Abstract
The \(\mathbb {Z}_{2^s}\)-additive codes are subgroups of \(\mathbb {Z}^n_{2^s}\), and can be seen as a generalization of linear codes over \(\mathbb {Z}_2\) and \(\mathbb {Z}_4\). A \(\mathbb {Z}_{2^s}\)-linear Hadamard code is a binary Hadamard code which is the Gray map image of a \(\mathbb {Z}_{2^s}\)-additive code. It is known that the dimension of the kernel can be used to give a complete classification of the \(\mathbb {Z}_4\)-linear Hadamard codes. In this paper, the kernel of \(\mathbb {Z}_{2^s}\)-linear Hadamard codes of length \(2^t\) and its dimension are established for \(s > 2\). Moreover, we prove that this invariant only provides a complete classification for some values of t and s. The exact amount of nonequivalent such codes are given up to \(t=11\) for any \(s\ge 2\), by using also the rank.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Assmus E.F., Jr., Key J.D.: Designs and Their Codes. Cambridge University Press, Great Britain (1992).
Bauer H., Ganter B., Hergert F.: Algebraic techniques for nonlinear codes. Combinatorica 3(1), 21–33 (1983).
Blake I.F.: Codes over integer residue rings. Inf. Control 29, 295–300 (1975).
Borges J., Fernández C., Rifà J.: Every \(\mathbb{Z}_{2k}\)-code is a binary propelinear code. Electron. Notes Discret. Math. 10, 100–102 (2001).
Borges J., Fernández-Córdoba C., Pujol J., Rifà J., Villanueva M.: \(\mathbb{Z}_2\mathbb{Z}_4\)-linear codes: generator matrices and duality. Des. Codes Cryptogr. 54(2), 167–179 (2010).
Bosma W., Cannon, J.J., Fieker, C., Steel, A.: Handbook of Magma functions, Edn 2.22 (2016). http://magma.maths.usyd.edu.au/magma/.
Carlet C.: \(\mathbb{Z}_{2^k}\)-linear codes. IEEE Trans. Inf. Theory 44(4), 1543–1547 (1998).
Dougherty S.T., Fernández-Córdoba C.: Codes over \(\mathbb{Z}_{2^ k}\), gray map and self-dual codes. Adv. Math. Commun. 5(4), 571–588 (2011).
Fernández-Córdoba C., Vela C., Villanueva M.: Construction and classification of the \(\mathbb{Z}_{2^s}\)-linear Hadamard codes. Electron. Notes Discret. Math. 54, 247–252 (2016).
Fernández-Córdoba C., Vela C., Villanueva M.: On the Kernel of \(\mathbb{Z}_{2^{s}}\)-linear Hadamard Codes. In: Coding Theory and Applications, ICMCTA 2017. Lecture Notes in Computer Science, vol. 10495, pp. 107–117 (2017).
Gupta M.K., Bhandari M.C., Lal A.K.: On linear codes over \(\mathbb{Z}_{2^s}\). Des. Codes Cryptogr. 36(3), 227–244 (2005).
Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \(\mathbb{Z}_4\)-linearity of Kerdock, preparata, goethals and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994).
Krotov D.S.: \(\mathbb{Z}_4\)-linear Hadamard and extended perfect codes. International workshop on coding and cryptography, ser. Electron. Notes Discret. Math. 6, 107–112 (2001).
Krotov D.S.: On \(\mathbb{Z}_{2^k}\)-dual binary codes. IEEE Trans. Inf. Theory 53(4), 1532–1537 (2007).
Krotov D.S., Villanueva M.: Classification of the \(\mathbb{Z}_2\mathbb{Z}_4\)-linear Hadamard codes and their automorphism groups. IEEE Trans. Inf. Theory 61(2), 887–894 (2015).
MacWilliams F.J., Sloane N.J.A.: The Theory of Error-correcting Codes, vol. 16. Elsevier, Amsterdam (1977).
Nechaev A.A., Khonol’d T.: Weighted modules and representations of codes. Probl. Inf. Transm. 35(3), 205–223 (1999).
Phelps K.T., Rifà J., Villanueva M.: On the additive (\(\mathbb{Z}_4\)-linear and non-\(\mathbb{Z}_4\)-linear) Hadamard codes: rank and kernel. IEEE Trans. Inf. Theory 52(1), 316–319 (2006).
Shankar P.: On BCH codes over arbitrary integer rings. IEEE Trans. Inf. Theory 25(4), 480–483 (1979).
Shi M., Sepasdar Z., Alahmadi A., Solé P.: On two-weight \(\mathbb{Z}_{2^k}\)-codes. Des. Codes Cryptogr. 86(6), 1201–1209 (2018).
Tapia-Recillas H., Vega G.: On \(\mathbb{Z}_{2^k}\)-linear and quaternary codes. SIAM J. Discret. Math. 17(1), 103–113 (2003).
Acknowledgements
This work has been partially supported by the Spanish MINECO under Grants TIN2016-77918-P (AEI/FEDER, UE) and MTM2015-69138-REDT.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.
Rights and permissions
About this article
Cite this article
Fernández-Córdoba, C., Vela, C. & Villanueva, M. On \(\mathbb {Z}_{2^s}\)-linear Hadamard codes: kernel and partial classification. Des. Codes Cryptogr. 87, 417–435 (2019). https://doi.org/10.1007/s10623-018-0546-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-018-0546-6
Keywords
- Kernel
- Hadamard code
- \(\mathbb {Z}_{2^s}\)-linear code
- \(\mathbb {Z}_{2^s}\)-additive code
- Gray map
- Classification