Problem list. 1st Girona conference on inner model theory

- 1. (Schindler) Is there an extender model L[E] whose mantle is not a fully iterable (from the point of view of L[E]) (hod) mouse?
- 2. (Goldberg) An irreducible ultrafilter is a countably complete ultrafilter whose ultrapower embedding doesn't factor as a finite linear iteration of ultrapowers by internal ultrafilters. Schlutzenberg-Steel: In L[E], the irreducible ultrafilters are exactly the measures on the sequence.

Is it consistent with a κ^+ supercompact cardinal κ that the Mitchell order restricted to irreducible ultrafilters is a well-order? What about in fine structural models?

In L[E], if there is a normal measure concentrating on α 's which are α^+ supercompact, then there is a normal measure which is not on the sequence. (Woodin: "Fine structure at the finite levels of supercompactness.")

3. Let (M, Σ) be a mouse pair, and let S be an iteration tree on M of successor length (not nec. by Σ) with a nice m-strategy Λ . Is $\Lambda = \Psi_S^*$ for some Ψ such that (M, Ψ) is a mouse pair?

Analoguous question for type 2.

4. (Aguilera) What is the consistency strength of the determinacy of the least σ -algebra containing all the projective sets?

Lower bound: PD. Upper bound: For each $x \in \mathbb{R}$, $N_{\omega+1}^{\#}(x)$ exists. Here, $N_{\omega+1}^{\#}(x)$ is the least active sound mouse N with a Woodin cardinal δ such that for each $n < \omega$, $M_n^{\#}(N|\delta) \triangleleft N$.

5. (Wilson) What is the consistency strength of ZF plus "every Suslin set is (boldface) Σ_2^1 "? (Add DC if you want.)

Upper bound: A generic Vopenka cardinal. Lower bound: ZFC.

6. (Schlutzenberg) Let $\kappa \geq \aleph_1$ be regular. Suppose M has a $\kappa + 1$ iteration strategy with strong hull condensation. \mathbb{P} has the κ -c.c. implies that M is still $\kappa + 1$ iterable in $V^{\mathbb{P}}$. (Schlutzenberg: "Iterability for stacks.") For which other forcings is this also true (or consistently false)?

Example: $\kappa = \omega_1$. Can have a proper forcing \mathbb{P} such that $M_1^{\#}$ is not $\omega_1 + 1$ iterable in $V^{\mathbb{P}}$, while $M_1^{\#}$ is $\omega_1 + 1$ iterable in V. (Schindler-Schlutzenberg) What about a σ -closed \mathbb{P} ?

- 7. (Mesken) Let Γ be a class of forcings. The Γ mantle is the intersection of all grounds W such that W[g] = V, g \mathbb{P} -generic over W for some $\mathbb{P} \in \Gamma^W$. For natural Γ , the Γ mantle is a model of ZF. (Fuchs-Hamkins-Reitz)
- (1) Can the Γ mante be a model of AD? (Fuchs: Yes! Let $V = L(\mathbb{R})^{\operatorname{Col}(\omega_1,\mathbb{R})}$, $\Gamma = \sigma$ -closed forcings.)
- (2) What is the Γ mantle of a given L[E] model? E.g., L[E] being the least model with a strong above a Woodin, $\Gamma = \sigma$ -closed posets.
- (3) (Goldberg) Is there an L[E] which has an inner model N such that N[g] = L[E], where g is \mathbb{P} -generic over N for some non-trivial $\mathbb{P} \in N$ which is σ -closed (σ -distributive) in N?

- **8.** (Steel) Let $M_1^{\#} \leq_T x$. Work in L[x]. Let N be M_1 -like if N is an inner model, $N \models$ "I'm M_1 ," and $\delta^N < \omega_1$. Let H be the result of simultaneously pseudo comparing all such N. $H = L[\mathcal{M}(\mathcal{T})]$ for any tree \mathcal{T} from that comparison. $\delta^H = \omega_2$.
 - Is $H|\omega_2 = HOD|\omega_2$?
- **9.** (Adolf) Let M_{refl} be the least mouse with some λ , a limit of Woodin cardinals and $<\lambda$ strongs and some $\kappa<\lambda$ which is A-strong up to λ , where $A=\{\mu<\lambda\colon \mu$ is $<\lambda$ strong $\}$. Assume M_{refl} has a good ω_1+1 iteration strategy.
- (1) Does M_{refl} have a uniquely assigned derived model? E.g., does $D(M_{\text{refl}}, < \lambda)$ satisfy lsa?
- (2) (Steel) Let M_0 , M_1 be \mathbb{R} -genericity iterates of M_{refl} . I.e., have g_0 and g_1 $\operatorname{Col}(\omega, <\omega_1^V)$ -generic over M_0 , M_1 , respectively, (ω_1^V) being the image of λ under the iteration maps) such that $\mathbb{R}_{g_0}^* = \mathbb{R}^V = \mathbb{R}_{g_1}^*$. Is $Hom_{g_0}^* = Hom_{g_1}^*$?
 - 10. (Steel) Does AD⁺ plus "no long extender" imply hod pair capturing?
 - 11. (Goldberg) Assume $AD^{L(\mathbb{R})}$. Does $L(\mathbb{R})$ satisfy the ground axiom?