[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

We consider the problem of fitting an n× n distance matrix M by a tree metric T. We give a factor O( min {n 1/p,(klogn)1/p}) approximation algorithm for finding the closest ultrametric T under the L p norm, i.e. T minimizes ||T,M|| p . Here, k is the number of distinct distances in M. Combined with the results of [1], our algorithms imply the same factor approximation for finding the closest tree metric under the same norm. In [1], Agarwala et al. present the first approximation algorithm for this problem under L  ∞ . Ma et al. [2] present approximation algorithms under the L p norm when the original distances are not allowed to contract and the output is an ultrametric. This paper presents the first algorithms with performance guarantees under L p (p<∞) in the general setting.

We also consider the problem of finding an ultrametric T that minimizes L relative: the sum of the factors by which each input distance is stretched. For the latter problem, we give a factor O(log2 n) approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwala, R., Bafna, V., Farach, M., Paterson, M., Thorup, M.: On the approximability of numerical taxonomy (fitting distances by tree metrics. SIAM J. Comput. 28, 1073–1085 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ma, B., Wang, L., Zhang, L.: Fitting distances by tree metrics with increment error. J. Comb. Optim. 3, 213–225 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Farach, M., Kannan, S.: Efficient algorithms for inverting evolution. Journal of the ACM 46, 437–450 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cryan, M., Goldberg, L., Goldberg, P.: Evolutionary trees can be learned in polynomial time in the two state general markov model. SIAM J. Comput. 31, 375–397 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Waterman, M., Smith, T., Singh, M., Beyer, W.: Additive evolutionary trees. J. Theoretical Biology 64, 199–213 (1977)

    Article  MathSciNet  Google Scholar 

  6. Day, W.: Computational complexity of inferring phylogenies from dissimilarity matrices. Bulletin of Mathematical Biology 49, 461–467 (1987)

    MATH  MathSciNet  Google Scholar 

  7. Farach, M., Kannan, S., Warnow, T.: A robust model for finding optimal evolutionary trees. Algorithmica 13, 155–179 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Emanuel, D., Fiat, A.: Correlation clustering - minimizing disagreements on arbitrary weighted graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 208–220. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Demaine, E.D., Immorlica, N.: Correlation clustering with partial information. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 1–13. Springer, Heidelberg (2003)

    Google Scholar 

  10. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. In: Proc. of the 43rd IEEE Annual Symposium on Foundations of Computer Science, p. 238 (2002)

    Google Scholar 

  11. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. In: Proc. of the 44th IEEE Annual Symposium on Foundations of Computer Science, p. 524 (2003)

    Google Scholar 

  12. Dhamdhere, K.: Approximating additive distortion of embeddings into line metrics. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 96–104. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Dhamdhere, K., Gupta, A., Ravi, R.: Approximation algorithms for minimizing average distortion. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 234–245. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. SIAM J. Comput. 25, 235–251 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ailon, N., Charikar, M.: Personal comunication (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harb, B., Kannan, S., McGregor, A. (2005). Approximating the Best-Fit Tree Under L p Norms. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2005 2005. Lecture Notes in Computer Science, vol 3624. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538462_11

Download citation

  • DOI: https://doi.org/10.1007/11538462_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28239-6

  • Online ISBN: 978-3-540-31874-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics