Abstract
In this article, we discuss combinatorial auctions, an interesting inter-disciplinary research field in Computer Science and Economics. In particular, we will (a) describe a set of real-world cases, (b) how to solve the associated computational problems, and (c) discuss the impact of the probability distributions chosen for benchmarking.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Andersson, Ch. Icking, R. Klein, and Th. Ottmann. Binary search trees of almost optimal height. Acta Informatica, 28:165–178, 1990.
A. Andersson, M. Tenhunen, and F. Ygge. Integer programming for combinatorial auction winner determination: Extended version. Technical report, Department of Information Technology, Uppsala University, July 2000. (Available from http://www.it.uu.se).
K. Asrat and A. Andersson. Caching in multi-unit combinatorial auctions. In Proceedings of AAMAS, 2002.
E. Balas. An additive algorithm for solving linear programs with zero-one variables. The Journal of the Operations Research Society of America, pages 517–546, 1965.
E. Balas and M. W. Padberg. Set partitioning: A survey. SIAM Review, 18:710–760, 1976.
Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the computational complexity of combinatorial auctions: Optimal and approximate approaches. In Proceeding of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI’99, pages 548–553, August 1999. (Available from http://robotics.stanford.edu/~kevinlb).
R. Garfinkel and G. L. Nemhauser. The set partitioning problem: Set covering with equality constraints. Operations Research, 17(5):848–856, 1969.
A. M. Geoffrion. An improved implicit enumeration approach for integer programming. Operations Research, 17:437–454, 1969.
A. Mas-Colell, M. Whinston, and J. R. Green. Microeconomic Theory. Oxford University Press, 1995.
T. Michaud. Exact implicit enumeration method for solving the set partitioning problem. The IBM Journal of Research and Development, 16:573–578, 1972.
N. Nisan. Bidding and allocation in combinatorial auctions. Working paper. Presented at the 1999 NWU Microeconomics Workshop. (Available from http://www.cs.huji.ac.il/ noam/), 1999.
D. Parkes. iBundle: An efficient ascending price bundle auction. In Proceedings of the First International Conference on Electronic Commerce, pages 148–157. ACM Press, Box 11405, New York, NY, November 1999. (Available from http://www.cis.upenn.edu/~dparkes).
M. H. Rothkopf, A. Pekeč, and R. M. Harstad. Computationally manageable combinatorial auctions. Management Science, 44(8):1131–1147, 1995.
H. M. Salkin. Integer Programming. Addison Wesley Publishing Company, Reading, Massachusetts, 1975.
T. W. Sandholm. An algorithm for optimal winner determination in combinatorial auctions. In Proceeding of the Sixteenth International Joint Conference on Artificial Intelligence, IJ-CAI’99, pages 542–547, August 1999. (Available from http://ўw.cs.wustl.edu/r~sandholm).
P. Wurman. Market Structure and Multidimensional Auction Design for Computational Economies. PhD thesis, Department of Computer Science, University of Michigan, 1999. (Available from http://ўw.csc.ncsu.edu/faculty/wurman).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Andersson, A. (2003). Combinatorial Auctions, an Example of Algorithm Theory in Real Life. In: Klein, R., Six, HW., Wegner, L. (eds) Computer Science in Perspective. Lecture Notes in Computer Science, vol 2598. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36477-3_2
Download citation
DOI: https://doi.org/10.1007/3-540-36477-3_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00579-7
Online ISBN: 978-3-540-36477-1
eBook Packages: Springer Book Archive