[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Combinatorial Auctions, an Example of Algorithm Theory in Real Life

  • Chapter
  • First Online:
Computer Science in Perspective

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2598))

  • 691 Accesses

Abstract

In this article, we discuss combinatorial auctions, an interesting inter-disciplinary research field in Computer Science and Economics. In particular, we will (a) describe a set of real-world cases, (b) how to solve the associated computational problems, and (c) discuss the impact of the probability distributions chosen for benchmarking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Andersson, Ch. Icking, R. Klein, and Th. Ottmann. Binary search trees of almost optimal height. Acta Informatica, 28:165–178, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Andersson, M. Tenhunen, and F. Ygge. Integer programming for combinatorial auction winner determination: Extended version. Technical report, Department of Information Technology, Uppsala University, July 2000. (Available from http://www.it.uu.se).

  3. K. Asrat and A. Andersson. Caching in multi-unit combinatorial auctions. In Proceedings of AAMAS, 2002.

    Google Scholar 

  4. E. Balas. An additive algorithm for solving linear programs with zero-one variables. The Journal of the Operations Research Society of America, pages 517–546, 1965.

    Google Scholar 

  5. E. Balas and M. W. Padberg. Set partitioning: A survey. SIAM Review, 18:710–760, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  6. Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the computational complexity of combinatorial auctions: Optimal and approximate approaches. In Proceeding of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI’99, pages 548–553, August 1999. (Available from http://robotics.stanford.edu/~kevinlb).

  7. R. Garfinkel and G. L. Nemhauser. The set partitioning problem: Set covering with equality constraints. Operations Research, 17(5):848–856, 1969.

    MATH  Google Scholar 

  8. A. M. Geoffrion. An improved implicit enumeration approach for integer programming. Operations Research, 17:437–454, 1969.

    MATH  Google Scholar 

  9. A. Mas-Colell, M. Whinston, and J. R. Green. Microeconomic Theory. Oxford University Press, 1995.

    Google Scholar 

  10. T. Michaud. Exact implicit enumeration method for solving the set partitioning problem. The IBM Journal of Research and Development, 16:573–578, 1972.

    Article  MATH  Google Scholar 

  11. N. Nisan. Bidding and allocation in combinatorial auctions. Working paper. Presented at the 1999 NWU Microeconomics Workshop. (Available from http://www.cs.huji.ac.il/ noam/), 1999.

  12. D. Parkes. iBundle: An efficient ascending price bundle auction. In Proceedings of the First International Conference on Electronic Commerce, pages 148–157. ACM Press, Box 11405, New York, NY, November 1999. (Available from http://www.cis.upenn.edu/~dparkes).

  13. M. H. Rothkopf, A. Pekeč, and R. M. Harstad. Computationally manageable combinatorial auctions. Management Science, 44(8):1131–1147, 1995.

    Article  Google Scholar 

  14. H. M. Salkin. Integer Programming. Addison Wesley Publishing Company, Reading, Massachusetts, 1975.

    MATH  Google Scholar 

  15. T. W. Sandholm. An algorithm for optimal winner determination in combinatorial auctions. In Proceeding of the Sixteenth International Joint Conference on Artificial Intelligence, IJ-CAI’99, pages 542–547, August 1999. (Available from http://ўw.cs.wustl.edu/r~sandholm).

  16. P. Wurman. Market Structure and Multidimensional Auction Design for Computational Economies. PhD thesis, Department of Computer Science, University of Michigan, 1999. (Available from http://ўw.csc.ncsu.edu/faculty/wurman).

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andersson, A. (2003). Combinatorial Auctions, an Example of Algorithm Theory in Real Life. In: Klein, R., Six, HW., Wegner, L. (eds) Computer Science in Perspective. Lecture Notes in Computer Science, vol 2598. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36477-3_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-36477-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00579-7

  • Online ISBN: 978-3-540-36477-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics