc. NRL Work. Multi-Robot Syst. (2002)
J. Nembrini, A. Winfield, C. Melhuish: Minimalist coherent swarming of wireless networked autonomous mobile robots, Proc. 7th Int. Conf. Simul. Adapt. Behav. (2002) pp. 373–382
M. Egerstedt, X. Hu: Formation constrained multi-agent control, IEEE Trans. Robotics Autom. 17(6), 947–951 (2001)
C.H. Tan, K.C. Tan, A. Tay: Computationally efficient behaviour based controller for real time car racing simulation, Expert Syst. Appl. 37(7), 4850–4859 (2010)
K. Gold, B. Scassellati: Learning about the self and others through contingency, AAAI Spring Symp. Dev. Robotics (2005)
M. Baker, H.A. Yanco: Automated street crossing for assistive robots, Proc. Int. Conf. Rehabil. Robotics (2005) pp. 187–192
M. Williamson: Postural primitives: Interactive behavior for a humanoid robot arm, Proc. Int. Conf. Simul. Adapt. Behav. (1996)
M. Marjanovic, B. Scassellati, M. Williamson, R. Brooks: The Cog Project: Building a humanoid robot, Lect. Notes Artif. Intell. 1562, 52–87 (1998)
A. Edsinger: Robot Manipulation in Human Environments, Ph.D. Thesis (Massachusetts Institute of Technology, Cambridge 2007)
C. Breazeal: Infant-like social interactions between a robot and a human caretaker, Adapt. Behav. 8(1), 49–74 (2000)
H. Ishiguro, T. Kanda, K. Kimoto, T. Ishida: A robot architecture based on situated modules, Proc. IEEE/RSJ Int. Conf. Intell. Robot Syst. (1999) pp. 1617–1623
T. Kanda, T. Hirano, D. Eaton, H. Ishiguro: Person identification and interaction of social robots by using wireless tags, Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst. (2003) pp. 1657–1664
F. Michaud, J.F. Laplante, H. Larouche, A. Duquette, S. Caron, D. Létourneau, P. Masson: Autonomous spherical mobile robotic to study child development, IEEE Trans. Syst. Man. Cybern. 35(4), 1–10 (2005)
F. Michaud, S. Caron: Roball, the rolling robot, Auton. Robots 12(2), 211–222 (2002)
F. Michaud, C. Côté, D. Létourneau, Y. Brosseau, J.-M. Valin, É. Beaudry, C. Raïevsky, A. Ponchon, P. Moisan, P. Lepage, Y. Morin, F. Gagnon, P. Giguère, M.-A. Roux, S. Caron, P. Frenette, F. Kabanza: Spartacus attending the 2005 AAAI Conference, Auton. Robots 12(2), 211–222 (2007)
F. Michaud, Y. Brosseau, C. Côté, D. Létourneau, P. Moisan, A. Ponchon, C. Raïevsky, J.-M. Valin, E. Beaudry, F. Kabanza: Modularity and integration in the design of a socially interactive robot, Proc. IEEE Int. Work. Robot Hum. Interact. Commun. (2005) pp. 172–177
E. Beaudry, Y. Brosseau, C. Côté, C. Raïevsky, D. Létourneau, F. Kabanza, F. Michaud: Reactive planning in a motivated behavioral architecture, Proc. Am. Assoc. Artif. Intell. Conf. (2005) pp. 1242–1247
K. Haigh, M. Veloso: Planning, execution and learning in a robotic agent, Proc. 4th Int. Conf. Artif. Intell. Plan. Syst. (1998) pp. 120–127
S. Lemai, F. Ingrand: Interleaving temporeal planning and execution in robotics domains, Proc. Natl. Conf. Artif. Intell. (2004) pp. 617–622
D. Létourneau, F. Michaud, J.-M. Valin: Autonomous robot that can read, EURASIP J. Appl, Signal Process. 17, 1–14 (2004)
J.-M. Valin, F. Michaud, J. Rouat: Robust localization and tracking of simultaneous moving sound sources using beamforming and particle filtering, Robotics Auton. Syst. 55(3), 216–228 (2007)
J.-M. Valin, S. Yamaoto, J. Rouat, F. Michaud, K. Nakadai, H.G. Okuno: Robust recognition of simultaneous speech by a mobile robot, IEEE Trans. Robotics 23(4), 742–752 (2007)
F. Michaud, F. Ferland, D. Létourneau, M.-A. Legault, M. Lauria: Toward autonomous, compliant, omnidirectional humanoid robots for natural interaction in real-life settings, Paladyn. J. Behav. Robotics 1, 57–65 (2010)
D.O. Hebb: The Organization of Behavior: A Neuropsychological Theory (Wiley, New York 1949)
G. Mandler: Mind and Body: Psychology of Emotion and Stress (Norton, New York 1984)
J.E. Stets: Emotions and sentiments. In: Handbook of Social Psychology, ed. by J.E. DeLamater (Wiley, New York 2003)
F. Ferland, F. Ferland, D. Létourneau, M.-A. Legault, M. Lauria, F. Michaud: Natural interaction design of a humanoid robot, J. Hum.-Robot Interact. 1(2), 118–134 (2012)
F. Ferland, R. Chauvin, D. Létourneau, F. Michaud: Hello Robot, can you come here? Using ROS4iOS to provide remote perceptual capabilities for visual location, speech and speaker recognition, Proc. ACM/IEEE Conf. Hum.-Robot Interact. (1983) p. 101
E. Beaudry, D. Létourneau, F. Kabanza, F. Michaud: Reactive planning as a motivational source in a behavior-based architecture, Proc. IEEE/RSJ Int. Conf. Intell. Robot Syst. (2008) pp. 1848–1853
R.A. Brooks: Cambrian Intelligence – The Early History of the New AI (MIT Press, Cambridge 1999)
R. Pfeifer, C. Scheier: Understanding Intelligence (MIT Press, Cambridge 2001)
R.R. Murphy: An Introduction to AI Robotics (MIT Press, Cambridge 2000)
M.J. Matarić: The Robotics Primer (MIT Press, Cambridge 2007)
F. Martin: Robotic Explorations: A Hands-On Introduction to Engineering (Prentice Hall, Upper Saddle River 2001)
J.L. Jones, A.M. Flynn: Mobile Robots – Inspiration to Implementation (Peters, Wellesley 1993)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Video-References
Video-References
- :
-
Experience-based learning of high-level task representations: Demonstration available from http://handbookofrobotics.org/view-chapter/13/videodetails/27
- :
-
Experience-based learning of high-level task representations: Reproduction available from http://handbookofrobotics.org/view-chapter/13/videodetails/28
- :
-
Experience-based learning of high-level task representations: Demonstration (2) available from http://handbookofrobotics.org/view-chapter/13/videodetails/30
- :
-
Experience-based learning of high-level task representations: Reproduction (2) available from http://handbookofrobotics.org/view-chapter/13/videodetails/31
- :
-
Experience-based learning of high-level task representations: Demonstration (3) available from http://handbookofrobotics.org/view-chapter/13/videodetails/32
- :
-
Experience-based learning of high-level task representations: Reproduction (3) available from http://handbookofrobotics.org/view-chapter/13/videodetails/33
- :
-
The Nerd Herd available from http://handbookofrobotics.org/view-chapter/13/videodetails/34
- :
-
Toto available from http://handbookofrobotics.org/view-chapter/13/videodetails/35
- :
-
SpartacUS available from http://handbookofrobotics.org/view-chapter/13/videodetails/417
- :
-
Natural interaction design of a humanoid robot available from http://handbookofrobotics.org/view-chapter/13/videodetails/418
- :
-
Using ROS4iOS available from http://handbookofrobotics.org/view-chapter/13/videodetails/419
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Michaud, F., Nicolescu, M. (2016). Behavior-Based Systems. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-32552-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32550-7
Online ISBN: 978-3-319-32552-1
eBook Packages: EngineeringEngineering (R0)