Abstract
Purpose
Pulmonary atresia with intact ventricular septum is a multifactorial disease requiring complex surgeries. The treatment route is determined based on the right ventricle (RV) size, tricuspid annulus size and coronary circulation dependency of RV. Since multiple parameters influence the post-operative success, a personalized decision-making based on computed hemodynamics is hypothesized to improve the treatment efficacy.
Methods
A lumped parameter cardiovascular model is developed to calculate the hemodynamics of virtual patients which are generated by statistical distribution of circulation parameters. Four cohorts each with 30 digital patients are grouped based on RV size. For each patient, biventricular and one-and-half ventricle (1.5 V) repair were applied in silico and assessed via pressure, flow and saturations computed for every organ bed.
Results
Biventricular and 1.5 V repair yield significant increase in the pulmonary flow and oxygen saturation for all patients compared to the pre-operative state (p-values < 0.001). Approximately 30% of generated patients failed to meet the sufficient saturation and flow following biventricular repair and were directed to 1.5 V repair. However, 14% of these 1.5 V repair patients failed post-operatively, requiring Fontan completion. Based on the pre-determined hemodynamics criteria, this study implies that patients having RV sizes larger than 22 ml/m2 are likely to undergo successful biventricular repair.
Conclusion
Pending further clinical trials, computational pre-interventional planning has the potential to screen patients that would not optimally fit to the traditional pathway prior to in vivo execution by providing personalized hemodynamic outcome. Statistical approach allows in silico clinical trials, useful for diseases with low patient numbers.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- ASD:
-
Atrial septal defect
- CFD:
-
Computational fluid dynamics
- EDVI:
-
End diastolic volume index
- IVC:
-
Inferior vena cava
- IQp :
-
Indexed pulmonary flow
- LPM:
-
Lumped parameter model
- PA-IVS:
-
Pulmonary atresia with intact ventricular septum
- PDA:
-
Patent ductus arteriosus
- RV:
-
Right ventricle
- SaO2 :
-
Arterial oxygen saturation
- SVC:
-
Superior vena cava
- TV:
-
Tricuspid valve
References
Chikkabyrappa SM, Loomba RS, Tretter JT. Pulmonary Atresia With an Intact Ventricular Septum: Preoperative Physiology, Imaging, and Management. Semin Cardiothorac Vasc Anesth. Sep 2018;22(3):245–255. doi:https://doi.org/10.1177/1089253218756757
Yoshimura N, Yamaguchi M, Ohashi H, et al. Pulmonary atresia with intact ventricular septum: strategy based on right ventricular morphology. J Thorac Cardiovasc Surg. Nov 2003;126(5):1417–26. doi:https://doi.org/10.1016/s0022-5223(03)01035-3
Gorla SR, Singh AP. Pulmonary Atresia With Intact Ventricular Septum. StatPearls. 2023.
Hanley FL, Sade RM, Blackstone EH, Kirklin JW, Freedom RM, Nanda NC. Outcomes in neonatal pulmonary atresia with intact ventricular septum. A multiinstitutional study. J Thorac Cardiovasc Surg. Mar 1993;105(3):406–23, 424-7; discussion 423-4.
Ashburn DA, Blackstone EH, Wells WJ, et al. Determinants of mortality and type of repair in neonates with pulmonary atresia and intact ventricular septum. J Thorac Cardiovasc Surg. Apr 2004;127(4):1000-7; discussion 1007-8. doi:https://doi.org/10.1016/j.jtcvs.2003.11.057
Schneider AW, Blom NA, Bruggemans EF, Hazekamp MG. More than 25 years of experience in managing pulmonary atresia with intact ventricular septum. Ann Thorac Surg. Nov 2014;98(5):1680–6. doi:https://doi.org/10.1016/j.athoracsur.2014.05.085
Migliavacca F, Pennati G, Dubini G, et al. Modeling of the Norwood circulation: effects of shunt size, vascular resistances, and heart rate. Am J Physiol Heart Circ Physiol. May 2001;280(5):H2076-86. doi:https://doi.org/10.1152/ajpheart.2001.280.5.H2076
Schiavazzi DE, Baretta A, Pennati G, Hsia TY, Marsden AL. Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty. Int J Numer Method Biomed Eng. Mar 2017;33(3)doi:https://doi.org/10.1002/cnm.2799
Corsini C, Baker C, Kung E, et al. An integrated approach to patient-specific predictive modeling for single ventricle heart palliation. Comput Methods Biomech Biomed Engin. 2014;17(14):1572–89. doi:https://doi.org/10.1080/10255842.2012.758254
Pennati G, Corsini C, Cosentino D, et al. Boundary conditions of patient-specific fluid dynamics modelling of cavopulmonary connections: possible adaptation of pulmonary resistances results in a critical issue for a virtual surgical planning. Interface Focus. Jun 6 2011;1(3):297–307. doi:https://doi.org/10.1098/rsfs.2010.0021
Dubini G, Ambrosi D, Bagnoli P, et al. Trends in biomedical engineering: focus on Patient Specific Modeling and Life Support Systems. J Appl Biomater Biomech. May-Aug 2011;9(2):109–17. doi:https://doi.org/10.5301/JABB.2011.8585
Lesage R, Van Oudheusden M, Schievano S, Van Hoyweghen I, Geris L, Capelli C. Mapping the use of computational modelling and simulation in clinics: A survey. Front Med Technol. 2023;5:1125524. doi:https://doi.org/10.3389/fmedt.2023.1125524
Conover T, Hlavacek AM, Migliavacca F, et al. An interactive simulation tool for patient-specific clinical decision support in single-ventricle physiology. J Thorac Cardiovasc Surg. Feb 2018;155(2):712–721. doi:https://doi.org/10.1016/j.jtcvs.2017.09.046
Morrison TM, Pathmanathan P, Adwan M, Margerrison E. Advancing Regulatory Science With Computational Modeling for Medical Devices at the FDA’s Office of Science and Engineering Laboratories. Front Med (Lausanne). 2018;5:241. doi:https://doi.org/10.3389/fmed.2018.00241
Moingeon P, Chenel M, Rousseau C, Voisin E, Guedj M. Virtual patients, digital twins and causal disease models: Paving the ground for in silico clinical trials. Drug Discov Today. Jul 2023;28(7):103605. doi:https://doi.org/10.1016/j.drudis.2023.103605
Rodero C, Strocchi M, Marciniak M, et al. Linking statistical shape models and simulated function in the healthy adult human heart. PLoS Comput Biol. Apr 2021;17(4):e1008851. doi:https://doi.org/10.1371/journal.pcbi.1008851
Goubergrits L, Vellguth K, Obermeier L, et al. CT-Based Analysis of Left Ventricular Hemodynamics Using Statistical Shape Modeling and Computational Fluid Dynamics. Front Cardiovasc Med. 2022;9:901902. doi:https://doi.org/10.3389/fcvm.2022.901902
Peirlinck M, Costabal FS, Yao J, et al. Precision medicine in human heart modeling: Perspectives, challenges, and opportunities. Biomech Model Mechanobiol. Jun 2021;20(3):803–831. doi:https://doi.org/10.1007/s10237-021-01421-z
Corral-Acero J, Margara F, Marciniak M, et al. The ‘Digital Twin’ to enable the vision of precision cardiology. Eur Heart J. Dec 21 2020;41(48):4556–4564. doi:https://doi.org/10.1093/eurheartj/ehaa159
Peer SM, Yildirim C, Desai M, et al. Mechanical support of pulmonary blood flow as a strategy to support the Norwood circulation-lumped parameter model study. Eur J Cardiothorac Surg. Jun 15 2022;62(1)doi:https://doi.org/10.1093/ejcts/ezac262
Yigit B, Tutsak E, Yildirim C, Hutchon D, Pekkan K. Transitional fetal hemodynamics and gas exchange in premature postpartum adaptation: immediate vs. delayed cord clamping. Matern Health Neonatol Perinatol. 2019;5:5. doi:https://doi.org/10.1186/s40748-019-0100-1
Yigit MB, Kowalski WJ, Hutchon DJ, Pekkan K. Transition from fetal to neonatal circulation: Modeling the effect of umbilical cord clamping. J Biomech. Jun 25 2015;48(9):1662–70. doi:https://doi.org/10.1016/j.jbiomech.2015.02.040
Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. Jul 1974;35(1):117–26. doi:https://doi.org/10.1161/01.res.35.1.117
Stergiopulos N, Meister JJ, Westerhof N. Determinants of stroke volume and systolic and diastolic aortic pressure. Am J Physiol. Jun 1996;270(6 Pt 2):H2050-9. doi:https://doi.org/10.1152/ajpheart.1996.270.6.H2050
LaFarge CG, Miettinen OS. The estimation of oxygen consumption. Cardiovasc Res. Jan 1970;4(1):23–30. doi:https://doi.org/10.1093/cvr/4.1.23
Naito Y, Aoki M, Watanabe M, et al. Factors affecting systemic oxygen delivery after Norwood procedure with Sano modification. Ann Thorac Surg. Jan 2010;89(1):168–73. doi:https://doi.org/10.1016/j.athoracsur.2009.09.032
Savenije OE, Brand PL. Accuracy and precision of test weighing to assess milk intake in newborn infants. Arch Dis Child Fetal Neonatal Ed. Sep 2006;91(5):F330-2. doi:https://doi.org/10.1136/adc.2005.091876
Chuang ML, Hibberd MG, Salton CJ, et al. Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction: assessment by two- and three-dimensional echocardiography and magnetic resonance imaging. J Am Coll Cardiol. Feb 2000;35(2):477–84. doi:https://doi.org/10.1016/s0735-1097(99)00551-3
Kwak SG, Kim JH. Central limit theorem: the cornerstone of modern statistics. Korean J Anesthesiol. Apr 2017;70(2):144–156. doi:https://doi.org/10.4097/kjae.2017.70.2.144
Nichols WW, O’Rourke MF, Vlachopoulos C. McDonald’s Blood Flow in Arteries Theoretical, Experimental and Clinical Principles. vol 6. CRC; 2011.
Alwi M. Management algorithm in pulmonary atresia with intact ventricular septum. Catheter Cardiovasc Interv. May 2006;67(5):679–86. doi:https://doi.org/10.1002/ccd.20672
Khalique OK, Jelnin V, Hueske A, et al. Right Heart Morphology of Candidate Patients for Transcatheter Tricuspid Valve Interventions. Cardiovasc Eng Technol. Aug 2022;13(4):573–589. doi:https://doi.org/10.1007/s13239-021-00595-y
Muraru D, Gavazzoni M, Heilbron F, et al. Reference ranges of tricuspid annulus geometry in healthy adults using a dedicated three-dimensional echocardiography software package. Front Cardiovasc Med. 2022;9:1011931. doi:https://doi.org/10.3389/fcvm.2022.1011931
LaPar DJ, Bacha E. Pulmonary Atresia With Intact Ventricular Septum With Borderline Tricuspid Valve: How Small Is Too Small. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2019;22:27–31. doi:https://doi.org/10.1053/j.pcsu.2019.02.007
Gleich S, Latham GJ, Joffe D, Ross FJ. Perioperative and Anesthetic Considerations in Pulmonary Atresia With Intact Ventricular Septum. Semin Cardiothorac Vasc Anesth. Sep 2018;22(3):256–264. doi:https://doi.org/10.1177/1089253217737180
Yildirim C, Ural B, Pekkan K, Odemis E. Data from: In silico hemodynamics of the computer-generated pulmonary atresia with intact ventricular septum patients. 2023. doi:https://doi.org/10.5281/zenodo.10057252
Miwa K, Iwai S, Kanaya T, Kawai S. Norwood Operation with Right Ventricular-Pulmonary Artery Shunt Versus Comprehensive Stage II After Bilateral Pulmonary Artery Banding Palliation. Pediatr Cardiol. Aug 9 2023;doi:https://doi.org/10.1007/s00246-023-03258-y
Salik I, Mehta B, Ambati S. Bidirectional Glenn Procedure or Hemi-Fontan. StatPearls. 2023.
Funding
This study was funded by ERC-PoC 966765 BloodTurbine research grant (KP).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
Authors declare no conflict of interest.
Additional information
Communicated by Zhenglun Alan Wei.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yıldırım, C., Ural, B., Odemis, E. et al. Computer-generated Clinical Decision-making in the Treatment of Pulmonary Atresia with Intact Ventricular Septum. Cardiovasc Eng Tech 16, 222–237 (2025). https://doi.org/10.1007/s13239-024-00769-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13239-024-00769-4