[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Content based Image Retrieval based on Different Global and Local Color Histogram Methods: A Survey

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

Different global and local color histogram methods for content based image retrieval (CBIR) are investigated in this paper. Color histogram is a widely used descriptor for CBIR. Conventional method of extracting color histogram is global, which misses the spatial content, is less invariant to deformation and viewpoint changes, and results in a very large three dimensional histogram corresponding to the color space used. To address the above deficiencies, different global and local histogram methods are proposed in recent research. Different ways of extracting local histograms to have spatial correspondence, invariant colour histogram to add deformation and viewpoint invariance and fuzzy linking method to reduce the size of the histogram are found in recent papers. The color space and the distance metric used are vital in obtaining color histogram. In this paper the performance of CBIR based on different global and local color histograms in three different color spaces, namely, RGB, HSV, L*a*b* and also with three distance measures Euclidean, Quadratic and Histogram intersection are surveyed, to choose appropriate method for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, R. Jain, Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  2. M.J. Swain, D.H. Ballard, Color indexing. Int. J. Comput. Vision 7(1), 11–32 (1991)

    Article  Google Scholar 

  3. T. Deselaers, Features for image retrieval. Master’s thesis, Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Aachen, Germany (2003)

  4. F. Long, H. Zhang, D.D. Feng, Fundamentals of content-based image retrieval, in Multimedia Information Retrieval and Management, ed. by D.D. Feng, W.-C. Siu, H.-J. Zhang (Springer, Berlin, 2003) pp. 1–26

    Chapter  Google Scholar 

  5. F. Alamdar, M.R. Keyvanpour, A new color feature extraction method based on quadhistogram. Int. Conf. Environ. Sci. Inf. Appl. Technol. 10, 777–783 (2011)

    Google Scholar 

  6. G. Pass, R. Zabith, Histogram refinement for content based image retrieval, in Proceedings of IEEE Workshop on Applications of Computer Vision, pp. 96–102 (1996)

  7. J. Hafner, H. Sawhney, W. Equitz, M. Flickner, W. Niblack, Efficient color histogram indexing for quadratic form distance functions. IEEE Trans. Pattern Anal. Mach. Intell. 17(7), 729–736 (1995)

    Article  Google Scholar 

  8. R. Datta, D. Joshi, J. Li, J.Z. Wang, Image retrieval: ideas, influences, and trends of the new age. ACM Comput. Surv. 40(2), 1–60 (2008)

    Article  Google Scholar 

  9. Y. Rui, T.S. Huang, S.F. Chang, Image retrieval: current techniques, promising directions, and open issues. J. Vis. Commun. Image Represent. 10, 39–62 (1999)

    Article  Google Scholar 

  10. T. Gevers, A.W.M. Smeulders, Content-based image retrieval: an overview (Prentice Hall, Upper Saddle River, 2004)

    Google Scholar 

  11. K. Konstantinidis, A. Gasteratos, I. Andreadis, Image retrieval based on fuzzy color histogram processing. Opt. Commun. 248, 375–386 (2005)

    Article  Google Scholar 

  12. M. Tico, T. Haverinen, P. Kuosmanen, A method of color histogram creation for image retrieval, in Proceedings of Nordic Signal Processing Symposium, pp. 157–160 (2000)

  13. J. Smith, S. Chang, Tools and techniques for color image retrieval, in Proceedings of the SPIE Conference on the Storage and Retrieval for Image and Video Databases, vol. 4, pp. 426–437

  14. D. Zhang, Improving image retrieval performance by using both color and texture features, in Proceedings of Third International Conference on Image and Graphics, pp. 172–175 (2004)

  15. O. Kucuktunc, D. Zamalieva, Fuzzy color histogram based CBIR system, in Proceedings of First International Fuzzy Systems Symposium (2009)

  16. R. C. Veltkamp, M. Tanase, Content-based image retrieval systems: a survey, Technical Report, The Netherlands, Utrecht University, Information and Computing Sciences, pp. 1–49 (2000)

  17. W. Niblack et al., The QBIC project: querying images by content using color, texture, and shape. Proc. SPIE 173–187, 1993 (1908)

    Google Scholar 

  18. L.A. Zadeh, A theory of approximate reasoning. Mach. Intell. 9, 149–194 (1979)

    MathSciNet  Google Scholar 

  19. L.A. Zadeh, Fuzzy probabilities. Inf. Process. Manage. 20(3), 363–372 (1984)

    Article  MATH  Google Scholar 

  20. M. Grabisch, New pattern recognition tools based on fuzzy logic for image understanding. Soft Comput. Image Process. 42, 299–317 (2000)

    Article  Google Scholar 

  21. J. Han, K.-K. Ma, Fuzzy color histogram and its use in color image retrieval. IEEE Trans. Image Process. 11(8), 944–952 (2002)

    Article  Google Scholar 

  22. N. Sugano, Color-naming system using fuzzy set theoretical approach, in Proceedings of IEEE International Conference on Fuzzy Systems, pp. 81–84 (2001)

  23. J. Domke, Y. Aloimonos, Deformation and viewpoint invariant color Histograms, in Proceedings of British Machine Vision Conference, pp. 509–518 (2006)

  24. P.F. Felzenszwalb, D.P. Huttenlocher, Efficient graph-based image segmentation. Int. J. Comput. Vision 59, 67–181 (2004)

    Article  Google Scholar 

  25. H. Song, X. Li, P. Wang, Adaptive feature selection and extraction approaches for image retrieval based on region. J Multimed. 5(1), 85–92 (2010)

    Google Scholar 

  26. W. Rasheed, Y. An, S. Pan, I. Jeong, J. Park, J. Kang, Image retrieval using maximum frequency of local histogram based color correlogram, in Proceedings of the 2nd International Conference on Multimedia and Ubiquitous Engineering, pp. 62–66 (2008)

  27. W. Rasheed, G. Kang, J. Kang, J. Chun, J. Park, Sum of values of local histograms for image retrieval. Proc. Int. Conf. Netw. Comput. Adv. Inf. Manag. 2, 690–694 (2008)

    Google Scholar 

  28. Y. An, W. Rasheed, S. Park, S. Park, J. Park, Feature extraction through generalization of histogram refinement technique for local region based object attributes. Int. J. Imaging Syst. Technol. 21(3), 298–306 (2011)

    Article  Google Scholar 

  29. Y. An, M. Riaz, J. Park, CBIR based on adaptive segmentation of HSV color space, in International Conference on Computer Modelling and Simulation, pp. 248–251 (2010)

  30. P.S. Suhasini, K.S.R. Krishna, I.V.M. Krishna, Graph based segmentation in content based image retrieval. J. Comput. Sci. 6(1), 699–705 (2008)

    Google Scholar 

  31. R. Datta, J. Li, J. Z. Wang, Content-Based image retrieval—approaches and trends of the new age, in Proceedings of International Workshop on Multimedia Information Retrieval, in conjunction with ACM International Conference on Multimedia, pp. 253–262 (2005)

  32. J. Shi, J. Malik, Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  33. J. Huang, S.R. Kumar, M. Mitra, W.-J. Zhu, R. Zabih, Image indexing using color correlograms, in IEEE Conference on Computer Vision and Pattern Recognition, pp. 762–768 (1997)

  34. J. Huang, R. Zabih, Combining color and spatial information for content-based image retrieval, in European Conference on Digital Libraries (1998)

  35. E. González, F. Bianconi, A. Fernández, A comparative review of colour features for content-based image retrieval. Anales de Ingeniería Gráfica 21, 7–14 (2009)

    Google Scholar 

  36. F. Bianconi, R. Harvey, P. Southam, A. Fernandez, Theoretical and experimental comparison of different approaches for color texture classification. J. Electron. Imaging 20(4), 1–17 (2011)

    Article  Google Scholar 

  37. E. Mathias, Comparing the influence of color spaces and metrics in content-based image retrieval. in Proceedings of International Symposium on Computer Graphics, Image Processing, and Vision, pp. 371–378 (1998)

  38. P.S. Suhasini, K.S.R. Krishna, I.V.M. Krishna, CBIR using color histogram processing. J. Theor. Appl. Inf. Technol. 6(1), 116–122 (2009)

    Google Scholar 

  39. T. Deselaers, D. Keysers, H. Ney, Features for image retrieval: an experimental comparison. Inf. Retrieval 11(2), 77–107 (2008)

    Article  Google Scholar 

  40. G. Pass, R. Zabith, Comparing images using joint histograms. Multimedia Syst. 7, 234–240 (1999)

    Article  Google Scholar 

  41. G.D. Finlayson, Color in perspective. IEEE Trans. Pattern Anal. Mach. Intell. 8(10), 1034–1038 (1996)

    Article  Google Scholar 

  42. Wang database (2001) http://wang.ist.psu.edu/~jwang/test1.tar

  43. J.Z. Wang, J. Li, G. Wiederhold, SIMPLIcity: semantics-sensitive integrate, matching for picture libraries. IEEE Trans. Pattern Anal. Mach. Intell. 23(9), 947–963 (2001)

    Article  Google Scholar 

  44. H. Shao, T. Svoboda, L.G. Van, ZuBuD—Zurich buildings database for image based recognition. Technical Report 260, ETH Zurich (2003)

  45. Zurich Buildings Database (2003) http://www.vision.ee.ethz.ch/datasets

  46. A. Khosla, N. Jayadevaprakash, B. Yao, L. Fei-Fei, Novel dataset for fine-grained image categorization, in First Workshop on Fine-Grained Visual Categorization, IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–2 (2011)

  47. Datasets for Computer Vision Research (2004) http://www-cvr.ai.uiuc.edu/ponce_grp/data

  48. Ground Truth Database (2004) http://www.cs.washington.edu/research/imagedatabase/groundtruth

  49. Stanford Dogs Dataset (2009) http://vision.stanford.edu/aditya86/ImageNetDogs

  50. S. Lazebnik, C. Schmid, J. Ponce, Semi-local affine parts for object recognition. Proc. Br. Mach. Vision Conf. 2, 959–968 (2004)

    Google Scholar 

  51. S. Lazebnik, C. Schmid, J. Ponce, A maximum entropy. Proc. IEEE Int. Conf. Comput. Vision 1, 832–838 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallikonda Sarah Suhasini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhasini, P.S., Sri Rama Krishna, K. & Murali Krishna, I.V. Content based Image Retrieval based on Different Global and Local Color Histogram Methods: A Survey. J. Inst. Eng. India Ser. B 98, 129–135 (2017). https://doi.org/10.1007/s40031-016-0223-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-016-0223-y

Keywords

Navigation