[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Computer-generated Clinical Decision-making in the Treatment of Pulmonary Atresia with Intact Ventricular Septum

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Pulmonary atresia with intact ventricular septum is a multifactorial disease requiring complex surgeries. The treatment route is determined based on the right ventricle (RV) size, tricuspid annulus size and coronary circulation dependency of RV. Since multiple parameters influence the post-operative success, a personalized decision-making based on computed hemodynamics is hypothesized to improve the treatment efficacy.

Methods

A lumped parameter cardiovascular model is developed to calculate the hemodynamics of virtual patients which are generated by statistical distribution of circulation parameters. Four cohorts each with 30 digital patients are grouped based on RV size. For each patient, biventricular and one-and-half ventricle (1.5 V) repair were applied in silico and assessed via pressure, flow and saturations computed for every organ bed.

Results

Biventricular and 1.5 V repair yield significant increase in the pulmonary flow and oxygen saturation for all patients compared to the pre-operative state (p-values < 0.001). Approximately 30% of generated patients failed to meet the sufficient saturation and flow following biventricular repair and were directed to 1.5 V repair. However, 14% of these 1.5 V repair patients failed post-operatively, requiring Fontan completion. Based on the pre-determined hemodynamics criteria, this study implies that patients having RV sizes larger than 22 ml/m2 are likely to undergo successful biventricular repair.

Conclusion

Pending further clinical trials, computational pre-interventional planning has the potential to screen patients that would not optimally fit to the traditional pathway prior to in vivo execution by providing personalized hemodynamic outcome. Statistical approach allows in silico clinical trials, useful for diseases with low patient numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

ASD:

Atrial septal defect

CFD:

Computational fluid dynamics

EDVI:

End diastolic volume index

IVC:

Inferior vena cava

IQp :

Indexed pulmonary flow

LPM:

Lumped parameter model

PA-IVS:

Pulmonary atresia with intact ventricular septum

PDA:

Patent ductus arteriosus

RV:

Right ventricle

SaO2 :

Arterial oxygen saturation

SVC:

Superior vena cava

TV:

Tricuspid valve

References

  1. Chikkabyrappa SM, Loomba RS, Tretter JT. Pulmonary Atresia With an Intact Ventricular Septum: Preoperative Physiology, Imaging, and Management. Semin Cardiothorac Vasc Anesth. Sep 2018;22(3):245–255. doi:https://doi.org/10.1177/1089253218756757

    Article  Google Scholar 

  2. Yoshimura N, Yamaguchi M, Ohashi H, et al. Pulmonary atresia with intact ventricular septum: strategy based on right ventricular morphology. J Thorac Cardiovasc Surg. Nov 2003;126(5):1417–26. doi:https://doi.org/10.1016/s0022-5223(03)01035-3

    Article  Google Scholar 

  3. Gorla SR, Singh AP. Pulmonary Atresia With Intact Ventricular Septum. StatPearls. 2023.

  4. Hanley FL, Sade RM, Blackstone EH, Kirklin JW, Freedom RM, Nanda NC. Outcomes in neonatal pulmonary atresia with intact ventricular septum. A multiinstitutional study. J Thorac Cardiovasc Surg. Mar 1993;105(3):406–23, 424-7; discussion 423-4.

    Article  CAS  Google Scholar 

  5. Ashburn DA, Blackstone EH, Wells WJ, et al. Determinants of mortality and type of repair in neonates with pulmonary atresia and intact ventricular septum. J Thorac Cardiovasc Surg. Apr 2004;127(4):1000-7; discussion 1007-8. doi:https://doi.org/10.1016/j.jtcvs.2003.11.057

  6. Schneider AW, Blom NA, Bruggemans EF, Hazekamp MG. More than 25 years of experience in managing pulmonary atresia with intact ventricular septum. Ann Thorac Surg. Nov 2014;98(5):1680–6. doi:https://doi.org/10.1016/j.athoracsur.2014.05.085

    Article  Google Scholar 

  7. Migliavacca F, Pennati G, Dubini G, et al. Modeling of the Norwood circulation: effects of shunt size, vascular resistances, and heart rate. Am J Physiol Heart Circ Physiol. May 2001;280(5):H2076-86. doi:https://doi.org/10.1152/ajpheart.2001.280.5.H2076

    Article  PubMed  Google Scholar 

  8. Schiavazzi DE, Baretta A, Pennati G, Hsia TY, Marsden AL. Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty. Int J Numer Method Biomed Eng. Mar 2017;33(3)doi:https://doi.org/10.1002/cnm.2799

  9. Corsini C, Baker C, Kung E, et al. An integrated approach to patient-specific predictive modeling for single ventricle heart palliation. Comput Methods Biomech Biomed Engin. 2014;17(14):1572–89. doi:https://doi.org/10.1080/10255842.2012.758254

    Article  PubMed  Google Scholar 

  10. Pennati G, Corsini C, Cosentino D, et al. Boundary conditions of patient-specific fluid dynamics modelling of cavopulmonary connections: possible adaptation of pulmonary resistances results in a critical issue for a virtual surgical planning. Interface Focus. Jun 6 2011;1(3):297–307. doi:https://doi.org/10.1098/rsfs.2010.0021

    Article  Google Scholar 

  11. Dubini G, Ambrosi D, Bagnoli P, et al. Trends in biomedical engineering: focus on Patient Specific Modeling and Life Support Systems. J Appl Biomater Biomech. May-Aug 2011;9(2):109–17. doi:https://doi.org/10.5301/JABB.2011.8585

    Article  Google Scholar 

  12. Lesage R, Van Oudheusden M, Schievano S, Van Hoyweghen I, Geris L, Capelli C. Mapping the use of computational modelling and simulation in clinics: A survey. Front Med Technol. 2023;5:1125524. doi:https://doi.org/10.3389/fmedt.2023.1125524

    Article  PubMed  PubMed Central  Google Scholar 

  13. Conover T, Hlavacek AM, Migliavacca F, et al. An interactive simulation tool for patient-specific clinical decision support in single-ventricle physiology. J Thorac Cardiovasc Surg. Feb 2018;155(2):712–721. doi:https://doi.org/10.1016/j.jtcvs.2017.09.046

    Article  Google Scholar 

  14. Morrison TM, Pathmanathan P, Adwan M, Margerrison E. Advancing Regulatory Science With Computational Modeling for Medical Devices at the FDA’s Office of Science and Engineering Laboratories. Front Med (Lausanne). 2018;5:241. doi:https://doi.org/10.3389/fmed.2018.00241

    Article  PubMed  Google Scholar 

  15. Moingeon P, Chenel M, Rousseau C, Voisin E, Guedj M. Virtual patients, digital twins and causal disease models: Paving the ground for in silico clinical trials. Drug Discov Today. Jul 2023;28(7):103605. doi:https://doi.org/10.1016/j.drudis.2023.103605

    Article  CAS  Google Scholar 

  16. Rodero C, Strocchi M, Marciniak M, et al. Linking statistical shape models and simulated function in the healthy adult human heart. PLoS Comput Biol. Apr 2021;17(4):e1008851. doi:https://doi.org/10.1371/journal.pcbi.1008851

    Article  CAS  Google Scholar 

  17. Goubergrits L, Vellguth K, Obermeier L, et al. CT-Based Analysis of Left Ventricular Hemodynamics Using Statistical Shape Modeling and Computational Fluid Dynamics. Front Cardiovasc Med. 2022;9:901902. doi:https://doi.org/10.3389/fcvm.2022.901902

    Article  PubMed  PubMed Central  Google Scholar 

  18. Peirlinck M, Costabal FS, Yao J, et al. Precision medicine in human heart modeling: Perspectives, challenges, and opportunities. Biomech Model Mechanobiol. Jun 2021;20(3):803–831. doi:https://doi.org/10.1007/s10237-021-01421-z

    Article  CAS  Google Scholar 

  19. Corral-Acero J, Margara F, Marciniak M, et al. The ‘Digital Twin’ to enable the vision of precision cardiology. Eur Heart J. Dec 21 2020;41(48):4556–4564. doi:https://doi.org/10.1093/eurheartj/ehaa159

    Article  Google Scholar 

  20. Peer SM, Yildirim C, Desai M, et al. Mechanical support of pulmonary blood flow as a strategy to support the Norwood circulation-lumped parameter model study. Eur J Cardiothorac Surg. Jun 15 2022;62(1)doi:https://doi.org/10.1093/ejcts/ezac262

  21. Yigit B, Tutsak E, Yildirim C, Hutchon D, Pekkan K. Transitional fetal hemodynamics and gas exchange in premature postpartum adaptation: immediate vs. delayed cord clamping. Matern Health Neonatol Perinatol. 2019;5:5. doi:https://doi.org/10.1186/s40748-019-0100-1

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yigit MB, Kowalski WJ, Hutchon DJ, Pekkan K. Transition from fetal to neonatal circulation: Modeling the effect of umbilical cord clamping. J Biomech. Jun 25 2015;48(9):1662–70. doi:https://doi.org/10.1016/j.jbiomech.2015.02.040

    Article  Google Scholar 

  23. Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. Jul 1974;35(1):117–26. doi:https://doi.org/10.1161/01.res.35.1.117

    Article  CAS  Google Scholar 

  24. Stergiopulos N, Meister JJ, Westerhof N. Determinants of stroke volume and systolic and diastolic aortic pressure. Am J Physiol. Jun 1996;270(6 Pt 2):H2050-9. doi:https://doi.org/10.1152/ajpheart.1996.270.6.H2050

  25. LaFarge CG, Miettinen OS. The estimation of oxygen consumption. Cardiovasc Res. Jan 1970;4(1):23–30. doi:https://doi.org/10.1093/cvr/4.1.23

    Article  CAS  Google Scholar 

  26. Naito Y, Aoki M, Watanabe M, et al. Factors affecting systemic oxygen delivery after Norwood procedure with Sano modification. Ann Thorac Surg. Jan 2010;89(1):168–73. doi:https://doi.org/10.1016/j.athoracsur.2009.09.032

    Article  Google Scholar 

  27. Savenije OE, Brand PL. Accuracy and precision of test weighing to assess milk intake in newborn infants. Arch Dis Child Fetal Neonatal Ed. Sep 2006;91(5):F330-2. doi:https://doi.org/10.1136/adc.2005.091876

    Article  Google Scholar 

  28. Chuang ML, Hibberd MG, Salton CJ, et al. Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction: assessment by two- and three-dimensional echocardiography and magnetic resonance imaging. J Am Coll Cardiol. Feb 2000;35(2):477–84. doi:https://doi.org/10.1016/s0735-1097(99)00551-3

    Article  CAS  PubMed  Google Scholar 

  29. Kwak SG, Kim JH. Central limit theorem: the cornerstone of modern statistics. Korean J Anesthesiol. Apr 2017;70(2):144–156. doi:https://doi.org/10.4097/kjae.2017.70.2.144

    Article  Google Scholar 

  30. Nichols WW, O’Rourke MF, Vlachopoulos C. McDonald’s Blood Flow in Arteries Theoretical, Experimental and Clinical Principles. vol 6. CRC; 2011.

  31. Alwi M. Management algorithm in pulmonary atresia with intact ventricular septum. Catheter Cardiovasc Interv. May 2006;67(5):679–86. doi:https://doi.org/10.1002/ccd.20672

    Article  Google Scholar 

  32. Khalique OK, Jelnin V, Hueske A, et al. Right Heart Morphology of Candidate Patients for Transcatheter Tricuspid Valve Interventions. Cardiovasc Eng Technol. Aug 2022;13(4):573–589. doi:https://doi.org/10.1007/s13239-021-00595-y

    Article  Google Scholar 

  33. Muraru D, Gavazzoni M, Heilbron F, et al. Reference ranges of tricuspid annulus geometry in healthy adults using a dedicated three-dimensional echocardiography software package. Front Cardiovasc Med. 2022;9:1011931. doi:https://doi.org/10.3389/fcvm.2022.1011931

    Article  PubMed  PubMed Central  Google Scholar 

  34. LaPar DJ, Bacha E. Pulmonary Atresia With Intact Ventricular Septum With Borderline Tricuspid Valve: How Small Is Too Small. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2019;22:27–31. doi:https://doi.org/10.1053/j.pcsu.2019.02.007

    Article  PubMed  Google Scholar 

  35. Gleich S, Latham GJ, Joffe D, Ross FJ. Perioperative and Anesthetic Considerations in Pulmonary Atresia With Intact Ventricular Septum. Semin Cardiothorac Vasc Anesth. Sep 2018;22(3):256–264. doi:https://doi.org/10.1177/1089253217737180

    Article  Google Scholar 

  36. Yildirim C, Ural B, Pekkan K, Odemis E. Data from: In silico hemodynamics of the computer-generated pulmonary atresia with intact ventricular septum patients. 2023. doi:https://doi.org/10.5281/zenodo.10057252

  37. Miwa K, Iwai S, Kanaya T, Kawai S. Norwood Operation with Right Ventricular-Pulmonary Artery Shunt Versus Comprehensive Stage II After Bilateral Pulmonary Artery Banding Palliation. Pediatr Cardiol. Aug 9 2023;doi:https://doi.org/10.1007/s00246-023-03258-y

  38. Salik I, Mehta B, Ambati S. Bidirectional Glenn Procedure or Hemi-Fontan. StatPearls. 2023.

Download references

Funding

This study was funded by ERC-PoC 966765 BloodTurbine research grant (KP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerem Pekkan.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interest.

Additional information

Communicated by Zhenglun Alan Wei.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldırım, C., Ural, B., Odemis, E. et al. Computer-generated Clinical Decision-making in the Treatment of Pulmonary Atresia with Intact Ventricular Septum. Cardiovasc Eng Tech 16, 222–237 (2025). https://doi.org/10.1007/s13239-024-00769-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-024-00769-4

Keywords

Profiles

  1. Ender Odemis