[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On \(\mathbb {Z}_{2^s}\)-linear Hadamard codes: kernel and partial classification

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The \(\mathbb {Z}_{2^s}\)-additive codes are subgroups of \(\mathbb {Z}^n_{2^s}\), and can be seen as a generalization of linear codes over \(\mathbb {Z}_2\) and \(\mathbb {Z}_4\). A \(\mathbb {Z}_{2^s}\)-linear Hadamard code is a binary Hadamard code which is the Gray map image of a \(\mathbb {Z}_{2^s}\)-additive code. It is known that the dimension of the kernel can be used to give a complete classification of the \(\mathbb {Z}_4\)-linear Hadamard codes. In this paper, the kernel of \(\mathbb {Z}_{2^s}\)-linear Hadamard codes of length \(2^t\) and its dimension are established for \(s > 2\). Moreover, we prove that this invariant only provides a complete classification for some values of t and s. The exact amount of nonequivalent such codes are given up to \(t=11\) for any \(s\ge 2\), by using also the rank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Assmus E.F., Jr., Key J.D.: Designs and Their Codes. Cambridge University Press, Great Britain (1992).

  2. Bauer H., Ganter B., Hergert F.: Algebraic techniques for nonlinear codes. Combinatorica 3(1), 21–33 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  3. Blake I.F.: Codes over integer residue rings. Inf. Control 29, 295–300 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  4. Borges J., Fernández C., Rifà J.: Every \(\mathbb{Z}_{2k}\)-code is a binary propelinear code. Electron. Notes Discret. Math. 10, 100–102 (2001).

    Article  MATH  Google Scholar 

  5. Borges J., Fernández-Córdoba C., Pujol J., Rifà J., Villanueva M.: \(\mathbb{Z}_2\mathbb{Z}_4\)-linear codes: generator matrices and duality. Des. Codes Cryptogr. 54(2), 167–179 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  6. Bosma W., Cannon, J.J., Fieker, C., Steel, A.: Handbook of Magma functions, Edn 2.22 (2016). http://magma.maths.usyd.edu.au/magma/.

  7. Carlet C.: \(\mathbb{Z}_{2^k}\)-linear codes. IEEE Trans. Inf. Theory 44(4), 1543–1547 (1998).

    Article  MATH  Google Scholar 

  8. Dougherty S.T., Fernández-Córdoba C.: Codes over \(\mathbb{Z}_{2^ k}\), gray map and self-dual codes. Adv. Math. Commun. 5(4), 571–588 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  9. Fernández-Córdoba C., Vela C., Villanueva M.: Construction and classification of the \(\mathbb{Z}_{2^s}\)-linear Hadamard codes. Electron. Notes Discret. Math. 54, 247–252 (2016).

    Article  MATH  Google Scholar 

  10. Fernández-Córdoba C., Vela C., Villanueva M.: On the Kernel of \(\mathbb{Z}_{2^{s}}\)-linear Hadamard Codes. In: Coding Theory and Applications, ICMCTA 2017. Lecture Notes in Computer Science, vol. 10495, pp. 107–117 (2017).

  11. Gupta M.K., Bhandari M.C., Lal A.K.: On linear codes over \(\mathbb{Z}_{2^s}\). Des. Codes Cryptogr. 36(3), 227–244 (2005).

    Article  MathSciNet  Google Scholar 

  12. Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \(\mathbb{Z}_4\)-linearity of Kerdock, preparata, goethals and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994).

    Article  MATH  Google Scholar 

  13. Krotov D.S.: \(\mathbb{Z}_4\)-linear Hadamard and extended perfect codes. International workshop on coding and cryptography, ser. Electron. Notes Discret. Math. 6, 107–112 (2001).

    Article  Google Scholar 

  14. Krotov D.S.: On \(\mathbb{Z}_{2^k}\)-dual binary codes. IEEE Trans. Inf. Theory 53(4), 1532–1537 (2007).

    Article  MATH  Google Scholar 

  15. Krotov D.S., Villanueva M.: Classification of the \(\mathbb{Z}_2\mathbb{Z}_4\)-linear Hadamard codes and their automorphism groups. IEEE Trans. Inf. Theory 61(2), 887–894 (2015).

    Article  MATH  Google Scholar 

  16. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-correcting Codes, vol. 16. Elsevier, Amsterdam (1977).

    MATH  Google Scholar 

  17. Nechaev A.A., Khonol’d T.: Weighted modules and representations of codes. Probl. Inf. Transm. 35(3), 205–223 (1999).

    MathSciNet  Google Scholar 

  18. Phelps K.T., Rifà J., Villanueva M.: On the additive (\(\mathbb{Z}_4\)-linear and non-\(\mathbb{Z}_4\)-linear) Hadamard codes: rank and kernel. IEEE Trans. Inf. Theory 52(1), 316–319 (2006).

    Article  MATH  Google Scholar 

  19. Shankar P.: On BCH codes over arbitrary integer rings. IEEE Trans. Inf. Theory 25(4), 480–483 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  20. Shi M., Sepasdar Z., Alahmadi A., Solé P.: On two-weight \(\mathbb{Z}_{2^k}\)-codes. Des. Codes Cryptogr. 86(6), 1201–1209 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  21. Tapia-Recillas H., Vega G.: On \(\mathbb{Z}_{2^k}\)-linear and quaternary codes. SIAM J. Discret. Math. 17(1), 103–113 (2003).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Spanish MINECO under Grants TIN2016-77918-P (AEI/FEDER, UE) and MTM2015-69138-REDT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Vela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Córdoba, C., Vela, C. & Villanueva, M. On \(\mathbb {Z}_{2^s}\)-linear Hadamard codes: kernel and partial classification. Des. Codes Cryptogr. 87, 417–435 (2019). https://doi.org/10.1007/s10623-018-0546-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0546-6

Keywords

Mathematics Subject Classification

Profiles

  1. Cristina Fernández-Córdoba
  2. Carlos Vela