[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

DREQ: Document Re-ranking Using Entity-Based Query Understanding

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2024)

Abstract

While entity-oriented neural IR models have advanced significantly, they often overlook a key nuance: the varying degrees of influence individual entities within a document have on its overall relevance. Addressing this gap, we present DREQ, an entity-oriented dense document re-ranking model. Uniquely, we emphasize the query-relevant entities within a document’s representation while simultaneously attenuating the less relevant ones, thus obtaining a query-specific entity-centric document representation. We then combine this entity-centric document representation with the text-centric representation of the document to obtain a “hybrid” representation of the document. We learn a relevance score for the document using this hybrid representation. Using four large-scale benchmarks, we show that DREQ outperforms state-of-the-art neural and non-neural re-ranking methods, highlighting the effectiveness of our entity-oriented representation approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Code and data: https://github.com/shubham526/ECIR2024-DREQ.

  2. 2.

    Term coined by Dr. Laura Dietz at the SIGIR 2023 tutorial (https://github.com/laura-dietz/neurosymbolic-representations-for-IR).

References

  1. Akkalyoncu Yilmaz, Z., Yang, W., Zhang, H., Lin, J.: Cross-domain modeling of sentence-level evidence for document retrieval. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, pp. 3490–3496. Association for Computational Linguistics, November 2019. https://doi.org/10.18653/v1/D19-1352. https://aclanthology.org/D19-1352

  2. Balog, K., Bron, M., De Rijke, M.: Query modeling for entity search based on terms, categories, and examples. ACM Trans. Inf. Syst. 29(4) (2011). https://doi.org/10.1145/2037661.2037667

  3. Cao, N.D., Izacard, G., Riedel, S., Petroni, F.: Autoregressive entity retrieval. In: International Conference on Learning Representations (2021). https://openreview.net/pdf?id=5k8F6UU39V

  4. Chatterjee, S., Dietz, L.: Entity retrieval using fine-grained entity aspects. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 20021, pp. 1662–1666. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3404835.3463035

  5. Chatterjee, S., Dietz, L.: BERT-ER: query-specific BERT entity representations for entity ranking. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2022, pp. 1466–1477. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3477495.3531944

  6. Ciglan, M., Nørvåg, K., Hluchý, L.: The SemSets model for ad-hoc semantic list search. In: Proceedings of the 21st International Conference on World Wide Web, WWW 2012, pp. 131–140. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2187836.2187855

  7. Clark, K., Luong, M., Le, Q.V., Manning, C.D.: ELECTRA: pre-training text encoders as discriminators rather than generators. CoRR abs/2003.10555 (2020). https://arxiv.org/abs/2003.10555

  8. Dai, Z., Callan, J.: Deeper text understanding for IR with contextual neural language modeling. CoRR abs/1905.09217 (2019). https://arxiv.org/abs/1905.09217

  9. Dai, Z., Callan, J.: Context-aware term weighting for first stage passage retrieval. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 20020, pp. 1533–1536. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3397271.3401204

  10. Dai, Z., Xiong, C., Callan, J., Liu, Z.: Convolutional neural networks for soft-matching n-grams in ad-hoc search. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, pp. 126–134. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3159652.3159659

  11. Dalton, J., Dietz, L., Allan, J.: Entity query feature expansion using knowledge base links. In: Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 365–374. ACM (2014)

    Google Scholar 

  12. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018). https://arxiv.org/abs/1810.04805

  13. Dietz, L.: ENT rank: retrieving entities for topical information needs through entity-neighbor-text relations. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, pp. 215–224. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3331184.3331257

  14. Dietz, L., Gamari, B., Dalton, J., Craswell, N.: TREC complex answer retrieval overview. In: TREC (2018)

    Google Scholar 

  15. Dietz, L., Verma, M., Radlinski, F., Craswell, N.: TREC complex answer retrieval overview. In: Proceedings of Text REtrieval Conference (TREC) (2017)

    Google Scholar 

  16. Ensan, F., Bagheri, E.: Document retrieval model through semantic linking. In: Proceedings of the 10th ACM International Conference on Web Search and Data Mining, WSDM 2017, pp. 181–190. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3018661.3018692

  17. Gabrilovich, E., Markovitch, S.: Wikipedia-based semantic interpretation for natural language processing. J. Artif. Intell. Res. 34, 443–498 (2009)

    Article  Google Scholar 

  18. Garigliotti, D., Balog, K.: On type-aware entity retrieval. In: Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval, ICTIR 2017, pp. 27–34. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3121050.3121054

  19. Gerritse, E.J., Hasibi, F., de Vries, A.P.: Graph-embedding empowered entity retrieval. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12035, pp. 97–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_7

    Chapter  Google Scholar 

  20. Gerritse, E.J., Hasibi, F., de Vries, A.P.: Entity-aware transformers for entity search. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2022, pp. 1455–1465. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3477495.3531971

  21. Graus, D., Tsagkias, M., Weerkamp, W., Meij, E., de Rijke, M.: Dynamic collective entity representations for entity ranking. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, WSDM 2016, pp. 595–604. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2835776.2835819

  22. Guo, J., Fan, Y., Ai, Q., Croft, W.B.: A deep relevance matching model for ad-hoc retrieval. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, CIKM 2016, pp. 55–64. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2983323.2983769

  23. Hasibi, F., Balog, K., Bratsberg, S.E.: Exploiting entity linking in queries for entity retrieval. In: Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval, ICTIR 2016, pp. 209–218. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2970398.2970406

  24. He, P., Liu, X., Gao, J., Chen, W.: DeBERta: decoding-enhanced BERT with disentangled attention. CoRR abs/2006.03654 (2020). https://arxiv.org/abs/2006.03654

  25. Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, CIKM 2013, pp. 2333–2338. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2505515.2505665

  26. Hui, K., Yates, A., Berberich, K., de Melo, G.: PACRR: a position-aware neural IR model for relevance matching. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1049–1058. Association for Computational Linguistics, Copenhagen, September 2017. https://doi.org/10.18653/v1/D17-1110. https://aclanthology.org/D17-1110

  27. Hui, K., Yates, A., Berberich, K., de Melo, G.: Co-PACRR: a context-aware neural IR model for ad-hoc retrieval. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, pp. 279–287. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3159652.3159689

  28. Jiang, Z., Yu, W., Zhou, D., Chen, Y., Feng, J., Yan, S.: ConvBERT: improving BERT with span-based dynamic convolution. CoRR abs/2008.02496 (2020). https://arxiv.org/abs/2008.02496

  29. Kaptein, R., Serdyukov, P., De Vries, A., Kamps, J.: Entity ranking using wikipedia as a pivot. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM 2010, pp. 69–78. Association for Computing Machinery, New York (2010). https://doi.org/10.1145/1871437.1871451

  30. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6769–6781. Association for Computational Linguistics, Online, November 2020. https://doi.org/10.18653/v1/2020.emnlp-main.550. https://aclanthology.org/2020.emnlp-main.550

  31. Khattab, O., Zaharia, M.: ColBERT: efficient and effective passage search via contextualized late interaction over BERT. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2020, pp. 39–48. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3397271.3401075

  32. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  33. Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6, 167–195 (2015). https://doi.org/10.3233/SW-140134

    Article  Google Scholar 

  34. Li, C., et al.: NPRF: a neural pseudo relevance feedback framework for ad-hoc information retrieval. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4482–4491. Association for Computational Linguistics, Brussels, October–November 2018. https://doi.org/10.18653/v1/D18-1478. https://aclanthology.org/D18-1478

  35. Li, C., Yates, A., MacAvaney, S., He, B., Sun, Y.: PARADE: passage representation aggregation for document reranking. CoRR abs/2008.09093 (2020). https://arxiv.org/abs/2008.09093

  36. Liu, X., Fang, H.: Latent entity space: a novel retrieval approach for entity-bearing queries. Inf. Retr. J. 18(6), 473–503 (2015)

    Article  Google Scholar 

  37. Liu, Y., et al.: RoBERta: a robustly optimized BERT pretraining approach. CoRR abs/1907.11692 (2019). https://arxiv.org/abs/1907.11692

  38. Liu, Z., Xiong, C., Sun, M., Liu, Z.: Entity-duet neural ranking: understanding the role of knowledge graph semantics in neural information retrieval. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, pp. 2395–2405. Association for Computational Linguistics, July 2018. https://doi.org/10.18653/v1/P18-1223. https://aclanthology.org/P18-1223

  39. MacAvaney, S., Yates, A., Cohan, A., Goharian, N.: CEDR: contextualized embeddings for document ranking. CoRR abs/1904.07094 (2019). https://arxiv.org/abs/1904.07094

  40. Mackie, I., Owoicho, P., Gemmell, C., Fischer, S., MacAvaney, S., Dalton, J.: Codec: complex document and entity collection. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2022, pp. 3067–3077. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3477495.3531712

  41. Manotumruksa, J., Dalton, J., Meij, E., Yilmaz, E.: CrossBERT: a triplet neural architecture for ranking entity properties. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2020, pp. 2049–2052. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3397271.3401265

  42. Metzler, D., Croft, W.B.: A Markov random field model for term dependencies. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2005, pp. 472–479. Association for Computing Machinery (2005). https://doi.org/10.1145/1076034.1076115

  43. Mitra, B., Craswell, N.: An updated duet model for passage re-ranking. CoRR abs/1903.07666 (2019). https://arxiv.org/abs/1903.07666

  44. Nalisnick, E., Mitra, B., Craswell, N., Caruana, R.: Improving document ranking with dual word embeddings. In: Proceedings of the 25th International Conference Companion on World Wide Web, WWW 2016 Companion, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, pp. 83–84 (2016). https://doi.org/10.1145/2872518.2889361

  45. Naseri, S., Dalton, J., Yates, A., Allan, J.: CEQE: contextualized embeddings for query expansion. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021. LNCS, vol. 12656, pp. 467–482. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72113-8_31

    Chapter  Google Scholar 

  46. Nguyen, T., et al.: MS MARCO: a human generated machine reading comprehension dataset. CoRR abs/1611.09268 (2016). https://arxiv.org/abs/1611.09268

  47. Nikolaev, F., Kotov, A.: Joint word and entity embeddings for entity retrieval from a knowledge graph. In: Jose, J.M., et al. (eds.) ECIR 2020, Part I. LNCS, vol. 12035, pp. 141–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_10

    Chapter  Google Scholar 

  48. Nikolaev, F., Kotov, A., Zhiltsov, N.: Parameterized fielded term dependence models for ad-hoc entity retrieval from knowledge graph. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2016, pp. 435–444. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2911451.2911545

  49. Nogueira, R.F., Cho, K.: Passage re-ranking with BERT. CoRR abs/1901.04085 (2019). https://arxiv.org/abs/1901.04085

  50. Nogueira, R.F., Yang, W., Cho, K., Lin, J.: Multi-stage document ranking with BERT. CoRR abs/1910.14424 (2019). https://arxiv.org/abs/1910.14424

  51. Nogueira, R.F., Yang, W., Lin, J., Cho, K.: Document expansion by query prediction. CoRR abs/1904.08375 (2019). https://arxiv.org/abs/1904.08375

  52. Piccinno, F., Ferragina, P.: From TagME to wat: a new entity annotator. In: Proceedings of the First International Workshop on Entity Recognition & Disambiguation, ERD 2014, pp. 55–62. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2633211.2634350

  53. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. CoRR abs/1910.10683 (2019). https://arxiv.org/abs/1910.10683

  54. Raviv, H., Carmel, D., Kurland, O.: A ranking framework for entity oriented search using Markov random fields. In: Proceedings of the 1st Joint International Workshop on Entity-Oriented and Semantic Search, JIWES 2012. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2379307.2379308

  55. Raviv, H., Kurland, O., Carmel, D.: Document retrieval using entity-based language models. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2016, pp. 65–74. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2911451.2911508

  56. Schuhmacher, M., Dietz, L., Paolo Ponzetto, S.: Ranking entities for web queries through text and knowledge. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM 2015, pp. 1461–1470. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2806416.2806480

  57. Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Trans. Knowl. Data Eng. 27(2), 443–460 (2015). https://doi.org/10.1109/TKDE.2014.2327028

    Article  Google Scholar 

  58. Tonon, A., Demartini, G., Cudré-Mauroux, P.: Combining inverted indices and structured search for ad-hoc object retrieval. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2012, pp. 125–134. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2348283.2348304

  59. Tran, H.D., Yates, A.: Dense retrieval with entity views. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, CIKM 2022, pp. 1955–1964. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3511808.3557285

  60. Wang, X., MacDonald, C., Tonellotto, N., Ounis, I.: ColBERT-PRF: semantic pseudo-relevance feedback for dense passage and document retrieval. ACM Trans. Web 17(1) (2023). https://doi.org/10.1145/3572405

  61. Xiong, C., Callan, J.: EsdRank: connecting query and documents through external semi-structured data. In: Proceedings of the 24th ACM International Conference on Information and Knowledge Management, CIKM 2015, pp. 951–960. ACM, New York (2015). https://doi.org/10.1145/2806416.2806456. https://doi.acm.org/10.1145/2806416.2806456

  62. Xiong, C., Callan, J., Liu, T.Y.: Word-entity duet representations for document ranking. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2017, pp. 763–772. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3077136.3080768

  63. Xiong, C., Dai, Z., Callan, J., Liu, Z., Power, R.: End-to-end neural ad-hoc ranking with kernel pooling. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2017, pp. 55–64. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3077136.3080809

  64. Xiong, C., Liu, Z., Callan, J., Hovy, E.: JointSem: combining query entity linking and entity based document ranking. In: Proceedings of the 2017 ACM SIGIR Conference on Information and Knowledge Management, CIKM 2017, pp. 2391–2394. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3132847.3133048

  65. Xiong, C., Liu, Z., Callan, J., Liu, T.Y.: Towards better text understanding and retrieval through kernel entity salience modeling. In: The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2018, pp. 575–584. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3209978.3209982

  66. Xiong, C., Power, R., Callan, J.: Explicit semantic ranking for academic search via knowledge graph embedding. In: Proceedings of the 26th International Conference on World Wide Web, WWW 2017, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, pp. 1271–1279 (2017). https://doi.org/10.1145/3038912.3052558

  67. Xiong, L., et al.: Approximate nearest neighbor negative contrastive learning for dense text retrieval. CoRR abs/2007.00808 (2020). https://arxiv.org/abs/2007.00808

  68. Yamada, I., et al.: Wikipedia2Vec: an efficient toolkit for learning and visualizing the embeddings of words and entities from Wikipedia. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 23–30. Association for Computational Linguistics, Online, October 2020. https://doi.org/10.18653/v1/2020.emnlp-demos.4. https://aclanthology.org/2020.emnlp-demos.4

  69. Yamada, I., Shindo, H., Takefuji, Y.: Representation learning of entities and documents from knowledge base descriptions. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 190–201. Association for Computational Linguistics, Santa Fe, August 2018. https://aclanthology.org/C18-1016

  70. Yu, H., Xiong, C., Callan, J.: Improving query representations for dense retrieval with pseudo relevance feedback. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, CIKM 2021, pp. 3592–3596. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3459637.3482124

  71. Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., Liu, Q.: ERNIE: enhanced language representation with informative entities. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1441–1451. Association for Computational Linguistics, Florence, July 2019. https://doi.org/10.18653/v1/P19-1139. https://aclanthology.org/P19-1139

  72. Zheng, Z., Hui, K., He, B., Han, X., Sun, L., Yates, A.: BERT-QE: contextualized query expansion for document re-ranking. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 4718–4728. Association for Computational Linguistics, Online, November 2020. https://doi.org/10.18653/v1/2020.findings-emnlp.424. https://aclanthology.org/2020.findings-emnlp.424

  73. Zhiltsov, N., Kotov, A., Nikolaev, F.: Fielded sequential dependence model for ad-hoc entity retrieval in the web of data. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2015, pp. 253–262. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2766462.2767756

  74. Zhou, Y., Croft, W.B.: Query performance prediction in web search environments. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2007, pp. 543–550. Association for Computing Machinery, New York (2007). https://doi.org/10.1145/1277741.1277835

  75. Zhuang, H., et al.: Rankt5: fine-tuning t5 for text ranking with ranking losses. In: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2023, pp. 2308–2313. Association for Computing Machinery, New York (2023). https://doi.org/10.1145/3539618.3592047

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubham Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chatterjee, S., Mackie, I., Dalton, J. (2024). DREQ: Document Re-ranking Using Entity-Based Query Understanding. In: Goharian, N., et al. Advances in Information Retrieval. ECIR 2024. Lecture Notes in Computer Science, vol 14608. Springer, Cham. https://doi.org/10.1007/978-3-031-56027-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56027-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56026-2

  • Online ISBN: 978-3-031-56027-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics