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—— Abstract

We introduce X (“lambda-barrier”), a minimal extension of linear A-calculus with concurrent

communication, which adds only a single new fork construct for spawning threads. It is inspired by
GV, a session-typed functional language also based on linear A-calculus. Unlike GV, X strives to be
as simple as possible, and adds no new operations other than fork, no new type formers, and no
explicit definition of session type duality. Instead, we use linear function function type 71 —o 72 for
communication between threads, which is dual to 72 —o 71, i.e., the function type constructor is
dual to itself. Nevertheless, we can encode session types as X types, GV’s channel operations as X
terms, and show that this encoding is type-preserving. The linear type system of X ensures that
all programs are deadlock-free and satisfy global progress, which we prove in Coq. Because of X’s
minimality, these proofs are simpler than mechanized proofs of deadlock freedom for GV.

2012 ACM Subject Classification Software and its engineering — Concurrent programming lan-
guages

Keywords and phrases Linear types, concurrency, lambda calculus, session types

Digital Object Identifier 10.4230/LIPIcs. ECOOP.2022.23

Supplementary Material Software (Mechanized proofs): https://zenodo.org/record/6560443

1 Introduction

Session types [16, 15] are types for communication channels, that can be used to verify that
programs follow the communication protocol specified by a channel’s session type. Gay and
Vasconcelos [13] embed session types in a linear A-calculus. Whereas Gay and Vasconcelos’
calculus [13] did not yet ensure deadlock freedom, Wadler’s subsequent GV [31] and its
derivatives [21, 23, 24, 11, 10] guarantee that all well-typed programs are deadlock free.

In order to add session types to linear A-calculus, one adds (linear) session type formers
for typing channel protocols and their corresponding operations: !7.s (send a message of type
7, continue with protocol s), ?7.s (receive a message of type 7, continue with protocol s),
s1 @ s2 (send choice between protocols s1 and s3), s1 & so (receive choice between protocols
s1 and s2), and End (close channel). One also adds a fork operation for creating a thread
and a pair of dual channels. For this, we need a definition of duality, with ! dual to 7, &
dual to &, and End dual to itself.

There have been efforts for simpler systems, such as an encoding of session types into
ordinary m-calculus types [19, 7, 8], and minimal session types [2], which decompose multi-
step session types into single-step session types in a m-calculus. Single-shot synchronization
primitives have also been used in the implementation of a session-typed channel libraries
[30, 27, 20].

We show that linear A-calculus is also an excellent substrate on which to build a minimal
concurrent calculus with communication, and introduce X (“lambda-barrier”), which adds
only a single new fork construct for spawning threads. It is inspired by GV, a session-typed
functional language that is also based on linear A-calculus. Unlike GV, X strives to be
as simple as possible, and adds no new operations other than fork, no new type formers,
and no explicit definition of duality. Instead, we use the linear function type 7 —o 75 for
communication between threads, which is dual to 7 —o 71, i.e., the function type constructor
is dual to itself. Nevertheless, we can encode session types as X types, GV’s channel operations
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as X terms, and show that this encoding is type-preserving. A key difference with CPS
encodings of GV [22, 23], which are whole-program, is that our encoding is local, and uses
X’s built-in concurrency.

Like GV, all well-typed X programs are automatically deadlock free, and therefore satisfy
global progress. We prove this property in Coq. Because of X’s minimality, these proofs are
simpler and shorter than mechanized proofs of deadlock freedom for GV.

The rest of this article is structured as follows:

An introduction to X by example (Section 2).

The X type system and operational semantics (Section 3).

Encoding session types in X (Section 4).

How to prove global progress and deadlock freedom for X (Section 5).
Extending X with unrestricted and recursive types (Section 6).
Mechanizing the meta-theory of X in Coq (Section 7).

Related work (Section 8).

Concluding remarks (Section 9).

2 The X language by example

The X language consists of linear A-calculus with a single extension: fork.! Let us look at
an example:

let z = fork(A\z’. print(z’ 1)) in print(1 + x 0)

This program forks off a new thread, which also creates communication barriers x and z’
to communicate between the threads. The barrier x gets returned to the main thread, and
2’ gets passed to the child thread. These barriers are functions, and a call to a barrier will
block until the other side is also trying to synchronize, and will then atomically exchange
the values passed as an argument. The example runs as follows:

When 2’ 1 is called, it will block until z 0 is also called, and vice versa.

The call 2’ 1 will then return 0, and the call z 0 will return 1.

Thus, the program will print 0 2 or 2 0, depending on which thread prints first. In X, these
barriers are linear, so they must be used exactly once:

fork(Az. print(1)) Error! Must use x.
fork(Az. print(x 04+« 1)) Error! Can’t use x twice.

The type of fork is:
fork : ((1p1 —o12) —0 1) — (12 —0 71)

where —o is the type of linear functions. Linearity allows us to encode session types in X
(Section 4), and ensures that all well-typed X programs are deadlock-free (Section 5), which
would not be the case without linearity. Nevertheless, linearity may seem like a critical
limitation: can a child thread communicate with its parent thread only once?! Luckily, two
features of A-calculus, namely the ability for closures to capture values from their lexical
environment, and the ability to pass functions as arguments to other functions, means that

I For the examples we also use print, to be able to talk about the operational behavior of programs.



J. Jacobs

the restriction is not as severe as it may seem. Let’s look at an example that uses those two

features:?

let x = fork(\z'. print(2’ 1))
let y = fork(\y'. v/ z)
print(1 4y () 0)

We fork off a new thread (line 1) and store its barrier in z. We then fork off another thread
(line 2), and pass the barrier z into the A-expression of the new thread. We call y (), which
returns x, because the thread of y calls 3/ z. Finally, we pass 0 into the returned z, so this
example behaves the same as the first example: it prints 0 2 or 2 0.

We can use the ability to capture barriers in the A-expression of a fork, and the ability to
send barriers over barriers, to set up long-running communication between two threads:

0

!
Ty
25 () in x5 (n1 +n2))

let 21 = fork(\z}. let (z5,n1)

let (a4, n9)
let zo = fork(\z5. 1 (75, 1))
let z3 = fork(\z5. x2 (75,2))
print(z3z ())

Let us focus on the body of the first fork. The forked thread firstly synchronizes with its

barrier, via 2} (). This call will return a pair (z5,n1) of a new barrier x4, and a number n;.

It then synchronizes with the new barrier, via x5 (), which returns another pair (5, n2),
giving yet another barrier 5 and another number ns. In the last step, it sends the number
n1 + ne2 back to the main thread, via z§ (n1 + ng).

Let us now focus on how the main thread arranges this sequence of communications. The
main thread first forks off a messenger thread fork(Az),. x1 (24,1)). The purpose of this
thread is to send the message (x4, 1) over x1, where x4 is the barrier associated with the
messenger thread. The other side of that barrier, x5, is given to the main thread. The main
thread now forks off another messenger thread, this time using that new barrier, x5. This
gives the main thread yet another barrier, z3, from which it receives the final answer, 1 + 2,
via z3 ().

Note that, like in the asynchronous w-calculus, sending a message involves forking off a
tiny thread. Thus, like the asynchronous 7-calculus, X should be viewed as a theoretical core
calculus, and not as a practical way to implement message passing.> We can encapsulate
this messenger thread pattern in a small library of channel operations:

send(c, r) = fork(\c'. ¢ (¢, z))
receive(c) = ¢ ()

close(c) £ ¢ ()

2 We omit the in keyword if a newline follows let, like some functional languages (e.g., F#).

3 Because the messenger threads are always of a specific form, it might be possible to implement a
compiler that recognizes such patterns and implements them more efficiently. After all, the messenger
threads do nothing but immediately synchronize with another barrier.
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Using this channel library, we can implement the preceding example in the following way:
let z; = fork(\z}. let (z5,n1) = receive(z})
let (a%,n9) = receive(z))
let 2}, = send (2%, ny + n2)
close(z)))

let x5 = send(z4, 1)

let 23 = send(z2, 2)

let (z4,n) = receive(xs)
print(n)

close(xy)

Session-typed channels usually also have choice, which allows choosing between two continu-
ation protocols. This can be encoded in X using sums ing,(z) and ing (z):

telly, (c) = fork(\c'. ¢ iny,(c'))
tellr (c) = fork(A\c'. ¢ ing(c'))
ask(c) = ¢ ()

With these operations, we can implement the calculator example of Lindley and Morris [24].
This example allows the client to choose whether they want to add two numbers or negate a
number. If the client chooses to add two numbers, they then send two numbers as separate
messages, and retrieve the answer using receive. If the client chooses to negate a number,
they then send only a single number, and retrieve the answer using receive. This example
illustrates the choice between two different protocols for the remaining interaction:

1>

1>

let calc ¢ =

match ask(c) with

| ing,(c) = let (¢,n) = receive(c)
let (¢,m) = receive(c)
close(send(c,n + m))

| ing(c) = let (¢,n) = receive(c)
close(send(c, —n))

end

Extending X with recursion (Section 6) allows us to implement unbounded protocols, as
illustrated by the following example:

let rec countdown ¢ =

match ask(c) with

| ing,(c) = close(c)

| ing (c) = let (¢, n) = receive(c)
print(n)
ifn=0
then close(tellg(c))

else countdown (send(tellg(c),n — 1))
end

Given a channel ¢, the countdown ¢ program first uses ask(c) to ask c if it wants to
terminate, and closes the channel if so. Otherwise it receives a number n from ¢ and prints
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it. Then it checks if the number n = 0, and if so tells the other side to close (using telly,),
and then closes our side. Otherwise it tells the other side that it wants to continue (using
tellg) and sends n — 1 to the other side. We can therefore let countdown interact with a
copy of itself, provided we start off one of the copies with an initial message:

countdown send(tellg (fork(countdown)), 10)

This program will print the numbers 10 9 8 --- 1 0, in that order. The odd numbers are
printed by the main thread, and the even numbers are printed by the child thread.

As we shall see later, this is all type-safe. If we had not started off one of the countdowns
with an initial message, and had instead simply done countdown fork(countdown), then we
would have had a static type error.

This way, the X type system ensures that channel protocols are correctly followed, even
though the X type system has no session types and no notion of duality and instead simply
uses function types 71 —o 7y for barriers. We do not need an explicit notion of duality because
the function type constructor is self-dual, in the sense that if  : 71 —o 75 is a barrier, then
the dual barrier with which z will synchronize has type x’ : 79 —o 71. We will see more about
encoding session types in X in Section 4.

3 The X type system and operational semantics

Like GV [31] and its derivatives [21, 23, 24, 11, 10], the basis of X is a linear simply typed
A-calculus. We have sums, products, and the linear function type 7 —o 75. Variables of
linear type must be used exactly once: they cannot be duplicated (contracted) or discarded
(weakened), so that one must use one of the elimination rules of the type.

T€Type =0 |1 |7 XT|7+7|T—o0T

Our basis linear A-calculus has the following grammar of expressions, which consists of
introduction and elimination forms for each type:

e€ Exprao=x| ()| (e,e) |inL(e) | inr(e) | \x. e |ee|let (z1,22) =ein e

match e with end | match e with ing,(x;) = e1; ing(z2) = e2 end

The typing rules are standard and can be found in Figure 1.
We now have a substrate to which we will add concurrency constructs. GV [31, 21, 23, 24,
, 10] introduces concurrency by means of a construct to spawn a new thread, with which
we can communicate using a channel. Communication is governed by session types, such
that the two endpoints of a channel are typed with dual session types. Instead, X extends
the substrate with concurrency in a minimal way, adding one new construct to create new
threads:

e € Expr = --- | fork(e)
This is the typing rule for fork:

ke:(rp—om)—ol
I' - fork(e) : 7y —o 1

Or, as a type signature:

fork : ((11 —o 12) —01) — (12 —0 71)

23:5
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embke:n I'kFe :m —om I'okey:m
r:Thx:T I'FXx.e:m —omy I',okFerex:m
FlFelle FQF@QZTQ F1F611T1X7'2 FQ,I‘liTl,ZQZTQFQQZTg
Fl,FQ [ (61762) 1 T1 X To Fl,FQ F let (.%'1,.’)3‘2) = e in €9 . T3
I'kFe:n I'ke:nr
F'Fing(e): 7+ 7 IP'ting(e) : 7 + 7
INiFe:m+m Iy, z1:mi e 7 Iy, z0:p Feg:7

I'1,T3 - match e with ing,(21) = e1; ing(22) = ez end : 7/
Figure 1 Linear A-calculus with sums and products (rules for 0 and 1 omitted).

The type of fork uses the linear function type. We do not need an explicit notion of
duality, like session types do, because the function type constructor is self-dual, in the sense
that if  : 71 —o 79 is a barrier, then the dual barrier ' with which z will synchronize has
type =’ : 5 —o 7.

3.1 Operational semantics

We use a small-step operational semantics with evaluation contexts. In order to represent
barriers, we add barrier literals (k) , k € N to the expressions. A barrier literal cannot appear
in the source program, as the static type system has no typing rule for it. Barrier literals
only appear in expressions at runtime when the operational semantics executes a fork-step.
This gives us the following set of values for the language:

veVali= ()| (v,v) |inL(v) | ing(v) | Az. e | (k)

We have four pure head-reduction rules e ~»pye €', one for A, one for pairs, and two
for sums, as stated in Figure 2. We use evaluation contexts to avoid introducing many
congruence rules:*

K:=0|(K,e)| (v,K) |ing(K) | ingr(K) | K e|v K | fork(K) | let (z1,22) = K in e
| match K with end | match K with ing,(x;) = e1; ing(22) = e2 end

We represent a configuration with multiple threads and barriers as a finite map:

p € Cfg2 N ™ Thread(Exzpr) + Barrier

We define a configuration step relation p & p'. The label i € N is used to keep track
of which thread or barrier in the configuration takes the step. This has no effect on the
operational semantics, but we will later use it to formulate deadlock freedom. The rules for
the configuration step relation are given in Figure 2. We have the following five rules, in the
order of the figure:

4 This set of evaluation contexts results in left-to-right evaluation order, but the mechanization has been
set up so that the proof scripts work for right-to-left and nondeterministic order as well.
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(Az. €) v ~pure €[v/]
let (z1,22) = (v1,v2) In e ~pure €[v1/21][v2/ 2]
match iny,(v) with ing,(z1) = €1 | ing(22) = ez end ~pyre €1[v/21]

match ing (v) with ing,(21) = e; | ing(22) = ez end ~>pure €2[v/22]

{n — Thread(KJe | } ~ {n — Thread(K| es ])} if e1 ~pure €2 (pure)
n — Thread(K[ (k) ])
{n + Thread(K[fork(v)])} ~ ¢ k + Barrier (fork)

m — Thread(v (k))
n +— Thread(K; [ (k) v1])

k +— Barrier 5 {n : ¥::eajgglrgg} (sync)
m — Thread(Ks| (k) v2]) m cadifizlty

{n+s Thread(())} ~ {} (exit)

prWp < pow ' if pr < py (W is disjoint union) (frame)

Figure 2 The operational semantics of X.

(pure) A rule for pure reductions for a single thread.

(fork) A rule for forking a new thread, which adds the new thread and a barrier k£ to the
configuration. The two threads get access to the barrier via the barrier literal (k).

(sync) A rule to synchronize on a barrier. The two threads that are synchronizing exchange
the values v; and vy. This step removes the barrier.

(exit) A rule for removing finished threads from the configuration.

(frame) A rule for extending the preceding rules to larger configurations, by allowing the
rest of the configuration to pass through unchanged.

This is a possible execution of the second example from Section 2:

let = fork(\z'. print(z’ 1))

0 — Thread | let y = fork(\y'. ¢ z) 2
print(1+y () 0)

oo s (1= Tk 01 5 (print(1-+(5) 0.0)
print(l+y () 0) % {2+ Thread (print((1) 1))

3 — Barrier

4 — Thread ((3) (1))

$e

1 — Barrier
2+ Thread (print((1) 1))

0+ Thread (print(1 + (1) 0))
1 +— Barrier

2+ Thread (print((1) 1))
4 — Thread (())

0+ Thread (prmt (1+1) )
2+ Thread (print(0))

0 +— Thread (print(1 + (1) 0))
% {1+ Barrier NS
2+ Thread (print((1) 1))

} {() — Thread (prlnt (1+1 )} {}

ECOOP 2022
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For simplicity, we treat print on natural numbers as a no-op that returns (), instead
of adding an output log to the semantics, because whether or not print logs its output
somewhere does not affect the further execution of the program.

While untyped X programs can easily get stuck, for instance if one side throws away its
barrier, or sets up cyclic waiting dependencies, well-typed X programs never get stuck. More
formally, we prove global progress (in Section 5), which means that if we start with an initial
program e : 1, then any non-empty configuration we can reach from e can step further. But
first, we will see how to encode session types in X.

4 Encoding session types in X

Despite being very simple, X’s type system can encode session types. There are five basic
session type constructors:

s € Session 2 End | 17.5 | 7.5 | s s | s&s

The type !7.s means to send a value of type 7 and then continue with s. Dually, ?7.s means
to receive a value of type 7 and then continue with s. The type s; @ so indicates that we
have a choice of continuing either with protocol s; or with so. Dually, the type s; & so means
that we receive a choice from the other side: either we have to continue with protocol s; or
with protocol so, depending on what the other side chose. Lastly, the protocol End means
that we are done with the channel and we must deallocate it. Session types make the notion
of duality explicit using the function dual : Session — Session:

dual(End
dual(!7.s) = ?7.dual(s)

) £ End

)
dual(?7.5) £ !7.dual(s)

)

)

dual(s; @ s2) £ dual(s1) & dual(ss)
dual(s; & s2) £ dual(s1) @ dual(ss)

The idea is that if our channel has type s, then the channel of the party we are communicating
with has type dual(s). This is the list of channel operations and their types:
forkgy : (s —0 1) — dual(s)
Fork off a new thread running the closure. Passes a channel of type s to the child thread,
and returns a channel of type dual(s) to the main thread.
close: End — 1
Close and deallocate the channel. Returns unit ().
send : !T7.s X T — s
Send a message of type 7 to the channel. Returns a new channel of type s for performing
the rest of the protocol.
receive : 7T.s — s X T
Receive a message from the channel. Returns a pair s x 7 of the channel for performing
the rest of the protocol (type s) and the message received (type 7).
telly, : s1 D s2 — 51
In a branching protocol, choose the left branch. Returns a channel of the chosen type.
tellg : s1 P s — so
In a branching protocol, choose the right branch. Returns a channel of the chosen type.
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ask : 51 & 8o — 81 + 82
Receives the choice made by the other side. Returns a sum type, which is iny,(c) with
¢ : 81 if the left branch was chosen by the other side, and ing(¢) with ¢ : s if the right
branch was chosen.?

We will encode channels as X’s barriers, and we therefore encode a session type s as a
linear function type 7 —o 7o where 7y, 75 are determined from s. Intuitively, the sending side
not only transfers the values specified by the protocol, but also a continuation channel for
the remainder of the protocol. The continuation channel is connected to a tiny messenger

thread, which is responsible for synchronizing with the old barrier, as we did in Section 2.
We define an encoding function [-] : Session — Type that converts a session type to a X type.

The encoding of session types into X types is as follows:

[End]£1 —o1

['r.s] £ [dual(s)] x 7 —o 1

[?7.s] 21— [s] x T

[s1®s2] 2 [[dual(sl)]] + [dual(s2)] — 1
[ =1 —o[s1] +[s2]

||l>

[[81 & S9

Using this encoding, we can implement channel operations with type signatures matching
their native session-typed version, provided we use the encoding;:

forkgy : ([s] —o 1) — [dual(s)] forkcy (x) £ fork(z)
close: [End] — 1 close(c) £ ¢ ()
send : [!7.s] x 7 — [9] send(c, r) = fork(\c'. ¢ (¢, 7))
receive : [?7.s] — [s] x T receive(c) £ ¢ ()
telly, : [s1 @ s2] — [s1] telly, (c) £ fork(\c'. ¢ ing(¢'))
tellr : [s1 @ sa] — [s2] tellg (c) £ fork(\c'. ¢ ing(c))
ask : [s1 & s2] — [s1] + [s2] ask(c) 2 ¢ ()

The fork operation for channels simply delegates to the fork operation of X, because a
channel is represented as a barrier.

Formal statement of well-typedness of the encodings

You may note that while there is an encoding function [-] of session types into X types, there
is no explicit encoding function of GV terms to X terms. This is intentional: because the
translation is local, the definitions above can be viewed as syntactic abbreviations or macros.
For instance, we can define the abbreviation

telly, 2 \c. fork(\c'. ¢ ing,(c'))

5 In the original GV, branching was combined with receiving a choice. We decouple them, and let receiving
a choice return a sum type, which can subsequently be pattern matched on using match.

23:9
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of the telly, channel operation as a closed syntactic X term. We can then prove that for all
session types s; and ss, the typing judgement

0 F telly, : [s1 @ so] — [1]

for the telly, term given above is derivable from X’s typing rules. The most interesting case
is fork; in order to prove

0+ fork : ([s] —o 1) — [dual(s)]
for all session types s, we rely on the following lemma about dual and the encoding [-]:
([s] =11 —o 12) < ([dual(s)] =12 —o 1)

That is, if the session types are dual in the session types sense, then their encodings are dual
in the X sense.

The advantage of this approach is its simplicity and that we can freely intermix channels
with direct usage of barriers in the same program. However, for our simulation result
(Section 4.1), we do need an explicit definition of GV syntax and a translation of GV terms
to X terms.

A note on the mechanization and n-ary choice

We can combine n-ary choice with sending/receiving a message in a single communication
step using n-ary sum types:

sendchoice; : 1{i: 7;.8; bier X 70 — 85

receivechoice : 7{i: 7;.8;}icr — Ticr $i X T
This can also be encoded in X, and is what is provided by the mechanization (7):

sendchoice;(c, z) £ fork(\c'. ¢ in;(c/, x))

receivechoice(c) £ ¢ ()

Encoding X in GV

We can also do the encoding the other way around, and implement X’s fork in terms of GV’s
channel constructs:

forkx(f) £
let ¢; = forkgy (A} f (W', let ¢, = send(c, v')
let (c§,v) = receive(c))
close(c}); v))
Av. let (¢cq,v") = receive(cq)
let c3 = send(co, v)
close(cz); v/

Given how short the encodings of GV’s channel operations in X are, it is perhaps surprising
that the other way around requires comparatively more code.
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4.1 Simulation of GV’s semantics with X's semantics

To show that the encoding makes sense, we prove that we can simulate an asynchronous
version of GV using X’s semantics. We use an asynchronous semantics (~¢gy ) for GV, so the
GV configuration contains buffers. For details about the GV semantics used in the proof, we
refer the reader to the mechanization (Section 7). The key idea behind the simulation is that

each message in a buffer on the GV side corresponds to a messenger thread on the X side.

Whenever a message is put in a buffer on the GV side, a messenger thread is created on the
A side, and the messenger thread will be waiting to synchronize with a barrier. Whenever a
message is received from a channel’s buffer on the GV side, the receiver and the messenger
thread execute their sync operation on the X side, which sends the message to the receiver
and allows the messenger thread to terminate.

Formally, we start with an encoding [e] that translates GV terms to the corresponding
X terms by replacing all occurrences of GV channel operations with their X definitions
given above. We then extend this translation to configurations [p], The translation on
configurations replaces each buffer in the GV heap with a sequence of X messenger threads,
with one messenger thread per message in the buffer. With these notions at hand, we can
show that the X encodings simulate the GV semantics.

» Lemma 1 (Simulation). If p ~>qv p' then [p] ~* [¢']

This lemma has been mechanized in Coq (Section 7). We need the transitive closure
(~*) on the X side, because a single step in the GV semantics can correspond to multiple
steps in the X semantics, since the X semantics does extra administrative S-reductions. For
instance, when the GV program does a send(c, v) operation, it places the message v in
the buffer in one step. The translated X program on the other hand spawns a messenger
thread with [send(c, v)] = fork(Ac'. ¢ (¢, v)), which initializes the new thread with the
term (Ac’. ¢ (¢/,v)) (k) where (k) is the newly created barrier. The messenger thread then
performs the p-reduction, resulting in an extra step on the X side.

To get a full operational correspondence [14], we need a second “reflection” lemma stating
that if the image of the translation [p] takes a step, then this step can be matched with a
corresponding step in the GV semantics. Note that this only holds for well-typed terms: if
we have the ill-typed term receive(Az. ) in the GV source, this is translated to well-typed
(Az. z)() in X. Thus, whereas receive(Az. ) gets stuck in the GV semantics, its translation
does not get stuck in the X semantics. We do expect a full operational correspondence
to hold for well-typed terms, but while we have mechanized the proof of the simulation
direction (Lemma 1), we have not mechanized a full operational correspondence. With a full
operational correspondence it would be possible to lift X’s deadlock freedom result to GV,
and it would be interesting to see whether using X as a “proof IR” in this manner is a viable
strategy for proving deadlock freedom of GV.

4.2 Summary

To add GV’s session types to linear A-calculus, we need to add the 5 new session type formers,
the notion of duality, and the 7 session type operations. In contrast, X only adds one new
operation, fork, and no new type formers and no notion of duality. Nevertheless, we have
seen that we can encode session types in X.

The encoding creates a new thread to store each message. Thus, X should not be viewed
as a practical way to implement session types, but as a theoretical calculus, like other calculi
that create one thread per message, such as the asynchronous 7-calculus.
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5 Deadlock freedom, leak freedom, and global progress

Linear typing in X guarantees strong properties for well-typed programs:

Type safety: threads never get stuck, except by synchronizing with a barrier.

Global progress: a non-empty configuration can always take a step.

Strong deadlock freedom: no subset of the threads gets stuck by waiting for each other.
Memory leak freedom: all barriers in the configuration remain referenced by a thread.

These properties are all inequivalent in strength: none of the 4 properties is strictly
stronger than another. In Section 5.3 we consider a property that is strictly stronger than
these 4, but we will first focus on global progress (Section 5.1), as ideas behind the proof of
global progress (Section 5.2), are also sufficient to prove the stronger property (Section 5.3).

5.1 Global progress

Let us consider the formal statement of global progress:

» Theorem 2 (Global progress).
If PFe:1, and {O — Thread(e)} ~* p, then either p = {} ordp'.p~p.

Intuitively, global progress states that if we start with a well-typed program, then any
configuration we reach is either empty (i.e., all threads have terminated and all barriers
have been deallocated), or the configuration can perform a step. This property relies on
linear typing, as X programs that violate linearity can deadlock and create a non-empty
configuration that cannot step. A simple example is if one side does not use its barrier:

let z = fork(Az’. ()) in x 0 Deadlock!

This deadlock is prevented by the linear type system, which ensures that each barrier is used
exactly once. More complicated deadlocks are also possible in untyped programs, in which

there is a circle of threads connected by barriers @ @ @ @ that are trying to

synchronize (——) in a cycle:

No thread can make progress because the threads are all synchronizing on different
barriers. This shows that a simplistic scheme to prove deadlock freedom cannot work: we
must somehow rule out such cycles. Fortunately, the linear type system ensures that the
graph of connections between threads has the shape of a forest (i.e., collection of trees, i.e.,
an acyclic graph), and thus such circular deadlocks cannot happen. To see why the graph
remains acyclic, consider what happens when we fork:

let z; = fork(...)
let x5 = fork(...)
let z3 = fork(...)

let y = fork(\y'. -+ my---x3---)

XLy
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At the fourth fork, the barriers xzo and x5 are transferred to the new thread via lexical
scoping, while the main thread keeps x; for itself. This is what happens to the graph:

JIN L S

N
\
\
\
N

]
1
1
1
1 AY

On the left hand side, we have the thread 7T} that is about to perform the fourth fork.

It currently owns 3 barriers x1, zo, x3, which are connected to the rest of the graph. After

the fork, we have the new thread 75, which is connected to 77 by means of a new barrier.

Crucially, the barriers x5 and x3 of the barriers that 7} used to own were transferred to 1o
by means of lexical scoping. Nevertheless, as one can see in the figure above, if the graph
of the configuration before the fork was acyclic, then the graph of the configuration after
the fork is also acyclic. The same applies to a synchronization step, when values containing
potentially multiple barriers are exchanged:

On the left, 77 and T each own 3 barriers, and they are also connected by a barrier. On

the right, after the synchronization has taken place, the barrier between them has disappeared.

Two of the barriers of T} were transferred to 15, and one of the barriers of Ty was transferred
to T7. Once again, if the graph on the left was acyclic, then the graph on the right will still
be acyclic.”

The other operations of X do not change the connections in the graph. Therefore, a
program starts with a single thread, and then grows and alters its graph in a dance of fork
and sync steps, but the graph remains acyclic at all times.

In the next section we will see in a bit more detail how the acyclicity of the graph is used
in the proof of global progress.

Related work Graph theoretic deadlock-freedom arguments are common in the session
types literature and have previously been made by Carbone [5], Lindley and Morris [21], and
Fowler, Kokke, Dardha, Lindley, and Morris [10].

5 When one looks at the picture of the synchronizing threads, it seems that 71 becomes totally disconnected
from 7% after the synchronization. This means that the threads can only communicate once. Yet the
session-typed channel encoding seems to make it possible to communicate several times. Exercise for
the reader: what is the solution to this paradox?
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Figure 3 Run-time type system (selected rules).

5.2 Structure of the global progress proof

This section gives more detail about how the acyclicity of the connection graph is used to prove
global progress. For the full details, the interested reader is referred to the mechanization
(Section 7).

Global progress states that if the configuration is non-empty, then it can take a step.
Formally, there are several types of stuck configurations to rule out. Perhaps the configuration
has a single thread and no barriers, but the thread is stuck on a type error (violating type
safety). Or perhaps the configuration consists of just one barrier and no threads (violating
memory leak freedom). Or perhaps there is a single thread and a single barrier, and the
thread is trying to synchronize but is stuck due to the absence of a partner to synchronize
with (violating deadlock freedom).

The aforementioned stuck configurations and more complicated variations are ruled out
by keeping track of sufficient type information and local invariants for each object in the
configuration (e.g., that a barrier is always connected to exactly two threads, and that the
types of the references to the barrier are dual 71 —o 75 and 75 —o 71). The interesting case is
when the types are all locally correct, but the configuration is still deadlocked due to cyclic
waiting. This case is ruled out by proving that well-typed programs maintain the invariant
that the connection graph is acyclic, which implies that cyclic waiting cannot happen.

Formally, we define a well-formedness invariant of configurations, that maintains well-
typedness of the threads as well as the acyclicity of the connection graph. For the well-
typedness, we use the run-time type system in Figure 3.7 The rules of the run-time type
system correspond to the rules of the static type system, plus one additional rule for typing
barrier literals (k). The typing judgment uses an additional ¥-context for typing those
barrier literals.

We say that a configuration p is well-formed if we have an acyclic graph G (i.e., an
undirected forest) where the vertices correspond to the entries of the configuration, and the
edges (between threads and barriers) are labeled with types, such that for each vertex i in G:

If p(i) = Thread(e) then 3;( F e : 1, where X is given by the types on the edges of the

barriers connected to vertex i.

If p(i) = Barrier then vertex i has edges to two different threads, labeled with dual types

T1 —O T2 and T9 —O T71.

These conditions ensure that the graph structure matches the structure of the configur-
ation: if we have a barrier literal (k) somewhere in the expression e of thread n, then the
first condition ensures that we have an edge between n and k, labeled with a type 71 —o 7

7 Qur run-time type system in Coq makes use of separation logic, following [18]. This is equivalent to the
type system in the figure, but easier to work with in a proof assistant.
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to make expression e well-typed. The second condition then ensures that there is a second
thread with barrier literal (k) in its expression, with type 75 —o 71. Note that the two
occurrences of the very same barrier literal (k) have two different types in the two different
threads.

Now that the configuration invariant has been defined, proof of global progress (Theorem 2)
can be structured as follows. Using well-typedness, we are able to show that the only way a
configuration can get stuck is if all threads are trying to synchronize with a barrier. The
invariant maintains that the graph structure is always acyclic. By a mathematical argument
about graphs and the pigeonhole principle, we are then able to show that two of the threads
must be synchronizing on the same barrier. Hence, at least one synchronization step can
proceed, and we have global progress.

5.3 Strengthened deadlock and memory leak freedom

Global progress (Theorem 2) rules out whole-program deadlocks. It also ensures that all
barriers have been used when the program finishes. However, this theorem does not guarantee
anything as long as there is still a single thread that can step. Thus it does not guarantee
local deadlock freedom, nor memory leak freedom while the program is still running, and it
does not even guarantee type safety: a situation in which a thread is stuck on a type error is

formally not ruled out by this theorem as long as there is another thread that can still step.

Our goal is to find a formulation that is strictly stronger than these 4 properties, and
from which they can be easily proved as corollaries. We take inspiration from [18], and find
a strengthened formulation of deadlock freedom on the one hand, and strengthened memory
leak freedom on the other hand. These strengthened formulations of deadlock freedom and
memory leak freedom are equivalent to each other, and they imply type safety and global
progress. In order to state these, we need the relation ¢ waiting,, j, which says that ¢ € dom(p)
is waiting for j € dom(p).

Intuitively, the meaning of waiting, is as follows. When a barrier k gets allocated,
the literal (k) appears in two threads mi,mns. In this case we say that k waiting,, n1 and

k waiting,, n2, because the barrier is waiting until the threads want to synchronize with it.

Note that this relationship is dynamic: if the barrier literal (k) is transferred to another
thread, then the barrier is waiting for that new thread to synchronize with it. Whenever
a thread n starts trying to synchronize with k by calling (k) v for some value v, then the
waiting relationship flips: we now say that the thread is waiting for the barrier, i.e., that
n waiting,, k. Formally:

» Definition 3. We have i waiting,, j if either:
1. p(i) = Barrier and p(j) = Thread(e) and (i) € e, but e # K[ (i) v], or
2. p(i) = Thread(e) and p(j) = Barrier, and e = K[ (j) v]

Using this notion, we can define what a partial deadlock/leak is. Intuitively, a partial
deadlock is a situation in which there is some subset of the threads that are all waiting for
each other. Because our notion of waiting also incorporates barriers, we generalize this to
say that a partial deadlock/leak is a situation in which there is some subset of the threads
and barriers that are all waiting for each other. Formally:

» Definition 4 (Partial deadlock/leak). Given a configuration p, a non-empty subset S C
dom(p) is in a partial deadlock/leak if these two conditions hold:

1. Noi € S can step, i.e., for alli € S, =3p'. p~ p

2. Ifi € S and i waiting, j then j € S
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This notion also incorporates memory leaks: if there is some barrier that is not referenced
by a thread, then the singleton set of that barrier is a partial deadlock/leak. Similarly,
a single thread that is not synchronizing on a barrier, is considered to be in a singleton
deadlock if it cannot step. This way, the notion of partial deadlock incorporates type safety.

» Definition 5 (Partial deadlock/leak freedom). A configuration p is deadlock/leak free if no
S C dom(p) is in a partial deadlock/leak.

We also strengthen the standard notion of memory leak freedom, namely reachability, to
incorporate aspects of deadlock freedom.

» Definition 6 (Reachability). We inductively define the threads and barriers that are reachable
in p: jo € N is reachable in p if there is some sequence ji, ja, ..., jx (with k > 0) such that
Jo waiting,, ji1, and ji waiting, j2, ..., and ji—1 waiting, jk, and finally ji can step in p, i.e.,

3. p .

Intuitively, an element j, € N is reachable if j, can itself step or has a transitive waiting
dependency on some ji that can step. This notion is stronger than the usual notion of
reachability, which considers objects to be reachable even if they are only reachable from
threads that are blocked.

» Definition 7 (Full reachability). A configuration p is fully reachable if all i € dom(p) are
reachable in p.

As in [18], our strengthened formulations of deadlock freedom and full reachability are
equivalent for X:

» Theorem 8. A configuration p is deadlock/leak free if and only if it is fully reachable.

Furthermore, these notions imply global progress and type safety:
» Definition 9. A configuration p has the progress property if p =0 or 3p’,i.p & 0.

» Definition 10. A configuration p is safe if for all i € dom(p), either 3p',i. p R p, or
3j. ¢ waiting,, j.

» Theorem 11. If a configuration p is deadlock/leak free (or equivalently, fully reachable),
then p has the progress and safety properties.

Our main theorem is thus that configurations that arise from well-typed programs are
fully reachable and deadlock free:

» Theorem 12. If O e: 1 and {0+ Thread(e)} ~* p/, then p is fully reachable and
deadlock/leak free.

The proof of the reachability half of Theorem 12 proceeds similarly to the proof of global
progress (Theorem 2). The difference between the proofs is that the proof of reachability
needs to explicitly keep track of the reason why each object in the configuration is reachable,
whereas global progress only needs to find one of the “roots” of the reachability relation (i.e.,
threads that can step).

Theorem 8 can then be used to obtain the deadlock freedom side of Theorem 12. The
idea of the proof of Theorem 8 is that the set of all unreachable objects forms a deadlock, if
the set is non-empty.
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6 Extending X with unrestricted and recursive types

We add unrestricted types and recursive types as extensions. These can be omitted for
a minimalistic language, but they enable us to do ordinary functional programming and
recursive sessions in X, bringing it closer to a realistic language in terms of features and
expressiveness. The extended set of types is:

TE€Type =0 |1 |7 X7 |T7+7|T7—0T|7T—>7|par|a

An equi-recursive interpretation of px.7 avoids explicit (un)fold constructs [6]. Recursive
types make the language Turing complete, because they allow us to define recursive functions
with the Y-combinator®, and together with sums and products can be used to encode algebraic
data types. Because session types are encoded as ordinary types in X, recursive sessions are
automatically supported. This includes recursion through the message, as in us. 7s.End,
which is encoded as pa. 1 —o (1 —o 1) X a.

Formally and in the mechanization (Section 7), we use the coinductive method of Gay,
Thiemann, and Vasconcelos [12] to handle equi-recursive types. This means that we formally
do not have a syntactic pa.7 type constructor; instead we let the language of types be
coinductively generated. Intuitively, this means that infinite types are allowed, and a recursive
type pa.F(a) is represented as its infinite unfolding F(F(F'(---))). We use a meta-level
fixpoint (CoFixpoint in Coq) to construct infinite/circular types. By using this method we
do not need an additional typing rule for unfolding recursive types, since types are already
identified up to unfolding.

In order to make interesting use of recursive types, it is necessary to add unrestricted types,
which are types for which the linearity restriction is lifted, so that they can be duplicated
and discarded freely. A linear function can only be called once and hence cannot call itself, so
recursive functions must have unrestricted type. Using unrestricted and recursive types, we
do not need built-in recursion as we can encode recursive functions using the Y-combinator:

Y:i((nn—=m)—(n—omn)—(n—n)
Y 2 M. Oz f (z ) Oz f (z )

Here too it is apparent that since z is used twice, unrestricted as well as recursive types are
required to type check the Y-combinator [18].

In particular, we add the unrestricted function type 71 — 72 as a new type former. We
can then define rules that determine which of the existing types are unrestricted, as follows:

0,1 are unrestricted types

71 X 79 and 71 + T are unrestricted if 7; and 7 are unrestricted

71 — To is always unrestricted, even for linear 7 and 7

T1 —0 To is always linear, even for unrestricted 7 and 7
Using unrestricted function types, we can encode the !A connective from linear logic as
1A and7Aas A — 1.

Formally and in the mechanization, unrestricted types are handled by splitting the typing
context using a 3-part relation split I' I'; T'y, which intuitively says that I' = I';, ', where
variables of unrestricted type in I' may occur in both I'; and I'y (see [18] for details). We
also make use of the predicate I" unr to indicate that all variables in I' must have unrestricted
type. To extend the typing rules in Figure 1, we use split to split the context, and we use

8 One could also add an explicit letrec.
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T" unr wherever an empty context is required in Figure 1. For example, here are the typing
rules for variables and for pairs:

T unr I'ikFe:m I'okey:m split I' T’y T’y

Dz:tha:T T'F (e1,e2) : 7 X T2

The other rules and the rules of the run-time type system are amended analogously.

Unrestricted and recursive types are purely type-level features and require no extensions
to the expression language or to the operational semantics. Nevertheless, they upgrade X
to a Turing complete functional and concurrent language. For more details, we refer the
interested reader to the mechanization (Section 7).

7 Mechanization

All our theorems have been mechanized in Coq. We use the connectivity graph library of
[18] in our mechanization. The mechanization is built-up as follows:

Language definition: expressions, static type system, and operational semantics. Our
mechanization includes the extensions with unrestricted and recursive types.

A run-time type system that extends the static type system to barrier literals (k). The
run-time type system is expressed in separation logic.

A configuration well-formedness invariant, stating that the configuration remains well-
typed, and the connectivity between threads and barriers remains acyclic.

Proof that well-formedness is maintained by the operational semantics.

Proof that well-formed configurations have the full-reachability property.

Proofs that full-reachability is equivalent to deadlock/leak freedom, and that they imply
type safety and global progress.

The definition of the encoding of session types in X, and proofs that the usual session
typing rules are admissible.

A definition of GV and its operational semantics, and the translation into X, with a proof
that the GV semantics can be simulated with the X semantics. A lock-step simulation
is obtained by inserting extra no-op steps in the GV semantics wherever X does an
administrative S-reduction.

Whereas the mechanized deadlock freedom proof for GV’s session types by [18] consists
of 2139 lines of Coq definitions and proofs (excluding [18]’s graph library), our mechanization
of X and its deadlock freedom is only 1229 lines. The encoding of GV’s session types into X
together with the proofs of admissibility of the typing rules is 249 lines, and the operational
simulation result is 309 lines.

Although the X mechanization relies on connectivity graphs [18], the techniques presented
there were not immediately sufficient for proving deadlock freedom of X. The difficulty lies in
X’s sync step in the operational semantics, which exchanges resources between two vertices
that are not directly adjacent in the graph. This is not supported as an operation by [18], so
we instead want to separate it into multiple smaller graph transformations. Unfortunately,
the intermediate states do not satisfy the configuration invariant. The solution to this was to
add extra “ghost state” to the labels on the edges of the graph, which keeps track of which
sub-step of the decomposed graph transformation the connected vertices are in. As part
of future work, it would be interesting to investigate whether this technique can be used
more generally for composing graph transformations on the separation logic level, when the
intermediate states do not satisfy the invariant.

The current version of the mechanization can be found on GitHub [17].
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8 Related work

Session types were originally described by Honda [15], and later by Honda, Vasconcelos, and
Kubo [16]. Gay and Vasconcelos [13] embedded session types in a linear A-calculus. Whereas
Gay and Vasconcelos’ calculus [13] was not yet deadlock free, Wadler’s subsequent GV [31]
and its derivatives [21, 23, 24, 11, 10] were.

Wadler also described the relation of GV to classical processes (CP) [31], giving a
kind of Curry-Howard correspondence between session types and classical linear logic. For
intuitionistic linear logic, such a correspondence had earlier been described by Caires and
Pfenning [4].

Lindley and Morris [22, 23] give a CPS encoding of GV. The target of the CPS encoding
is linear A-calculus without fork, which is even more minimal than X. The key difference
between the CPS encoding and our encoding into X is that the CPS encoding is global (i.e.,
a whole-program transformation), whereas the encoding of sessions into X is local, which
is made possible by the built-in concurrency of X. In other words, in contrast to the CPS
encoding, the encoding of channel operations in X can be viewed as syntactic abbreviations
or macros, satisfying Felleisen’s expressiveness criterion [9].

When session types are added to the syntax of standard m-calculus they give rise to

additional separate syntactic categories, which leads to a duplication of effort in the theory.

Kobayashi showed that session types are encodable into standard w-types [19]. Dardha,
Giachino, and Sangiorgi formalize and extend Kobayashi’s approach [7, 8]. The encoding
makes use of the fact that the m-calculus semantics has communication in the form of
m-channels, and can thus encode session communication into m-communication. The encoding
of multi-step sessions into single-shot m-channels sends a continuation along, so that the
communication can continue. X’s encoding of session types takes inspiration from this work,
and also sends along continuations on which the communication can continue. On the other

hand, X starts with A-calculus, which does not have any concurrency or communication.
We therefore add concurrency and communication to linear A-calculus in the form of fork.

Unlike the 7-calculus’ channel communication, which is one-way (like an individual step of a
session), X’s barrier communication atomically exchanges two values, so that barriers may
be given linear function type A —o B. This lets X get away with not adding any new type
formers to linear A-calculus, by reusing the quintessential A-calculus type (the function type)
for its communication primitive.

Single-shot synchronization primitives have also been used in the implementation of a

session-typed channel libraries, for instance by Scalas and Yoshida [30], Padovani [27], and
Kokke and Dardha [20].

More distantly, Arslanagic, Pérez, and Voogd developed minimal session types [2], which
decompose multi-step session types into single-step “minimal” session types of the form
!7.End and ?7.End in a w-calculus. Whereas X and the preceding approaches [19, 7, 8] encode
sequencing by nesting payload types, minimal session types “slice” the n actions of a session
s into indexed names sy, ..., s,, each having a minimal session type. Correct sequencing is

arranged on the process level with additional synchronizations, using Parrow’s decomposition
of processes into trios [28].

Niehren, Schwinghammer and Smolka developed a concurrent A-calculus with futures
[26]. Futures are akin to mutable variables that can only be assigned once. If a future has
not been assigned a value yet, then attempting to read its value will block until a value
becomes available. In addition to a non-linear type system which allows run-time errors due
to multiple assignments to the same future, the authors also present a linear type system
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that ensures that futures are not assigned twice. The authors are able to build channels on
top of futures by starting with the ordinary linked list data type, and making the tail of the
list a future, thus making the list open-ended. Unlike session-typed channels, which follow
a protocol and can send values of different types at different points in the protocol, their
channels always communicate values of the same type. Besides the difference between futures
(which are unidirectional) and X’s barriers (which are bidirectional), another difference is
that deadlock freedom is not guaranteed for all well-typed programs.

Aschieri, Ciabattoni and Genco give a Curry-Howard correspondence for Gédel Logic
[3], which is intuitionistic logic extended with the axiom (A — B)V (B — A)?. This is a
classical axiom that is implied by, but strictly weaker than the law of the excluded middle,
and Godel Logic thus provides an intermediate between intuitionistic and classical logic. The
idea for the Curry-Howard interpretation of the axiom is that two copies of the continuation
can be run in parallel, and exchange their evidence for A and B if both sides try to apply
the implication obtained from the axiom. An important difference with X is that Godel
Logic is based on intuitionistic logic (corresponding to the ordinary simply typed lambda
calculus), whereas X is based on the linear simply typed lambda calculus, and strongly relies
on linearity for type safety and deadlock freedom. It would be interesting to investigate
whether a connection between X and Godel Logic can be established, but a naive attempt at
interpreting the axiom as (A — B) + (B — A) in X appears bound to fail, because in a linear
setting the continuation/context cannot be duplicated without breaking the meta-theoretical
properties.

We base our mechanization on the connectivity graph approach of Jacobs, Balzer, and
Krebbers [18], and we use their library to reason about graphs in Coq. This is related to the
graphical approach of Carbone [5], the proof method of Lindley and Morris [21], and to the
abstract process structures of Fowler, Kokke, Dardha, Lindley, and Morris [10].

More distantly, X is inspired by minimal languages such as MiniJava [29], MiniML [25],
the DOT calculus [1], and others.

9 Concluding remarks

We have investigated X, a minimal linear lambda calculus extended with fork to make it
concurrent. We have seen that channel operations and linear session types can be encoded in
A, and we have shown that the resulting semantics for the channel operations simulates the
GV semantics.

The metatheory of X, including strong deadlock freedom, has been mechanized in Coq.
Because of X’s minimality, the proofs are simpler and shorter than earlier mechanized proofs
for session types. I hope you enjoyed this approach to distilling session types into a simple
core, and hope that X may serve as a minimal basis upon which future work may build.
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