Abstract
We consider the problem of fitting an n× n distance matrix M by a tree metric T. We give a factor O( min {n 1/p,(klogn)1/p}) approximation algorithm for finding the closest ultrametric T under the L p norm, i.e. T minimizes ||T,M|| p . Here, k is the number of distinct distances in M. Combined with the results of [1], our algorithms imply the same factor approximation for finding the closest tree metric under the same norm. In [1], Agarwala et al. present the first approximation algorithm for this problem under L ∞ . Ma et al. [2] present approximation algorithms under the L p norm when the original distances are not allowed to contract and the output is an ultrametric. This paper presents the first algorithms with performance guarantees under L p (p<∞) in the general setting.
We also consider the problem of finding an ultrametric T that minimizes L relative: the sum of the factors by which each input distance is stretched. For the latter problem, we give a factor O(log2 n) approximation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwala, R., Bafna, V., Farach, M., Paterson, M., Thorup, M.: On the approximability of numerical taxonomy (fitting distances by tree metrics. SIAM J. Comput. 28, 1073–1085 (1999)
Ma, B., Wang, L., Zhang, L.: Fitting distances by tree metrics with increment error. J. Comb. Optim. 3, 213–225 (1999)
Farach, M., Kannan, S.: Efficient algorithms for inverting evolution. Journal of the ACM 46, 437–450 (1999)
Cryan, M., Goldberg, L., Goldberg, P.: Evolutionary trees can be learned in polynomial time in the two state general markov model. SIAM J. Comput. 31, 375–397 (2001)
Waterman, M., Smith, T., Singh, M., Beyer, W.: Additive evolutionary trees. J. Theoretical Biology 64, 199–213 (1977)
Day, W.: Computational complexity of inferring phylogenies from dissimilarity matrices. Bulletin of Mathematical Biology 49, 461–467 (1987)
Farach, M., Kannan, S., Warnow, T.: A robust model for finding optimal evolutionary trees. Algorithmica 13, 155–179 (1995)
Emanuel, D., Fiat, A.: Correlation clustering - minimizing disagreements on arbitrary weighted graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 208–220. Springer, Heidelberg (2003)
Demaine, E.D., Immorlica, N.: Correlation clustering with partial information. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 1–13. Springer, Heidelberg (2003)
Bansal, N., Blum, A., Chawla, S.: Correlation clustering. In: Proc. of the 43rd IEEE Annual Symposium on Foundations of Computer Science, p. 238 (2002)
Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. In: Proc. of the 44th IEEE Annual Symposium on Foundations of Computer Science, p. 524 (2003)
Dhamdhere, K.: Approximating additive distortion of embeddings into line metrics. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 96–104. Springer, Heidelberg (2004)
Dhamdhere, K., Gupta, A., Ravi, R.: Approximation algorithms for minimizing average distortion. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 234–245. Springer, Heidelberg (2004)
Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. SIAM J. Comput. 25, 235–251 (1996)
Ailon, N., Charikar, M.: Personal comunication (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Harb, B., Kannan, S., McGregor, A. (2005). Approximating the Best-Fit Tree Under L p Norms. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2005 2005. Lecture Notes in Computer Science, vol 3624. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538462_11
Download citation
DOI: https://doi.org/10.1007/11538462_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28239-6
Online ISBN: 978-3-540-31874-3
eBook Packages: Computer ScienceComputer Science (R0)