[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fixed-Parameter Tractable Algorithms for Tracking Set Problems

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10743))

Included in the following conference series:

Abstract

We consider parameterized complexity of the recently introduced problem of tracking paths in graphs, motivated by applications in security and wireless networks. Given an undirected and unweighted graph with a specified source s and a terminal t, the goal is to find a k-sized subset of vertices that intersect with each s-t path (or s-t shortest) path in a distinct sequence (or set).

We first generalize this problem to a problem on set systems with a universe of size n and a m sized family of subsets of the universe. Using a correspondence with the well-studied Test Cover Problem, we give a lower bound of \(\lg m\) for the solution size and show the problem fixed-parameter tractable. We also show that when k is the parameter, then for such a set system

  • finding a Tracking Set for such a set system of size at most \(\lg m +k\) is hard for parameterized complexity class W[2];

  • finding a Tracking Set of size at most \(m-k\) is fixed parameter tractable;

  • finding a Tracking Set of size at most \(n-k\) is complete for parameterized complexity class W[1].

Using the solution for the set system generalization, we show the main result of the paper that finding a Tracking Set of size at most k for shortest paths is fixed-parameter tractable. We first give an \(O^*(2^{k2^k})\) algorithm using the set system solution, which we later improve to \(O^*(2^{k^2})\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use lg to denote logarithm to the base 2.

  2. 2.

    \(O^*\) notation ignores polynomial factors.

References

  1. Banik, A., Katz, M.J., Packer, E., Simakov, M.: Tracking paths. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 67–79. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_7

    Chapter  Google Scholar 

  2. Bhatti, S., Xu, J.: Survey of target tracking protocols using wireless sensor network. In: Proceedings of the 2009 Fifth International Conference on Wireless and Mobile Communications, ICWMC 2009, Washington, D.C., pp. 110–115. IEEE Computer Society (2009)

    Google Scholar 

  3. De Bontridder, K.M.J., Halldórsson, B.V., Halldórsson, M.M., Hurkens, C.A.J., Lenstra, J.K., Ravi, R., Stougie, L.: Approximation algorithms for the test cover problem. Math. Program. 98(1–3), 477–491 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  5. Crowston, R., Gutin, G., Jones, M., Muciaccia, G., Yeo, A.: Parameterizations of test cover with bounded test sizes. Algorithmica 74(1), 367–384 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Crowston, R., Gutin, G., Jones, M., Saurabh, S., Yeo, A.: Parameterized study of the test cover problem. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 283–295. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2_27

    Chapter  Google Scholar 

  7. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms, 1st edn. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  8. De Bontridder, K.M.J., Lageweg, B.J., Lenstra, J.K., Orlin, J.B., Stougie, L.: Branch-and-bound algorithms for the test cover problem. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 223–233. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45749-6_23

    Chapter  Google Scholar 

  9. Ganesan, D., Cristescu, R., Beferull-Lozano, B.: Power-efficient sensor placement and transmission structure for data gathering under distortion constraints. ACM Trans. Sens. Netw. 2(2), 155–181 (2006)

    Article  Google Scholar 

  10. Gutin, G., Muciaccia, G., Yeo, A.: (Non-)existence of polynomial kernels for the test cover problem. Inf. Process. Lett. 113(4), 123–126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Halldórsson, B.V., Halldórsson, M.M., Ravi, R.: On the approximability of the minimum test collection problem. In: auf der Heide, F.M. (ed.) ESA 2001. LNCS, vol. 2161, pp. 158–169. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44676-1_13

    Chapter  Google Scholar 

  12. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algorithms 31(2), 335–354 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed values. J. Comput. Syst. Sci. 75(2), 137–153 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Moret, B.M.E., Shapiro, H.D.: On minimizing a set of tests. SIAM J. Sci. Stat. Comput. 6(4), 983–1003 (1985)

    Article  Google Scholar 

  15. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 410–421 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Venkatesh Raman and Saket Saurabh for fruitful discussions and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratibha Choudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banik, A., Choudhary, P. (2018). Fixed-Parameter Tractable Algorithms for Tracking Set Problems. In: Panda, B., Goswami, P. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2018. Lecture Notes in Computer Science(), vol 10743. Springer, Cham. https://doi.org/10.1007/978-3-319-74180-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74180-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74179-6

  • Online ISBN: 978-3-319-74180-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics